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Abstract This document provides the equations and the parameters needed to obtain the
results presented in our paper. We first describe the models of the single neurons for all the
relevant neural populations considered. Finally, we explain how the different populations of
neurons are connected. For this, the evolution of the synaptic strengths over time is described.

1 Modelling Single Neurons

The neural populations considered in our model correspond to units of the posterior cortex,
the striatum, the internal and the external segments of the globus pallidus (GPi and GPe),
the subthalamic nucleus (STN) and the thalamus.

1.1 Model of the Posterior Cortex

Our model of the posterior cortex consists of two neural populations: excitatory neurons (gluta-
matergic with NMDA receptors) of the regular-spiking type, and inhibitory neurons (GABAer-
gic) of the fast-spiking type. In the following sections, we will describe the dynamics for a single
neuron of these two populations, and the model for the connections and synaptic plasticity
between neurons.
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1.1.1 Dynamical equations for the cortical neurons

For the cortical excitatory neurons, inspired by [3], the dynamics for the membrane po-
tential (vNMDApCtx

) and the recovery current (uNMDApCtx
) for pyramidal neurons with

NMDA-type receptors are described by the following equations. In the dynamical system be-
low, vNMDApCtx

and uNMDApCtx
are vectors that contain the membrane potential and the

recovery currents for all the neurons within the population of excitatory NMDA-type neurons
within the posterior cortex:

C
dvNMDApCtx

(t)

dt
= k

[
vNMDApCtx

(t)− vr
][
vNMDApCtx

(t)− vt
]
− uNMDApCtx

(t)+

+ INMDApCtx
(t),

duNMDApCtx
(t)

dt
= a

{
b
[
vNMDApCtx

(t)− vr
]
− uNMDApCtx

(t)

}
,

(1)

where vNMDApCtx
∈ RNNMDApCtx , uNMDApCtx

∈ RNNMDApCtx , with NNMDApCtx

the number of NMDA-type neurons within the posterior cortex. C is the membrane capaci-

tance, vr ∈ RNNMDApCtx the resting membrane potential for each neuron of the population

and vt ∈ RNNMDApCtx the instantaneous threshold potential for each neuron of the popula-

tion. INMDApCtx
(t) ∈ RNNMDApCtx is the total synaptic current flowing into every excitatory

neuron at time t. The parameter a is the recovery time constant. Parameters k and b are de-
rived from the single-neuron frequency-current (f − I) curve by considering the instantaneous
firing-rate versus the net synaptic current. We also examined the results of the frequency anal-
ysis to reproduce, with the model, real-like electrophysiological behaviours of the firing activity
within the neurons of the corresponding region of the brain.

We consider the following spike-generation and reset conditions of every element i of vectors
vNMDApCtx

and uNMDApCtx
at tpeakNMDApCtx

, when the neuron fires:

for all i, if vNMDApCtx
(i) ≥ vpeakNMDApCtx

then

{
vNMDApCtx

(i)← c

uNMDApCtx
(i)← uNMDApCtx

(i) + d

(2)

with vpeakNMDApCtx
the spike cut-off value for the membrane potential, and c the voltage

reset value – that is, the value of the membrane potential immediately after the neuron fires.
The parameter d is tuned to achieve the desired rate of the spiking output.

The dynamical evolution of the membrane potential and the recovery current for GABAer-
gic inhibitory neurons of the posterior cortex will follow similar equations to (1)-(2), but sub-
stituting the following variables and parameters vNMDApCtx

, uNMDApCtx
, INMDApCtx

, and

vpeakNMDApCtx
by vGABApCtx

∈ RNGABApCtx , uGABApCtx
∈ RNGABApCtx , IGABApCtx

∈

RNGABApCtx and vpeakGABApCtx
, respectively. The constant NGABApCtx

is the number of

GABAergic-type neurons within the posterior cortex. Here, the current IGABApCtx
(t) models

the total synaptic input current for inhibitory neurons in the posterior cortex.
The parameters C, k, a, vr, vt, b, c and d are different for inhibitory and excitatory

neurons. Indeed, these parameters are different for each single neuron of our model, but we
do not include a subscript in all of them for the sake of readability. The parameters used for
NMDA-type and GABAergic neurons are given in Table 1.

1.1.2 Computation of synaptic currents and synaptic plasticity

The synaptic currents INMDApCtx
(t) and IGABApCtx

(t) are given in equations (3) and (4),
respectively:
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INMDApCtx
(t) = ILocal(t)− IpCtxGABA

(t) + Iext(t) + IbackNMDApCtx
(t), (3)

IGABApCtx
(t) = IpCtxNMDA

(t) + Iext(t) + IbackGABApCtx
(t). (4)

We will explain how we compute INMDApCtx
(t). Input IGABApCtx

(t) is calculated in a

similar way to INMDApCtx
(t).

In equations (3) and (4), Iext(t) represents the external incoming sensory information
which will be loaded or ignored according to five different scenarios considered in Section 3
of the main article. The external incoming sensory stimulus is applied to both the inhibitory
and the excitatory neurons of the posterior cortex. The external stimulus, represented by Iext,
is a temporary signal. Consequently, it has to be applied for a short-time interval. The input
triggers the activation of the posterior cortex. The striatal neurons, the STN and the thalamus
receive this cortical activity.

The input IbackNMDApCtx
(t) in equation (3) represents the random background activity

of the NMDA-receptor-type population in the posterior cortex. A background input is applied
to all the populations of neurons, and is calculated separately for each of them. There are
two main reasons to use a background input. First, the populations in the model do not only
receive signals from the populations considered in the basal ganglia’s circuit, but they also
receive signals from other brain areas (long-range connections), and this activity is represented
by the background input. Furthermore, the background input gives the possibility to reach the
threshold needed for the activation of populations and to allow them to have a random firing
activity in the absence of any other input. The background current is modelled as random
values generated with a Poisson probability distribution for GABAergic inhibitory neurons. For
excitatory NMDA neurons, the background current is modelled with random positive values
generated from a standard uniform distribution. The background input current is applied
during the total duration of the simulation.

Poisson probability distributions provide a good description for irregularities in neurons’
spike times. This formulation generates the probability density of a single-spike train. With
a Poisson probability distribution, each spike is generated independently from other spikes
with an instantaneous firing rate, and these generated spikes are used as an input. Thus,
the background inputs can be thought as the firing rate of a pre-synaptic population. In
the simulations, we use the poissrnd command from the Statistics Toolbox of MATLAB to
generate the Poisson probability distributions. This function returns the value of a number of
spikes which will be used as the background for each time step and each neuron.

IbackNMDApCtx
(t) is a vector of dimension NNMDApCtx

, and each element of them cor-

responds to the input of each neuron of the population. Iext(t) is a vector of dimension
NNMDApCtx

for equation (3), and a vector of dimension NGABApCtx
for equation (4).

The currents ILocal(t) and IpCtxGABA
(t) are also vectors of dimension NNMDApCtx

. The

current IpCtxGABA
(t) models the contribution of inhibitory GABAergic neurons to NMDA-

receptor-type neurons within the posterior cortex, and ILocal(t) is the recurrent activity of
excitatory NMDA-receptor-type neurons in the posterior cortex. Recurrent activity of a neu-
ral population is crucial, especially for robust maintenance of self-sustained persistent neural
activity in the absence of external stimuli. These synaptic input currents are calculated with
the following expressions, where we consider an axonal conduction delay:

ILocal(t) =
∑
tn

rSNMDApCtx
δV (t− (tn + td)),

IpCtxGABA
(t) =

∑
t∗n

rS∗
pCtxGABA

δ∗V (t− (t∗n + t∗d)),
(5)

where tn and td are the spike time and the axonal conduction delay of a pre-synaptic
NMDA-receptor-type neuron in the posterior cortex, respectively. The parameter r is a random
number which is generated uniformly in the interval [0, 1], δV (t − (tn + td)) is a vector of
dimension NNMDApCtx

× 1 with each element as a Dirac delta function δ(t− (tn + td)) that
results in the incremental increase of ILocal at each time tn + td.

On the other hand, t∗n and t∗d are the spike time and the axonal conduction delay of a pre-
synaptic GABAergic neuron of the posterior cortex, respectively. Moreover, δ∗V (t−(t∗n+t∗d)) is a
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vector of dimension NGABApCtx
×1 with each element as a Dirac delta function δ(t−(t∗n+t∗d))

that results in the incremental increase of IpCtxGABA
at each time t∗n + t∗d.

The time-varying connections between the pre-synaptic neuron population and the post-
synaptic neuron population are represented by the connection matrices:

SNMDApCtx
∈ RNNMDApCtx

×NNMDApCtx ,

S∗
pCtxGABA

∈ RNNMDApCtx
×NGABApCtx .

We note that, in our model, for the case of an NMDA-type excitatory neuron of the
posterior cortex (post-synaptic neuron here), the pre-synaptic neuron that may fire can be-
long to two populations of neurons, namely: NMDA-type neurons of the posterior cortex and
GABAergic inhibitory neurons of the posterior cortex.

Let us consider the computation of the input ILocal(t) in equation (5) for NMDA-type
neurons of the posterior cortex. In this case, each element (i, j) of the connection matrix
SNMDApCtx

is the synaptic strength between the ith pre-synaptic NMDA-receptor-type neu-

ron that has fired at time tn and the jth post-synaptic NMDA-receptor-type neuron. The
elements SNMDApCtx

(i, j), for all (i, j) ∈ NNMDApCtx
× NNMDApCtx

such that i = j, are
considered 0 to indicate that it is not possible to have a connection between a neuron and itself.
With an abuse of notation each SNMDApCtx

(i, j) will be denoted by sNMDApCtx
and be re-

ferred to as synaptic strength. We consider each synaptic strength sNMDApCtx
as a constant

parameter for most of the synapses. Time-varying synaptic plasticity is only considered for
the connections within the cortical NMDA-type neurons, the connections between the cortical
NMDA-type and GABAergic neurons, and finally, for the connections between the cortical
NMDA-type neurons and the D1-MSNs. The variation over time of these synaptic strengths
is modelled by a spike-timing-dependent plasticity (STDP) model.

In our STDP model, for the update of the synaptic strength, we need to detect whether
or not the pre-synaptic and the post-synaptic neurons are firing together. Let us consider tn
as the time a pre-synaptic neuron fires, and tpeak as the time a post-synaptic neuron fires. If
tn = tpeak then the pre- and post-synaptic neurons fire together. Since, we consider axonal
conduction delays, we need to add to tn the time td, and tn + td will be the time at which the
post-synaptic neuron can detect that the pre-synaptic neuron has fired, and this time will be
denoted by tnd = tn + td.

Detecting tnd = tpeak in simulation, which is the same as detecting that tnd − tpeak = 0,
is difficult. To avoid this problem, we introduce a region around the zero of the expression
tnd − tpeak, whereby if the magnitude of tnd − tpeak is less than a small number, say ∆t > 0,
we can either have tnd = tpeak (firing together) or be in transition to the state of firing
together. Defining this region makes it easier to detect when tnd − tpeak is close to zero. We
will distinguish two transitions states to tnd − tpeak = 0:
1) tnd − tpeak ≤ 0, or
2) tnd − tpeak > 0.

To sum up, the idea behind our STDP model is the following one. Let us consider a
presynaptic (“sending”) neuron A and a postsynaptic (“receiving”) neuron B. Let us define
tpeakA as the time where neuron A fires, tpeakB as the time where neuron B fires, and tdA as
the axonal conduction delay of neuron A, that is, the time that it takes for neuron B to detect
that neuron A has fired. Let us also consider two constants ωtpeakB

∈ (0, 1], JA,B ∈ (0, 1] :

– If A and B are not close to firing together, the synaptic strength between these two
neurons sA,B is unchanged.

– If A and B are close to firing together, we consider two cases:
1. If neuron A fires before neuron B, the synaptic strength sA,B is updated in the

following manner:
sA,B ← sA,B + ωtpeakB

JA,B .

2. If neuron B fires before neuron A:

sA,B ← sA,B − ωtpeakB
JA,B .

This can be better understood by examining Fig. 1.
Let us apply the STDP rule for the connections between cortical NMDA neurons. For the

NMDA-neuron case, the synaptic strength sNMDApCtx
is obtained in the following manner

for every time a pre-synaptic neuron (an NMDA-type neuron of the posterior cortex) fires at
time tn and the synaptic strength is modified with delay td:
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Fig. 1: Time-firing conditions for establishing the spike-timing-dependent plasticity (STDP)
rules to update the synaptic strength between a presynaptic (“sending”) neuron A and a

postsynaptic (“receiving”) neuron B. Remark: in the equations of our model, the time when
a pre-synaptic neuron fires is denoted by tn.

– For every n, if
∣∣∣tnd − tpeakNMDApCtx

∣∣∣ > ∆t (pre- and post-synaptic neurons do not

fire together):
sNMDApCtx

← sNMDApCtx
. (6)

– For every n, if
∣∣∣tnd − tpeakNMDApCtx

∣∣∣ ≤ ∆t and tnd ≤ tpeakNMDApCtx
(transition 1 to

firing together):

sNMDApCtx
← sNMDApCtx

+ JincNMDApCtx
ωδ(t− tnd). (7)

– For every n, if
∣∣∣tnd − tpeakNMDApCtx

∣∣∣ ≤ ∆t and tnd > tpeakNMDApCtx
(transition 2 to

firing together):

sNMDApCtx
← sNMDApCtx

− JincNMDApCtx
ωδ(t− tnd), (8)

where tpeakNMDApCtx
is the time an NMDA-type excitatory neuron of the posterior

cortex (now, post-synaptic neuron) fires. JincNMDApCtx
∈ (0, 1] is a parameter which is the

same for each neuron within the same population and is different for different types of neurons.
For the NMDA cortical neurons, we have JincNMDApCtx

= 0.03. The parameter ω, with a

value between 0 and 1, depends on the dopamine level φ(t) (defined in Section 1.2.1). It is
considered as ω = φ(t)/100 + 0.002, with t the time the pre-synaptic and the post-synaptic
neurons fire simultaneously (or are very close to fire together, to be precise). Thus, the value of
sNMDApCtx

is changed with JincNMDApCtx
and ω. In our evolving connections, the synaptic

strength between two connected neurons is kept the same if their firing times do not coincide,
but it is changed whenever their firing times coincide (or are close to coincide, to be precise).
These parameters, which define the connection dynamics, are given in Table 10. More details
are given in Section 2.

In an analogous way, we compute each element of the connection matrix S∗
pCtxGABA

.

That is, the synaptic strengths s∗pCtxGABA
between the pre-synaptic GABAergic neurons of

the posterior cortex and the post-synaptic NMDA-type neurons of the posterior cortex are
calculated in the following way:

– For every n, if
∣∣∣t∗nd − tpeakNMDApCtx

∣∣∣ > ∆t:

spCtxGABA
← spCtxGABA

. (9)



6 Navarro-López, Çelikok and Şengör

– For every n, if
∣∣∣t∗nd − tpeakNMDApCtx

∣∣∣ ≤ ∆t and t∗nd ≤ tpeakNMDApCtx
:

spCtxGABA
← spCtxGABA

+ J∗
incNMDApCtx

ω∗δ(t− t∗nd). (10)

– For every n, if
∣∣∣t∗nd − tpeakNMDApCtx

∣∣∣ ≤ ∆t and t∗nd > tpeakNMDApCtx
:

spCtxGABA
← spCtxGABA

− J∗
incNMDApCtx

ω∗δ(t− t∗nd), (11)

where t∗nd = t∗n + t∗d.
For the computation of IGABApCtx

(t), in equation (4), the term IpCtxNMDA
(t) represents

the contribution of NMDA-type excitatory neurons of the posterior cortex to GABAergic
inhibitory neurons of the posterior cortex; IbackGABApCtx

(t) is the background activity of

GABAergic inhibitory neurons of the posterior cortex. IbackGABApCtx
(t) is obtained from

random values generated with a Poisson probability distribution.
The synaptic input current IpCtxNMDA

(t) appearing in equation (4) for the computa-
tion of IGABApCtx

(t) is obtained in an analogous way as (5)–(8), substituting pCtxGABA by
pCtxNMDA and considering appropriate dimensions of the involved vectors and matrices de-
pending on the number of neurons of the population of GABAergic neurons and the population
of pre-synaptic NMDA neurons.

The parameters used for all the connections between neural populations are given in Section
2.

Table 1: Parameters for the models of the neurons of the posterior cortex. Random values
(rand) are added to vr so that neurons of the same type do not fire at the same time

Parameter Description NMDA-receptor GABA-receptor

N Number of neurons 800 200
C Capacitance 125pF 100pF
vr Reset potential -74+3 rand mV -68-3 rand mV
vt Instantaneous threshold potential -54mV -54mV
a Recovery time constant 0.01 0.5
k Tuned for appropriate firing rate 1 1.4
b Tuned for appropriate firing rate 0.1 0.1
c Parameter in the reset of the membrane potential -75 -65
d Parameter in the reset of the recovery current 25 10

vpeak Spike threshold 30mV 30mV

1.2 Model of the Striatum

The proposed model of the striatum consists of two different populations: D1-receptor type
neurons and D2-receptor type neurons. D1 and D2-receptor type neurons are medium spiny
projection neurons (MSNs).

1.2.1 Model for D1-MSNs

Inspired by [1–4], the dynamics for the membrane potential (vD1
) and the recovery current

(uD1 ) for striatal MSNs with D1-type receptors are:

C
dvD1

(t)

dt
= k

[
vD1

(t)− vr
][
vD1

(t)− vt
]
− uD1

(t) + ID1
(t) + 2φ1(t)gDA

[
vD1

(t)− EDA
]
,

duD1
(t)

dt
= a

{
b
[
vD1

(t)− vr
]
− uD1

(t)

}
,

(12)
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where vD1 ∈ RND1 , uD1
∈ RND1 , with ND1

the number of MSNs with D1-type receptors

within the striatum. C is the membrane capacitance, vr ∈ RND1 the resting membrane poten-

tial for each neuron of the population and vt ∈ RND1 the instantaneous threshold potential for

each neuron of the population. ID1(t) ∈ RND1 is the total synaptic current flowing into every
neuron at time t. The parameter a is the recovery time constant; k and b are derived from
the single-neuron frequency-current (f − I) curve by considering the instantaneous firing-rate

versus the net synaptic current. EDA ∈ RND1 and gDA ∈ R is the reversal potential for each
neuron of the D1-MSN population and the conductance of dopamine regulation, respectively.
All the elements of vector EDA are the same.

The function φ1(t) ∈ R, with values in [0, 1], models the proportion of active dopamine
in the D1-type receptors. Values of φ1 close to 1 result in the over activation of D1-type
receptors by modulating both cortical input (see equation for I∗pCtxNMDAD1

(t) below) and

the membrane potential dynamics.
For the D2-type receptors, we use the function φ2(t) ∈ R, with values in [0, 1], which

appears in the membrane potential dynamics for the MSNs with D2-type receptors (equation
(16)). The higher the value of φ2 is, the more inhibition in D2 receptors is produced. φ1 and
φ2 can be interpreted as input control functions. In this work, they are time-varying to show
different dominant states in the network. We will consider φ1(t) = φ2(t) = φ(t) for all t.

The value of φ(t) is determined by the tonic and the phasic levels of the dopamine. The
tonic value (φtonic) determines the steady state of the dopamine concentration and is consid-
ered constant. We will consider φ(t) = φtonic, for all t, when there is no external stimulus in the
cortex. When an external stimulus is applied to the cortex, we will also consider a time-varying
phasic evolution of the dopamine, which will model the transient dopamine concentration that
will decay with time after the cortical stimulus disappears. The distinction between tonic and
phasic dopamine levels gives a more realistic approximation of how the level of dopamine varies
into the basal ganglia.

All these features can be expressed mathematically in the following way. Let us consider
two constants φtonic, φphasic ∈ R, with φtonic ≥ 0 and φphasic ≥ 0 such that the sum of
φtonic + φphasic ∈ [0, 1], a parameter η ∈ R, with η ∈ (0.1), and T = [t1, t2] the interval of
time when an external stimulus is applied to the cortex, with t1, t2 ∈ R and 0 ≤ t1 < t2. Then
we define φ(t) as a switching function with the following form:

φ(t) =


φtonic if 0 ≤ t < t1,

φtonic + φphasic if t ∈ [t1, t2],

φtonic + φphasic
(
e−ηt

)
if t > t2.

(13)

If no external stimulus is applied in the cortex, we consider φ(t) = φtonic for all t.
For the simulation of the different scenarios described in Section 3 of the main paper, we

will give the values for the different parameters of φ(t).
The spike-generation and reset conditions of every element i of vectors vD1

and uD1
at

tpeakD1
, when the D1-MSN neuron fires, are:

for all i, if vD1
(i) ≥ vpeakD1

then


vD1 (i)← c

uD1
(i)← uD1

(i) + d(i)

d(i)← d(i)
[
1− Lφ1(tpeakD1

)
] (14)

where vpeakD1
is the spike cut-off value, c is the voltage reset value – that is, the value

of the membrane potential immediately after the neuron fires. The initial value of d(i), ∀i =
1, . . . , ND1

, is tuned to achieve the desired rate of spiking output. The initial value of d(i) is
the same for every neuron i within the population, but as soon as the simulation starts, d(i)
may change for each neuron within the population following equation (14). Finally, parameter
L ∈ [0, 1] is a scaling coefficient for the Ca2+ current effect.

For the synaptic currents:

ID1
(t) = I∗pCtxNMDAD1

(t)− ILocal(t) + IbackD1
(t),

I∗pCtxNMDAD1

(t) = [1 + β1φ1(t)] IpCtxNMDAD1
(t).

(15)
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All the currents in (15) are vectors of dimension ND1 . The current IpCtxNMDAD1
(t)

models the excitatory contribution of pyramidal neurons with NMDA-receptors of the posterior
cortex, and IbackD1

(t) is the random background input to the D1-MSN population. IbackD1
(t)

is obtained from random values generated with a standard uniform distribution; in this manner,
we can induce random neuronal spike trains in our model. ILocal(t) models the recurrent
activity of MSNs with D1-type receptors. β1 ∈ (0, 1] is a scaling coefficient of the dopamine’s
effect.

Each synaptic input current IpCtxNMDAD1
(t), ILocal(t) is obtained in an analogous way

as in (5)–(8), substituting SNMDApCtx
by SD1 , and considering appropriate dimensions of

the connection matrices depending on the number of neurons of the pre- and post-synaptic
populations. More details are given in Section 2.

1.2.2 Model for D2-MSNs

For MSNs with D2-type receptors, the dynamics for the membrane potential (vD2
) and the

recovery current (uD2
) are considered as:

C
dvD2

(t)

dt
= k

[
vD2 (t)− vr

][
vD2

(t)− vt
]
− uD2

(t) + ID2
(t)− 2φ2(t)gDA

[
vD2

(t)− EDA
]
,

duD2
(t)

dt
= a

{
b
[
vD2

(t)− vr
]
− uD2

(t)

}
,

(16)

where vD2 ∈ RND2 , uD2
∈ RND2 with ND2

the number of MSNs with D2-type receptors

within the striatum, vr ∈ RND2 is the resting membrane potential for each neuron of the

population and vt ∈ RND2 is the instantaneous threshold potential for each neuron of the
population. The parameter a is the recovery time constant; k and b are derived from the single-
neuron frequency-current (f − I) curve by considering the instantaneous firing-rate versus the

net synaptic current. Furthermore, EDA ∈ RND2 and gDA ∈ R is the reversal potential for each
neuron of the D2-MSN population and the conductance of dopamine regulation, respectively.
All the elements of vector EDA are the same.

The function φ2(t), with values in [0, 1], models the proportion of active dopamine in D2-
type receptors in the MSNs at every time t. It was explained in the previous section and has
the form of equation (13).

We consider the following spike-generation and reset conditions of every element i of vectors
vD2 and uD2 at tpeakD2

, when the D2-MSN fires:

for all i, if vD2
(i) ≥ vpeakD2

then

{
vD2

(i)← c

uD2
(i)← uD2

(i) + d
(17)

The input current ID2
(t) is defined as:

ID2
(t) = IpCtxNMDAD2

(t)− I∗Local(t) + IbackD2
(t). (18)

All the currents in (18) are vectors of dimension ND2
. The current IpCtxNMDAD2

(t)

models the excitatory contribution of pyramidal neurons with NMDA-receptors of the posterior
cortex, and IbackD2

(t) denotes the random excitatory background input to the striatal D2-

MSNs. IbackD2
is obtained from random values generated with a standard uniform distribution.

I∗Local(t) models the recurrent activity of MSNs with D2-type receptors.
Each synaptic input current IpCtxNMDAD2

(t), I∗Local(t) is obtained with equation (5),

substituting SNMDApCtx
by SD2

, and considering appropriate dimensions of the connection
matrices depending on the number of neurons of the pre- and post-synaptic populations. In this
case, no STDP update is applied and the synaptic strengths are calculated following equation
(5) and the steps explained in Section 2.

The values for the parameters for striatal medium spiny neurons used in our model are
given in Table 2.
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Table 2: Parameters for the models of the MSNs of the striatum. rand represents a random
value

Parameter Description MSN D1 MSN D2

N Number of neurons 200 200
C Capacitance 50pF 30pF
vr Reset potential -75.9mV -77mV
vt Instantaneous threshold potential -33.8mV -44.1mV
a Recovery time constant 0.04 0.05
k Tuned for appropriate firing rate 1.13 1.1
b Tuned for appropriate firing rate -8 -15
c Parameter in the reset of the membrane potential -65 -65
d Parameter in the reset of the recovery current 700 600

vpeak Spike threshold 40mV 40mV
L Scaling coefficient of Ca2+ current effect 0.831 -
gDA Conductance of dopamine 21.7 21.1
EDA Reversal potential of dopamine -68.4 -88

φ1 (D1), φ2 (D2), φ1 = φ2 = φ Dopamine receptor occupancy Variable Variable
φtonic Tonic dopamine level Variable Variable
φphasic Phasic dopamine level Variable Variable

η Parameter in expression for dopamine level φ 0.7 0.7
β1 Scaling coefficient of dopamine effect 1 -

1.3 Model of the GPe

The dynamics for neurons of the GPe are described with the same equations as in (1)-(2)
substituting vNMDApCtx

, uNMDApCtx
, INMDApCtx

and vpeakNMDApCtx
by vGPe, uGPe,

IGPe and vpeakGPe
, respectively. Now, vGPe ∈ RNGPe , uGPe ∈ RNGPe , IGPe ∈ RNGPe , with

NGPe the number of neurons within the GPe. Additionally, we define two different values of
k for each GPe neuron i: {

if vGPe(i) ≥ vt then k = 6,

if vGPe(i) < vt then b = 0.25.
(19)

We point out that vt is the instantaneous threshold potential for GPe neurons. We use
different values of vt for different types of neurons. These values are given in the different
tables throughout this document.

The input current IGPe is defined as:

IGPe(t) = ISTNGPe
(t)− ID2GPe

(t)− ILocal(t) + IbackGPe
(t). (20)

All the currents in (20) are vectors of dimension NGPe. The current ISTNGPe
(t) models

the excitatory contribution of neurons from the STN, ID2GPe
(t) is the inhibitory contribution

of D2-type MSNs of the striatum, and IbackGPe
(t) is the random background activity in the

GPe, which is obtained by using a standard uniform distribution. ILocal(t) models the recurrent
activity of the neurons of the GPe.

Each synaptic input current z (where z is one of STNGPe, D2GPe, Local) is obtained
with equation (5), substituting SNMDApCtx

by SGPe, and considering appropriate dimensions
of the connection matrices depending on the number of neurons of the pre- and post-synaptic
populations. In this case, no STDP update is applied and the synaptic strengths are calculated
following equation (5) and the steps explained in Section 2.

Typical values for the parameters for GPe neurons are given in Table 3.

1.4 Model of the GPi

The dynamics for neurons of the GPi are described with the same equations as in (1)-(2)
substituting vNMDApCtx

, uNMDApCtx
, INMDApCtx

and vpeakNMDApCtx
by vGPi, uGPi,

IGPi and vpeakGPi
, respectively. In this case, vGPi ∈ RNGPi , uGPi ∈ RNGPi , IGPi ∈ RNGPi ,

with NGPi the number of neurons within the GPi.
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Table 3: Parameters for the model of the GPe neurons. rand represents a random value

Parameter Description GPe

N Number of neurons 100
C Capacitance 200pF
vr Reset potential -52mV
vt Instantaneous threshold potential -44.31-rand mV
a Recovery time constant 1
k Tuned for appropriate firing rate 0.25
b Tuned for appropriate firing rate 0.25
c Parameter in the reset of the membrane potential -54.22-2 rand
d Parameter in the reset of the recovery current 20+5 rand

vpeak Spike threshold 25mV

Table 4: Parameters for the model of the GPi neurons. rand represents a random value

Parameter Description GPi

N Number of neurons 100
C Capacitance 50pF
vr Reset potential -52+3 rand mV
vt Instantaneous threshold potential -44.31+2 rand mV
a Recovery time constant 1
k Tuned for appropriate firing rate 0.25
b Tuned for appropriate firing rate 0.25
c Parameter in the reset of the membrane potential -54.22+5 rand
d Parameter in the reset of the recovery current 20-10 rand

vpeak Spike threshold 25mV

The input current IGPi is defined as:

IGPi(t) = ISTNGPi
(t)− ID1GPi

(t)− IGPeGPi
(t) + IbackGPi

(t). (21)

All the currents in (21) are vectors of dimension NGPi. The current ISTNGPi
(t) models

the excitatory contribution of neurons from the STN, ID1GPi
(t) is the inhibitory contribution

of the D1-MSNs of the striatum, IGPeGPi
(t) is the regulatory and inhibitory input from the

GPe and IbackGPi
(t) is the background activity in the GPi, which is obtained with a Poisson

probability distribution.
Each synaptic input current ISTNGPi

(t), ID1GPi
(t), IGPeGPi

(t) is obtained with equa-
tion (5), substituting SNMDApCtx

by SGPi, and considering appropriate dimensions of the
connection matrices depending on the number of neurons of the pre- and post-synaptic pop-
ulations. In this case, no STDP update is applied and the synaptic strengths are calculated
following equation (5) and the steps explained in Section 2.

Typical values for the parameters for GPi neurons are given in Table 4.

1.5 Model of the STN

The dynamics for the excitatory neurons of the STN are described as:

C
dvSTN (t)

dt
= k

[
vSTN (t)− vr

][
vSTN (t)− vt

]
− uSTN (t) + ISTN (t),

duSTN (t)

dt
= a

{
b
[
vSTN (t)− vr

]
− uSTN (t)

}
,

(22)

where vSTN ∈ RNSTN , uSTN ∈ RNSTN , ISTN ∈ RNSTN , with NSTN the number of STN
neurons. vr ∈ RNSTN is the resting membrane potential for each neuron of the population
and vt ∈ RNSTN is the instantaneous threshold potential for each neuron of the population.
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We consider the following spike-generation and reset conditions of every element i of vectors
vSTN and uSTN at tpeakSTN

, when the STN neuron fires:

for all i, if vSTN (i) ≥ vpeakSTN
then

{
vSTN (i)← c− 0.01uSTN (i)

uSTN (i)← uSTN (i) + d
(23)

To allow STN neurons to represent depolarisation when they are hyperpolarised under a
certain potential value, we define two different values for parameter b in equation (22), which
will be different for each neuron i of the STN (because b will change depending on the firing
conditions of each neuron): {

if vSTN (i) ≥ vb then b = −5,

if vSTN (i) < vb then b = 120,
(24)

where the constant vb is the bursting threshold for STN neurons. We also consider two
different values for the parameter k in equation (22), which will be different for each neuron i
of the STN: {

if vSTN (i) ≥ vt then k = 12,

if vSTN (i) < vt then k = 0.2.
(25)

The input current ISTN (t) is defined as:

ISTN (t) = IpCtxNMDASTN
(t)− IGPeSTN

(t) + ILocal(t) + IbackSTN
(t). (26)

All the currents in (26) are vectors of dimension NSTN . The current IpCtxNMDASTN
(t)

models the excitatory contribution of the NMDA neurons of the posterior cortex, IGPeSTN
(t)

is the inhibitory contribution of the neurons from the GPe, ILocal(t) models the excitatory
recurrent activity of the neurons of the STN. Finally, IbackSTN

(t) is the random background
activity in the STN, which is obtained with a Poisson probability distribution.

Each synaptic input current IpCtxNMDASTN
(t), IGPeSTN

(t), ILocal(t) is obtained with

equation (5), substituting SNMDApCtx
by SSTN , and considering appropriate dimensions of

the connection matrices depending on the number of neurons of the pre- and post-synaptic
populations. In this case, no STDP update is applied and the synaptic strengths are calculated
following equation (5) and the steps explained in Section 2.

Typical values for the parameters of STN neurons used in our model are given in Table 5.

Table 5: Parameters of the model for the STN neurons. rand represents a random value

Parameter Description STN

N Number of neurons 100
C Capacitance 200pF
vr Reset potential -52+rand
vt Instantaneous threshold potential -44.31-rand
a Recovery time constant 1
k Tuned for appropriate firing rate 0.25
b Tuned for appropriate firing rate 0.25
c Parameter in the reset of the membrane potential -54.22-2 rand
d Parameter in the reset of the recovery current 20+5 rand

vpeak Spike threshold 25mV
vb Bursting threshold -70mV
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1.6 Model of the Thalamus

The model of the thalamus only considers excitatory thalamocortical (TC) neurons. The dy-
namics of these excitatory neurons are described by:

C
dvThl(t)

dt
= k

[
vThl(t)− vr

][
vThl(t)− vt

]
−
[
uThl1 (t) + uThl2 (t)

]
+ IThl(t),

duThl1 (t)

dt
= aCa

{
bCa

[
vThl(t)− vr

]
− uThl1 (t) + 0.75uThl2 (t)

}
,

duThl2 (t)

dt
= aK

{
bK
[
vThl(t)− vr

]
− uThl2 (t)− 0.05uThl1 (t)

}
,

(27)

where vThl ∈ RNThl , uThl1 , uThl2 ∈ RNThl , IThl ∈ RNThl , with NThl the number of excita-

tory thalamic neurons. vr ∈ RNThl is the resting membrane potential for each neuron of the
population and vt ∈ RNThl is the instantaneous threshold potential for each neuron of the
population.

We consider the following spike-generation and reset conditions of every element i of vectors
vThl, uThl1 and uThl2 at tpeakThl

, which is a modification of the original reset conditions from
[3]:

for all i, if vThl(i) ≥ vpeakThl
+ 0.1uThl1 (i) then


vThl(i)← cThl − 0.1uThl1 (i)

uThl1 (i)← uThl1 (i) + dCa
uThl2 (i)← uThl2 (i) + dK

(28)

Table 6: Parameters for the model for the thalamocortical neurons. rand represents a
random value

Parameter Description Thalamocortical Neurons

N Number of neurons 100
C Capacitance 200pF
vr Reset potential -61-2 rand mV
vt Instantaneous threshold potential -48-2 rand mV
k Tuned for appropriate firing rate 1.6
aCa Recovery time constant 0.05
aK Recovery time constant 0.002
bCa Tuned for appropriate firing rate 0
bK Tuned for appropriate firing rate 0.5
cThl Parameter in the reset of the membrane potential -60-5 rand
dCa Parameter in the reset of the recovery currents 4
dK Parameter in the reset of the recovery currents 2
vpeak Spike threshold 35mV
vbCa

Bursting threshold -65mV
vbK ” -55mV
vK ” -20mV

To allow the thalamocortical neurons to have depolarising activity when they are hyper-
polarised under a certain potential value, we define two different values for parameters bCa
and bK in equation (27), which will be different for each thalamocortical neuron i:{

if vThl(i) ≥ vbCa
then bCa = 0,

if vThl(i) < vbCa
then bCa = 45,

(29)

{
if vThl(i) ≥ vbK then bK = 0.5,

if vThl(i) < vbK then bK = 25,
(30)
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where the constants vbCa
and vbK are bursting thresholds for the thalamocortical neurons.

This differentiation is inspired from [3].
Additionally, we consider:{

if vThl(i) ≤ vK then k = 1.6,

if vThl(i) > vK then k = 25.
(31)

The input current IThl(t) is defined as:

IThl(t) = IpCtxNMDAThl
(t)− IGPiThl

(t) + ILocal(t) + IbackThl
(t). (32)

All the currents in (32) are vectors of dimension NThl. The current IGPiThl
(t) models

the inhibitory contribution of neurons from the GPi, IpCtxNMDAThl
(t) represents the cortical

excitatory input and ILocal(t) models the excitatory recurrent activity of the thalamocortical
neurons. Moreover, IbackThl

(t) is the random background activity in the thalamus, which is
obtained by using a standard uniform distribution.

Each synaptic input current IGPiThl
(t), IpCtxNMDAThl

(t), ILocal(t) is obtained with

equation (5), substituting SNMDApCtx
by SThl, and considering appropriate dimensions of

the connection matrices depending on the number of neurons of the pre- and post-synaptic
populations. In this case, no STDP update is applied and the synaptic strengths are calculated
following equation (5) and the steps explained in Section 2.

The values of the parameters for the thalamic neurons considered in our model are given
in Table 6.

Finally, and before describing how we connect the different neurons, we provide, in Table
7, the initial values for the membrane potentials and recovery currents used to numerically
integrate the differential equations describing the dynamics for all the single neurons.

Table 7: Initial values for the membrane potentials (v0) and the recovery currents (u0) at
t = 0 for each type of neuron in our model. Remark: the values for vr and b are different for

each type of neuron. Their values are provided in Tables 1, 2, 3, 4, 5 and 6

Type of Neuron Initial v (v0) Initial u (u0) Initial uThl1 Initial uThl2
Cortex (NMDA,GABA) -65mV bv0 - -

Striatum (D1, D2) -86mV bv0 - -
GPe vr bv0 - -
GPi vr bv0 - -
STN c bv0 - -

Thalamus cThl - bCav0 bKv0

2 Modelling the Evolving Interconnections of the Network

In Section 1, we explained the main elements of our basal ganglia network model, especially
designed to study Parkinson’s disease. The neuron dynamics presented define the evolution of
each neuron’s behaviour over time and determine the way neurons behave according to inputs.
The connections between neurons in the same neural population, and the connections between
different populations of neurons represent the evolution of the relationships between them.
This evolution depends on the firing activity and firing times of the neurons, and it will be
explained in this section.

In Section 1.1.2, we gave details on the evolving connections and the synaptic strength
evolution between the NMDA-receptor-type neurons of the posterior cortex. We will use this
example to describe how we model all the connections in the proposed network. We will use a
generic nomenclature without subscripts to represent the synaptic strenghts of the neurons of
our model.
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The connections between neurons are defined by means of what we have called a con-
nection matrix S, see equation (5). Let us consider that synapses are connecting neurons
of two populations, having pre-synaptic and post-synaptic neurons. For each pre- and post-
synaptic population, we define a different connection matrix S. The dimension of the matrix S
is Npre ×Npost, with Npost the number of neurons in the post-synaptic population and Npre
the number of neurons in the pre-synaptic population. With this, we are establishing that we
have an all-to-all topology between the neurons of two populations. However, we will assign a
probability to each link between two neurons, and consequently, we will finally build random-
graph networks for populations of neurons. Each element (i, j) of the connection matrix S
contains the synaptic strength (s) between the i pre-synaptic neuron that has fired at some
time tn and the j post-synaptic neuron. For the pre-synaptic neuron, we also consider the
axonal conduction delay td, which will be used to update the synaptic strengths. The elements
S(i, j), for all (i, j) ∈ Npre ×Npost such that i = j, are considered 0 to indicate that it is not
possible to have a connection between a neuron and itself.

We do not compute the synaptic strengths for every element of the connection matrices S.
The connection probabilities between populations of neurons given in Table 10 determine how
sparse the connection matrix S will be. For example, let us come back to Section 1.1.2, and
recall the computation of the elements of matrix SNMDApCtx

in order to obtain the recurrent

activity of excitatory NMDA-receptor-type neurons in the posterior cortex (Ilocal in (5)).
For example, consider that we have 80 NMDA-receptor-type neurons in the posterior cortex.
Consequently, the size of SNMDApCtx

is 80 × 80. Consider that the connection probability
between two NMDA-type neurons is 0.2, then there will be 1280 possible connections between
these 80 neurons. We will randomly choose these 1280 elements within the matrix SNMDApCtx

,
and we will calculate their values – that is, the synaptic strengths sNMDApCtx

– in the following
manner.

– We will first initialise the value for each synaptic strength s (for example, sNMDApCtx
)

between a pre- and post- synaptic neuron with the product of the initial synaptic strength,
Js, and a uniformly distributed random number r between 0 and 1. This random scaling
parameter r is also used in the computation of some of the synaptic input currents as it is
defined in equation (5). The values used for the initial synaptic strength, Js, are given in
Table 9. The random value r provides different initial conditions for each simulation.

– Time-varying STDP-like synaptic plasticity is only considered for the connections within
the cortical NMDA-type neurons, the connections between the cortical NMDA-type and
GABAergic neurons, and finally, for the connections between the cortical NMDA-type
neurons and the D1-MSNs. For the rest of neurons, we will use expression (5) to compute
the synaptic input currents, and the synaptic strengths s will not change over time and
will maintain their initial value for all the simulation time.

– For the neurons with time-varying STDP-like synaptic plasticity, once we start simulating
our model, the initial values for the synaptic strengths ‘evolve’ according to equations
of the same form as (6), (7) and (8). If a pre-synaptic neuron causes the firing of a post-
synaptic neuron, the corresponding synaptic strength s may increase or decrease according
to equations (7) and (8). How much we increment or decrease the connection strength
is determined by the product of the increment parameter Jinc and the parameter ω.
Jinc ∈ (0, 1] is a parameter which is the same for each neuron within the same population,
and ω is a parameter with a value between 0 and 1 which depends on the dopamine level
φ(t) and is considered as ω = φ(t)/100 + 0.002, with t the time the pre-synaptic and
the post-synaptic neurons fire simultaneously (or they are close to firing together, to be
precise). The values used in our simulations for parameter Jinc are given in Table 10.
Furthermore, if the firing times of the pre- and post-synaptic neurons ‘do not coincide’
(including td for the pre-synaptic neuron), the synaptic strength stays the same according
to equation (6).

The synaptic strengths can have positive or negative values. However, we will limit the
maximum and minimum values of these synaptic strengths for the ones varying over time
following the STDP model, such that |s| ≤ smax. In this manner, we avoid instabilities in the
simulation. Values for smax are given in Table 10 for each time-varying synaptic connection.

In this context, an existing connection between the corresponding pre-synaptic and post-
synaptic neuron may disappear (the value of the synaptic strength may become 0, s = 0) or
a non-existent connection may be formed (the value of the synaptic strength is different from
0) depending on the spike times. This is what we call evolution of the connections. With this,
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Table 8: Interconnections between the neural populations

Connection (Pre-synaptic) Number of neurons Targets (Post-synaptic)

PosteriorCortexNMDA 800 Local, Posterior Cortex (GABA), MSNsD1, MSNsD2, STN, Thalamic Cells
PosteriorCortexGABA 200 Posterior Cortex (NMDA)

MSNsD1 200 Local, GPi
MSNsD2 200 Local, MSNsD1, GPe
GPi 100 Thalamic Cells
GPe 100 Local, GPi, STN
STN 100 Local, GPi, GPe

ThalamicCells 100 Local

Table 9: Parameters for the synaptic connections between neurons. The initial synaptic
strength (Js) will not change over time for connections without STDP

Connection (From-To) Number of synapses per neuron Initial synaptic strength (Js) Axonal conduction delay (td)

pCtxNMDA → pCtxNMDA 100 100 20ms
pCtxNMDA → pCtxgaba 100 100 20ms
pCtxNMDA →MSND1 80 175 11ms
pCtxNMDA →MSND2 50 150 15ms
pCtxNMDA → STN 35 100 6ms
pCtxNMDA → TC 40 75 25ms

pCtxgaba → pCtxNMDA 100 -50 20ms
MSND1 →MSND1 30 -10 5ms
MSND1 → GPi 60 1200 6ms

MSND2 →MSND1 30 -5 5ms
MSND2 →MSND2 30 -5 5ms
MSND2 → GPe 50 1100 6ms
GPi→ TC 75 150 (for PD-related case 3.5) 2ms
GPi→ TC 75 600 (for 3.1, 3.2, 3.3, 3.4 cases) 2ms
GPe→ GPe 20 45 2ms
GPe→ STN 40 125 6ms
GPe→ GPi 20 100 6ms
STN → STN 20 50 3ms
STN → GPi 40 400 2ms
STN → GPe 45 100 2ms
TC → TC 30 200 5ms

Table 10: Parameters for the synaptic connections between neurons
Connection (From-To) Max. synaptic strength (smax) Increment of the synaptic strength (Jinc) Connection probability %

pCtxNMDA → pCtxNMDA 250 0.03 10
pCtxNMDA → pCtxgaba 250 0.03 12.5
pCtxNMDA →MSND1 400 0.1 40
pCtxNMDA →MSND2 - - 25
pCtxNMDA → STN - - 40
pCtxNMDA → TC - - 40

pCtxgaba → pCtxNMDA 250 0.03 10
MSND1 →MSND1 - - 15
MSND1 → GPi - - 60

MSND2 →MSND1 - - 7.5
MSND2 →MSND2 - - 7.5
MSND2 → GPe - - 50
GPi→ TC - - 75
GPe→ GPe - - 20
GPe→ STN - - 40
GPe→ GPi - - 20
STN → STN - - 20
STN → GPi - - 40
STN → GPe - - 45
TC → TC - - 30

our model can capture what is known as structural plasticity. That is, not only is synaptic
behaviour modified, but synapses may also be rewired. This concept of structural plasticity can
be also associated to changes in the network topology, which is also termed wiring plasticity.

For the simulations, we consider the following set up. The cortical network consists of two
different types of sub-populations: excitatory and inhibitory. We use the ratio of excitatory-to-
inhibitory number of neurons of 4:1 (800:200 neurons) for the posterior cortex. In the striatum,
we consider 200 striatal D1-MSNs and 200 D2-MSNs. For the rest of the neural populations,
we consider 100 neurons. As we mentioned above, all the neurons in the model are connected
according to a random graph, and the initial probabilities in the local connections within a
population, and the interconnections between neurons of different populations, are chosen in
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accordance to neurophysiological studies reported in the literature. Some of the connection
probabilities are chosen to be higher to allow the pre-synaptic population to drive the post-
synaptic population more accurately. We also make some of the inhibitory synaptic couplings
stronger than some of the excitatory ones to allow the inhibitory neurons to adequately regulate
the excitatory populations behaviour. The number of neurons in each pre-synaptic population
and the list of the connections are given in Table 8.
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