Electron Microscopy/Atomic Force Microscopy Principle Name **Target/Process** Readout Disadvantages References Advantages - Crosslinking of non-Nucleosome Direct visualization - Time-consuming Brown et al. positioning nucleosomal DNA of nucleosomal and special 2013 equipment - EM under denaturing footprint Hamperl et al. conditions to visualize High resolution 5 to necessary 2014 _ No sequence/ locus nucleosome "bubbles" 10 bp Brown and information unless Boeger 2014 specific locus is highly enriched Intercalation of psoralen and UV-mediated Psoralen-EM Sogo 2002 - Crosslinking of DNA replication -Direct visualization crosslinking of double-Thangavel et al. stranded DNA intermediates of rare replication replicating chromatin 2015 structures (ssDNA gaps, Holiday Junctions, Fork reversal) High resolution 5 to 10 bp Miyari et al. - Chromatin fibers and Nucleosome No special sample - Low throughput unfolding only single image 2011 nucleosome particles treatment/required Surface sensing using a about 150x150nm Nucleosome High resolution in Atomic Force nanoscale tip, sliding nanometer range Low scanning time deflections are Microscopy might cause converted in a (AFM) thermal drift on the topographic image sample **High-Content Imaging/Fluorescent Microscopy** Name Principle **Target/Process** Readout Advantages Disadvantages References Single-cell Histone variants - Multiplexed iterative Single-cell level Zane et al. 2017 and Histone analysis of multiple readout/quantification but no single-Hayashiacross different cell molecule resolution Takanaka et al. modifications **PTMs High-content** HiHiMap High-Throughput cycle stages Dependent on 2020 immunofluorescence Possibly useful for Fluorophore _ microscopy against Multicolor diagnostic stability histones and histone fluorescence applications Application on **PTMs** fixed cells, no livecell dynamics Size of DNA fibers - DNA chromatin fibers - Multiple - DNA fiber assays Czajkowsky et al. 2008 with active replication readouts of easy to implement below typical inter-DNA Monitoring a variety origin distance Kaykov et al. forks replication DNA combing 2016 of replication events dynamics: requires specialized Nieminuszczy et in the same assay Fork speed Functional analysis equipment al. 2016 DNA fiber possible how factors No discrimination Inter-origin Vujanovic et al. **Incorporation of** stretching distance, Fork affect fork dynamics between the two 2017 thymidine analogs into Bialic et al. 2015 asymmetry, in vivo newly replicating DNA molecular newly synthesized DNA DNA strands Termination - Megabase-sized Kliszczak et al. combing fragments in DNA No sequence/ locus 2015 information unless combing allows Garzón et al. analysis of multiple combined with 2019 replication events on experimentally Chappidi et al. same molecule challenging DNA 2020 FISH DNA-protein - Nucleosome Technically Fazio et al. 2008 Simultaneous _ interactions with imaging of hundreds challenging due to Qi and Greene assembly potential uneven fluorescently labeled or thousands of 2018 aligned molecules alignment of DNA proteins **Alignment of DNA** Detection of rare or inefficient molecules on a micro-Molecular and nanofabricated curtains DNA events with high coverage Need individual flowcell homologous statistical power recombination optimizations due to nonspecific protein adsorption Lee et al. 2019 - Distance-dependent Transcription No information on Precise measurement --FRET initiation and Crickard et al. transfer of energy from a which probe moves of molecular donor fluorophore to an elongation Free fluorophores 2017 distances acceptor fluorophore Kilic et al. 2018 Accurate transcription can mask energy Effect of histone **Fluorescence Resonance** kinetics transfer PTMs and Brehove et al. **Energy Transfer** effector proteins measurements FRET pair labelling 2015 Single molecule (FRET) on nucleosome without application of needs to be bright FRET dynamics mechanical forces with the donor

completely

(smFRET)

					saturated by acceptor	
Force Spectroscopy Methods						
Principle Force generation upon interaction of laser beam with small particles	Name Optical tweezers	Target/Process - Two optical beads connected by single DNA segment –proteins are at	Readout -Transcription elongation -Nucleosome arrangement - Dynamics and frequency of pausing events -Histone-DNA interactions	Advantages - High force and temporal resolution measurements of 0.1pN and 10 ⁻¹² sec - Non-contact force in well-defined geometries	 Disadvantages Applied mechanical force could lead to artefactual behaviour Photodamage or thermal damage of the molecules 	References Fazal et al 2015 Galburt et al. 2009b Galburt et al 2007 Killian et al. 2012
Force generation by magnetic field gradient	Magnetic tweezers	 Stretch and twist of DNA molecule generated by magnetic field are recorded in real time Immobilized single DNA molecule connected on one side to paramagnetic bead 	Promoter unwinding by RNAP and the role of PIC assembly in DNA opening The role of PTMs on nucleosome disassembly Pausing events on DNA replication	 High real-time resolution measurements Homogenous force field Simple application on DNA stretching Wide range of forces and lifetime of interactions from ms to hours 	 Applied mechanical force could lead to misinterpretation Lower temporal and spatial resolution compared to optical tweezers 	Revyakin et al. 2012 Tomko et al 2007 Simon et al. 305 2007 Maier et al. 2000 Wuite et al. 2000
Second and Third	Generation	DNA Sequencing a	pplications	· • •		
Principle	Name	Target/Process	Readout	Advantages	Disadvantages	References
Single Cell Chromatin Immunoprecipitation	scChIP-seq	- Indexed chromatin labelling from individual cells	Histone PTM analysis	- Chromatin landscape of single cell	 Microfluidic setup required for sonication/library preparation Low read depth Strong dependence on antibody quality against target 	Rotem et al. 2015
Cleave under targets and release under nuclease	CUT&RUN	- Targeted chromatin regions are cleaved by MNase and released fragments directly sequenced	 Histone PTM detection Transcription factor Other chromatin factors 	 Limited material loss as not relying on immunoprecipitation No need for sonication Suitable for low-input samples Low cost 	 Adjustments needed for single-cell resolution Strong dependence on antibody quality against target 	Meers et al. 2019
Chromatin integration labeling via transposase	scChIL-seq	- Antibody-DNA conjugate (ChIL probe) mediated transposase integration of sequences that allow T7 <i>in situ</i> transcription of genomic sequences in proximity to binding site of target protein or modification	- Histone PTM detection	 Immunoprecipitation free method Applicable to low input samples Specific detection of chromatin regions 	 Single cell resolution only achieved for abundant histone PTM targets Bias of transposase reaction towards accessible chromatin regions 	Harada et al. 2019
Barcoded and targeted chromatin release via transposase	scCUT&Tag COBATCH	 Tether Protein A- Transposase to primary chromatin target and integration coupled to microfluidics device Targeted chromatin regions are cleaved by protein A-Tn5 transposase fused to 	 Histone PTM detection Histone PTM detection 		- Low read depth	Kaya-Okur et al. 2019 Wang et al. 2019
Bisulfite conversion of unmethylated cytosine to uracil	Bisulfite- Sequencing (BS)	 specific antibodies Native chromatin treated with DNA methyltransferases PCR-amplified DNA fragments are sequenced directly or from single <i>E.coli</i> clones 	 Nucleosome positioning Endogenous DNA methylation 	 Accurate DNA methylation detection Easy to implement 	 Low throughput and time- consuming workflow Short reads PCR amplification step can potentially lead to artifacts 	Miranda et al. 2010 Kelly et al. 2012 Stadler et al. 2010
PacBio Single Molecule Real Time Sequencing (SMRT)	SMRT-BS	 Native chromatin fragments (~1.5kb) combined with bisulfite sequencing Incorporation of fluorescent nucleotides and analysis on optical nanostructures 	 Open and closed chromatin regions Nucleosome positioning 	 Sequencing in real time Enzymatic incorporation by DNA polymerase avoids signal loss over time and longer reads with low throughput (1,5kb) Limited artifacts by PCR and clonal selection Accurate methylation detection 	 Clone selection (even though minimal compared to BS) Time-consuming workflow and limited throughput 	Yang et al. 2015
	SAMOSA	 Chromatin fibers treated with DNA methyltransferases Discrimination of 	- Open and closed chromatin regions	 Real time sequencing Usage of DNA polymerase avoids signal degradation 	 No standard bioinformatic pipeline available Optimization of 	Abdulhay et al. 2020
	Fiber-seq	covalently modified and not modified nucleotides based on arrival times and the fluorescence duration	- Nucleosome positioning	over timeLong reads with low throughputNo PCR artifacts	 methylation conditions Error-rate unclear when multiple methylation/modifie d bases present 	Stergachis et al. 2020
Oxford Nanopore Sequencing	MeSMLR-seq	 Chromatin treated by DNA methyltransferases Discrimination between 4 canonical and modified DNA bases passing through a biological pore based on ionic current Detection of BrdU nucleotides based on ionic current as fifth DNA base to reveal reads from actively replicated DNA 	 Open and closed chromatin regions Nucleosome positioning Fork progression Pausing events on DNA replication 	 Real time analysis on personal computer Long reads up to megabase size No PCR artifacts Simple and rapid experimental set-up Direct detection of modified nucleotides without chemical modificatons 	 No standard bioinformatic pipeline available Optimization of DNA methylation conditions essential Error-rate unclear when multiple methylation/modifie d bases present 	Wang et al. 2019
	SMAC-seq					Snipony et al. 2020
	D-Nascent					Hennion et al. 2018 Müller et al. 2019 Hennion et al 2020 Georgieva et al. 2020