Supporting Information for

Stereodivergent Alkyne Hydrofluorination Using Protic Tetrafluoroborates as Tunable Reagents

Rui Guo[#], Xiaotian Qi[#], Hengye Xiang, Paul Geaneotes, Ruihan Wang, Peng Liu* and Yi-Ming Wang*

Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States E-mail: ym.wang@pitt.edu, pengliu@pitt.edu

Contents

1. General Information	S2
2. Optimization of reaction conditions	S3
3. Mechanistic studies	S4
4. DFT studies and control experiments	S11
5. Characterization data of pyridinium tetrafluoroborates	S19
6. Characterization data of unreported starting materials	S22
7. General procedure for hydrofluorination of alkynes	S29
8. Characterization data of products	S31
9. X-ray structures of product 22	S75
10. Cartesian coordinates (Å) and energies of optimized structures	S76
11. References	S145
12. Copies of NMR Spectra	S147

1. General Information

General Reagent Information: Anhydrous chloroform, 1,2-dichloroethane, tetrahydrofuran, and trifluorotoluene were purchased from Acros (AcroSeal packaging), Sigma Aldrich (Sure/Seal packaging), and Frontier Scientific (J&KSeal packaging), respectively, and were transferred into an argon-filled glovebox and used as received. Other dry solvents were obtained by distillation and storage over 3Å or 4Å molecular sieves. All other reagents were purchased from Oakwood, Acros, Alfa Aesar, or Sigma Aldrich and used as received. Compounds were purified by flash column chromatography using SiliCycle *SiliaFlash*® *F60* silica gel, unless otherwise indicated.

General Analytical Information: New compounds were characterized by ¹H NMR, ¹³C NMR, ¹⁹F NMR and HRMS. Copies of the ¹H NMR, ¹³C NMR and ¹⁹F NMR spectra can be found at the end of the Supporting Information. ¹H NMR, ¹³C NMR and ¹⁹F NMR spectra were recorded on Bruker 400 MHz or 500 MHz instruments. All ¹H NMR data are reported in δ units, parts per million (ppm), and were measured relative to the residual proton signal in the deuterated solvent at 2.50 ppm (DMSO-*d*6), 7.26 ppm (CDCl₃) or 5.32 ppm (CD₂Cl₂). All ¹³C NMR spectra are ¹H decoupled and reported in ppm relative to the solvent signal at 39.52 ppm (DMSO-*d*6), 77.00 ppm (CDCl₃) or 53.84 ppm (CD₂Cl₂). Thin-layer chromatography (TLC) was performed on Silicycle 250 µm (analytical) or 1000 µm (preparative) silica gel plates. Compounds were visualized by irradiation with UV light, or by staining with iodine/silica gel, potassium permanganate, or phosphomolybdic acid (PMA). Yields refer to isolated compounds, unless otherwise indicated. High resolution mass spectra were recorded on a Thermo Scientific Q-Exactive mass spectrometer. NMR yield was determined by using trifluorotoluene as internal standard for ¹⁹F NMR spectroscopy.

2. Optimization of reaction conditions

2. Optimization of solvent

1	IHF	6	0	
2	tButyl methyl ether	6	0	
3	Toluene	6	21	Z/E = 1 : 1
4	PhCl	6	52	Z/E > 20:1
5	PhCF ₃	6	53	Z/E > 20:1
6	PhCF ₃	12	65	Z/E > 20:1
7	CHCl ₃	6	70	Z/E > 50:1
8	DCE	6	34	Z/E > 50:1
9	CH ₃ CN	6	trace	—

3. Optimization of temperature

<)(1.0 equiv)	+ CI	CHCl ₃ , Temp., 6 h BF ₄ liv)	
	Entry	<i>T</i> (°C)	NMR Yield (%)	Z/E
	1	25	trace	Z/E = 1:5
	2	40	13	Z/E = 3:1
	3	50	39	Z/E > 20:1
	4	60	70	Z/E > 50:1
	5	70	74	Z/E > 50:1
	6	80	63	Z/E > 50:1

4. Optimization of additives

(1.0 equiv	(1.0 equiv)	additive, CHCl ₃ → 70 °C, 6 h	
Entry	Additive	NMR Yield (%)	Z/E
1	NaBF ₄ (1.0 eq.)	80	Z/E > 20:1
2	LiBF ₄ (1.0 eq.)	81	Z/E > 20:1
3	N(n-Bu) ₄ BF ₄ (1.0 eq.)	79	Z/E > 20:1
4	N(Et) ₄ BF ₄ (1.0 eq.)	77	Z/E > 20:1
5	LiBF ₄ (0.5 eq.)	83	Z/E > 20:1
6	LiBF ₄ (0.25 eq.)	82	Z/E > 50:1
7	LiBF ₄ (0.1 eq.)	79	Z/E > 50:1

3. Mechanistic studies

3.1 Kinetic study

General Procedure for Initial Rate Kinetics

A reaction tube (13 mm \times 100 mm, Fisherbrand, part # 14-959-35C) equipped with a magnetic stir bar was flame dried under vacuum. The reaction tube was cooled under argon and transferred into an

argon-filled glovebox. In the glovebox, diphenylacetylene, 2,6-dichloropyridinium tetrafluoroborate NBu₄BF₄ and dry DCE were added in succession. The reaction tube was sealed and removed from the glovebox. After stirred at 85 °C for 1 h, the reaction mixture was cooled to room temperature. The resulting mixture was passed through a pad of silica gel and eluted with CH₂Cl₂. The filtrate was concentrated *in vacuo* and benzotrifluoride was added as the internal standard for subsequent quantitative ¹⁹F-NMR spectroscopy. In all cases, conversions were under 15% and in the initial rate kinetics regime.

Table S1: Amounts and Volumes Used for Kinetic Experiments

	Alkyne (A)	Pyridine Salt	NBu ₄ BF ₄	DCE		
Entry	Amount (mg)	Amount (mg)	Amount (mg)	Volume (uL)		
1	3.4	5.5	0	581		
2	5.2	5.5	0	581		
3	6.3	5.5	0	581		
4	8.2	5.5	0	581		
5	3.4	5.5	0	581		
6	3.4	5.5	1.5	575		
7	3.4	5.5	3.1	578		
8	3.4	5.5	4.9	555		
9	3.4	5.5	6.5	590		
10	3.4	3.2	0	580		
11	3.4	5.5	0	581		
12	3.4	7.8	0	574		
13	3.4	9.9	0	563		
The reagent being varied is shown in red						

Table S2: Molarities of Each Reagent and Initial Rates for Each Kinetic	Experiment
---	------------

Entry	Alkyne (A)	Cation (B)	BF ₄ -(C)	Temperature	Initial Rate
	/ M	/ M	/ M	/K	/(M/s)
1	0.0328	0.0400	0.0400	358.15	1.13E-06
2	0.0502	0.0400	0.0400	358.15	1.56E-06
3	0.0608	0.0400	0.0400	358.15	2.03E-06
4	0.0792	0.0400	0.0400	358.15	2.41E-06
5	0.0328	0.0400	0.0400	358.15	1.13E-06
6	0.0328	0.0400	0.0462	358.15	9.72E-07
7	0.0328	0.0400	0.0559	358.15	1.04E-06
8	0.0328	0.0400	0.0672	358.15	1.16E-06
9	0.0328	0.0400	0.0729	358.15	1.14E-06
10	0.0328	0.0234	0.0234	358.15	5.25E-07
11	0.0328	0.0400	0.0400	358.15	1.13E-06
12	0.0328	0.0575	0.0575	358.15	1.23E-06
13	0.0328	0.0745	0.0745	358.15	1.71E-06

The concentration being varied is shown in red

Figure S1: Plot of the initial rate of hydrofluoronation vs. the concentration of Alkyne.

Figure S2: Plot of the minus logarithm of the initial rate of hydrofluoronation vs. the minus logarithm of the concentration of alkyne.

Figure S3: Plot of the initial rate of hydrofluoronation vs. the concentration of BF_{4} .

Figure S4: Plot of the initial rate of hydrofluoronation vs. the concentration of 2,6-dichloropyridine cation.

Figure S5: Plot of the minus logarithm of the initial rate of hydrofluoronation vs. the minus logarithm of the concentration of 2,6-dichloropyridine cation.

Although pyridinium concentration and tetrafluoroborate concentration could not be varied independently, the rate order of tetrafluoroborate was ascertained to be zero by addition of tetrabutylammonium tetrafluoroborate as a source of excess tetrafluoroborate (Figure S3).

3.2 Stereoselectivity study

A reaction tube (13 mm × 100 mm, Fisherbrand, part # 14-959-35C) equipped with a magnetic stir bar was flame dried under vacuum. The reaction tube was cooled under argon and transferred into an argon-filled glovebox. In the glovebox, 2,6-dichloropyridinium tetrafluoroborate (0.4 mmol, 94 mg, 2.0 equiv), 1,2-Bis(4-methylphenyl)acetylene (0.2 mmol, 41 mg, 1.0 equiv) and dry CHCl₃ (1.0 mL) were added in succession. The reaction tube was sealed and removed from the glovebox. After stirring at 70 °C for the given reaction time, the reaction mixture was cooled to room temperature. The resulting mixture was passed through a pad of silica gel and eluted with CH₂Cl₂. The filtrate was concentrated *in vacuo* and benzotrifluoride was added as the internal standard for subsequent quantitative ¹⁹F-NMR spectroscopy.

Entry	Temp./ °C	Time/h	E/Z	Yield/%	E/%	Z/%
1	70	1	6:1	23	19.71	3.29
2	70	2	2.3 : 1	30	20.91	9.09
3	70	3	1.6 : 1	37	22.77	14.23
4	70	4	1.3 : 1	43	24.30	18.70
5	70	5	1:1	49	24.50	24.50
6	70	6	1:1.2	53	24.09	28.91
7	70	7	1:1.4	58	24.17	33.83
8	70	8	1:1.6	61	23.46	37.54
9	70	9	1:1.8	59	21.07	37.93
10	70	10	1:2.1	55	17.74	37.26
11	70	11	1:2.4	51	15.00	36.00
12	70	12	1:2.4	45	12.16	32.84

Figure S6: The Z/E-ratio of the hydrofluorination product over the course of reaction time.

A reaction tube (13 mm \times 100 mm, Fisherbrand, part # 14-959-35C) equipped with a magnetic stir bar was flame dried under vacuum. The reaction tube was cooled under argon and transferred into an argon-filled glovebox. In the glovebox, 2,6-dichloropyridinium tetrafluoroborate (0.4 mmol, 94 mg, 2.0 equiv), 1,2-Bis(4-methylphenyl)acetylene (0.2 mmol, 41 mg, 1.0 equiv) and dry CHCl₃ (1.0 mL) were added in succession. The reaction tube was sealed and removed from the glovebox. After stirring at the given temperature for 12 h, the reaction mixture was cooled to room temperature. The resulting mixture was passed through a pad of silica gel and eluted with CH₂Cl₂. The filtrate was concentrated *in vacuo* and benzotrifluoride was added as the internal standard for subsequent quantitative ¹⁹F-NMR spectroscopy.

Entry	Temp./ °C	Time/h	E/Z	Yield/%	E/%	Z/%
1	30	12	99:1	5	4.95	0.05
2	40	12	8:1	22	19.56	2.44
3	50	12	2.6:1	40	28.89	11.11
4	60	12	1:1.6	50	19.23	30.77
5	70	12	1:2.7	45	12.16	32.84
6	80	12	1:20	43	2.05	40.95
7	90	12	1:99	36	0.36	35.64

Figure S7: The Z/E-ratio of the hydrofluorination product over the course of reaction temperature.

These mechanistic studies all support that the C–F bond formation is a reversible step, and the generation of *E*-alkene in the hydrofluorination of aryl-substituted phenylacetylene is kinetically controlled while the formation of *Z*-alkene is thermodynamically controlled.

3.3 Hammett analysis for para-substituted alkynes

$$\bigcirc + x - \bigcirc + x - \bigcirc + c_1 + c$$

A reaction tube (13 mm × 100 mm, Fisherbrand, part # 14-959-35C) equipped with a magnetic stir bar was flame dried under vacuum. The reaction tube was cooled under argon and transferred into an argon-filled glovebox. In the glovebox, 2,6-dichloropyridinium tetrafluoroborate (0.2 mmol, 47 mg, 1.0 equiv), dry CHCl₃ (1.0 mL), (cyclohexylethynyl)benzene **A** (0.2 mmol, 37 mg) and substituted alkyne **B** (0.2 mmol) were added in succession. The reaction tube was sealed and removed from the glovebox. After stirred at 70 °C for 30 min, the reaction mixture was cooled to room temperature. The resulting mixture was passed through a pad of silica gel and eluted with CH₂Cl₂. The filtrate was concentrated *in vacuo* and benzotrifluoride was added as the internal standard for subsequent quantitative ¹⁹F-NMR spectroscopy.

R	σp	k _X /k _H	$\log(k_{\rm X}/k_{\rm H})$
4- <i>t</i> Bu	-0.197	5.120	0.709
4-Me	-0.170	4.001	0.602
Н	0.000	1.000	0.000
4-F	0.062	0.833	-0.079
4-C1	0.227	0.205	-0.689
4-Br	0.232	0.143	-0.845

Figure S8: Hammett-plot analysis for para-substituted (cyclohexylethynyl)benzene.

3.4 Dielectric constant study

A reaction tube (13 mm × 100 mm, Fisherbrand, part # 14-959-35C) equipped with a magnetic stir bar was flame dried under vacuum. The reaction tube was cooled under argon and transferred into an argon-filled glovebox. In the glovebox, 2,6-dichloropyridinium tetrafluoroborate (0.2 mmol, 47 mg, 1.0 equiv), (cyclohexylethynyl)benzene (0.2 mmol, 37 mg, 1.0 equiv) and corresponding dry solvent (1.0 mL) were added in succession. The reaction tube was sealed and removed from the glovebox. After stirring at 40 °C for 1 h, the reaction mixture was cooled to room temperature. The resulting mixture was passed through a pad of silica gel and eluted with CH₂Cl₂. The filtrate was concentrated *in vacuo* and benzotrifluoride was added as the internal standard for subsequent quantitative ¹⁹F-NMR spectroscopy.

Solvent	3	E/Z
CCl ₄	2.23	NR
Toluene	2.38	20:1
CHCl ₃	4.7	3:1
DCM	8.9	1:2.5
DCE	10.37	1:16.2

4. DFT studies and control experiments

Computational methods

All density functional theory (DFT) calculations were performed using Gaussian 16²¹ software package on Pitt CRC and XSEDE²² supercomputers. Geometries were optimized in chloroform (CHCls, $\varepsilon = 4.7$) with the SMD solvation model²³ using the M06-2X²⁴ functional and a basis set of 6-31+G(d). Vibrational frequency calculations were performed for all the stationary points to confirm if each optimized structure is a local minimum or a transition state structure. Intrinsic reaction coordinate (IRC) calculations have demonstrated that the transition state connects two corresponding intermediates along

the reaction coordinate. Truhlar's quasi-harmonic corrections²⁵ were applied for entropy calculations with a frequency cut-off of 100 cm⁻¹ using the GoodVibes²⁶ program. Single point energies were calculated using M06-2X and 6-311+G(d,p) basis set in CHCl₃ using the SMD solvation model.

Unless otherwise noted, all the energies discussed in the main text and SI were calculated at the M06-2X/6-311+G(d,p)/SMD(chloroform)//M06-2X/6-31+G(d)/SMD(chloroform) level of theory. Because dichloroethane (DCE, ϵ = 10.1) was also used as the solvent in experiment, the free energy profile of the hydrofluorination of diphenylacetylene was also calculated in DCE using the same basis set and solvation model to investigate the solvent effect. In these calculations, which are summarized in Figure S15, all structures were optimized in DCE and energies were calculated at the M06-2X/6-311+G(d,p)/SMD(DCE)//M06-2X/6-31+G(d)/SMD(DCE) level of theory.

Free energy profiles of disfavored pathways of the hydrofluorination of 1,2-diphenylacetylene 101

Figure S9. Free profiles disfavored the hydrofluorination energy of pathways of of 1,2-diphenylacetylene 101. All energies were calculated at the M06-2X/6-311+G(d,p)/SMD(chloroform)//M06-2X/6-31+G(d)/SMD(chloroform) level of theory.

In the computational study of hydrofluorination of 1,2-diphenylacetylene 101, two protonation transition states were located (TS-1 and TS-1a), in which the tetrafluoroborate anion is *syn* and *anti* to the pyridinium, respectively. Besides, another possible conformer of TS-1 was located as TS-1b. This transition state has a higher activation free energy than TS-1 by 2.3 kcal/mol due to the less stabilizing electrostatic interaction. Therefore, this transition state structure could be rule out. After the protonation transition states, ion-pair intermediates 104 and 104a, which contain the hydrogen bonding interaction between 2,6-dichloropyridine and vinyl hydrogen, could be located in calculations (Fig. S9a). The dissociation of 2,6-dichloropyridine from these two intermediates is found to be exergonic. The formation transition states from 102 and 102a (Fig. 1) are thus thermodynamically favored. Besides the fluorination from the 2,6-dichloropyridine-bound ion pairs 104 and 104a. However, these transition states are kinetically disfavored because of the entropy loss caused by 2,6-dichloropyridine complexation. Therefore, the fluorination of vinyl cation occurs after the dissociation of 2,6-dichloropyridine.

The concerted hydrofluorination mechanism is also considered in mechanistic studies. Nevertheless, all attempts toward locating the concerted hydrofluorination transition state have failed. An isomer of the *anti*-protonation transition state **TS-1c** (Fig. S9b) was located, which involves a shorter C–F bond distance (2.72 Å) than those in **TS-1** and **TS-1a** (3.00 and 2.80 Å, respectively).

TS-1c has a higher energy barrier than those of **TS-1a** and **TS-1**. IRC calculations showed that **TS-1c** also leads to the formation of BF₄^{-/}/vinyl cation intermediate instead of the hydrofluorination product. Therefore, the higher energy **TS-1c** is still a stepwise protonation transition state. Because the experimental Hammett analysis revealed a ρ value of -3.43 and kinetic studies revealed first-order kinetics in alkyne and H⁺ and zero-order kinetics in excess BF₄⁻, which are consistent with the stepwise protonation-fluorination mechanism, the concerted hydrofluorination mechanism could be ruled out.

Free energy profiles of the hydrofluorination of cyclohexylphenylacetylene and methylphenylacetylene

Figure S10. Reaction energy profiles of the hydrofluorination of cyclohexylphenylacetylene 105 with 2,6-dichloropyridinium tetrafluoroborate. All energies were calculated at the M06-2X/6-311+G(d,p)/SMD(chloroform)//M06-2X/6-31+G(d)/SMD(chloroform) level of theory.

Computational results suggested that the hydrofluorination of cyclohexyl and methyl-substituted phenylacetylene with 2,6-dichloropyridinium tetrafluoroborate also occurs through a stepwise Ad_E2-type protonation-fluorination mechanism with a BF₄^{-/}/vinyl cation ion-pair intermediate (Fig. S10 and S11). The intrinsic reaction coordinate (IRC) calculations have confirmed that protonation transition states **TS-3**, **TS-3a**, **TS-5**, and **TS-5a** lead to BF₄^{-/}/vinyl cation ion-pair intermediates rather than the hydrofluorination products. The protonation is still the rate-determining step and the fluorination of vinyl cation is a facile process. The protonation step still favors *syn*-protonation that leads to ion pairs **106** and **108**. The *Z*-vinyl fluoride products are thermodynamically more stable than the corresponding *E*-isomer. The BF₃-mediated *E*-to-*Z* vinyl fluoride isomerization is verified by control experiments with fluorinating reagent **F** and Et₂O \cdot BF₃ (Fig. S12). Therefore, under thermodynamically controlled conditions, high *Z*-selectivity is observed for the hydrofluorination of cyclohexyl and methyl-substituted phenylacetylene in the experiment.

Figure S11. Reaction energy profiles of the hydrofluorination of methyl-substituted phenylacetylene 107 with 2,6-dichloropyridinium tetrafluoroborate. All energies were calculated at the M06-2X/6-311+G(d,p)/SMD(chloroform)//M06-2X/6-31+G(d)/SMD(chloroform) level of theory.

Figure S12. E/Z-isomerization of vinyl fluoride using fluorinating reagent F and Et₂O•BF₃.

We summarized that a relatively bulky alkyne substituent (*e.g.* R = Ph or Cy) could suppress the isomerization from ion-pair I to II (k_3) and the Z-selective fluorination (k_4) by steric effects (see Scheme 4D in main text). As shown in Figure S10, the *E*-selective fluorination (via TS-4) and Z-selective fluorination (via TS-4a) has comparable energy barriers. While in Figure S11, the *E*-selective fluorination (via TS-6) has a slightly higher energy barrier than that of Z-selective fluorination (via TS-6a). Combined with the computational results in Fig. 1 (hydrofluorination of 1,2-diphenylacetylene), we found that the Z-selective fluorination is slower than the *E*-selective fluorination in the cases of Ph and Cy substituted phenylacetylene.

Moreover, control experiments with different alkynes were performed under kinetic hydrofluorination condition (lower temperature) to study the substituent effects on the E/Z-selectivity. As shown in Figure S13, the *E*-product ratios generated from the hydrofluorination of **101** and **105** (Fig. S13a and S13b) are higher than that of **107** (Fig. S13c), which is consistent with the hypothesis that the isomerization rate (k_3) is faster with the methyl-substituted vinyl cation ion pair. Besides, the comparison of solvents in Figure S13a indicates that less polar solvent (chloroform) could enhance the *E*-selectivity. In summary, these computational and experimental studies show that bulkier alkyne substituents and less polar solvent in this hydrofluorination reaction could enhance the kinetic *E*-selectivity.

$$(a) \qquad (H) \qquad (H)$$

Figure S13. Comparison of E/Z-alkene ratios for different alkynes under kinetic hydrofluorination conditions.

Figure S14. Comparison of *E*/*Z*-alkene ratios for adding excess BF₄ source conditions.

Excess BF_4^- was also found to favor formation of the Z-isomer (Fig. S14), an effect which may be ascribed to increased availability of BF_4^- for *anti*-attack or a change in the solvent polarity due to higher ionic content.

Figure S15. Reaction energy profiles of the hydrofluorination of 1,2-diphenylacetylene 101 with 2,6-dichloropyridinium tetrafluoroborate calculated in DCE. All energies were calculated at the

M06-2X/6-311+G(d,p)/SMD(DCE)//M06-2X/6-31+G(d)/SMD(DCE) level of theory.

In experiment (Table 2), high Z-selectivity was obtained for the hydrofluorination of 1,2-diphenylacetylene 101 in a polar solvent (DCE, condition D), while the same reaction in a less polar solvent (chloroform, condition C) favors the E-product. We summarized that polar solvent could promote the E-to-Z isomerization and thus enhance the Z-selectivity. We surmised that the more polar solvent (DCE) promotes the E-to-Z isomerization and thus favors the formation of the Z-product under thermodynamic control. To study the solvent effect, free energy profiles of the hydrofluorination of 1,2-diphenylacetylene 101 with 2,6-dichloropyridinium tetrafluoroborate were calculated in both chloroform (Fig. 1) and in DCE (Fig. S15). The reactions in DCE and chloroform occur via the same mechanism and have the same kinetic selectivity that favors E-products when reactions are under kinetic control. The overall hydrofluorination reaction in DCE was found to be less exothermic than in chloroform. Although the formation of the thermodynamic product Z-71 is only exergonic by 0.7 kcal/mol in DCE, the BF3 byproduct is expected to be stabilized by coordination with a Lewis base. Our calculations indicate that the complexation of BF3 with H2O is highly exothermic. Although water was not added to the experimental system, we expect that the trace amount of water in DCE or other Lewis basic species under the experimental conditions will stabilize the BF3 byproduct and push the equilibrium towards the product Z-71.

It is noteworthy that the reverse reaction of *E*-81 to generate the vinyl cation 102 has a smaller energy barrier in DCE ($\Delta G^{\ddagger} = 21.8$ kcal/mol) than that in chloroform (see Fig. 1, $\Delta G^{\ddagger} = 23.6$ kcal/mol). Therefore, our computational studies suggest that the *E*-to-*Z* isomerization in DCE occurs faster than that in chloroform, which is consistent with the experimental results that polar solvent could increase the *Z*-selectivity in the hydrofluorination of alkynes.

$$BF_3 + H_2O \xrightarrow{\Delta G = -6.3 \text{ kcal/mol}} F_{+}^{-B}F_{-}^{B}F_{-}^{B}$$

 $\label{eq:Figure S16. Calculated free energy for the complexation of BF_3 with H_2O. All energies were calculated at the M06-2X/6-311+G(d,p)/SMD(DCE)//M06-2X/6-31+G(d)/SMD(DCE) level of theory.$

Several mechanisms for the isomerization of vinyl fluoride were considered besides the reverse fluorination of the vinyl fluoride to regenerate the vinyl cation ion pair intermediate. Figure S17 shows an alternative isomerization pathway, which involves the protonation of vinyl fluoride *E*-81 with 2,6-dichloropyridinium tetrafluoroborate (F) and the deprotonation of alkyl cation intermediate 102b. This mechanism has an activation free energy of 27.2 kcal/mol, which is higher than that in the reaction of *E*-81 with BF₃ (via TS-2, $\Delta G^{\ddagger} = 23.6$ kcal/mol) by 3.6 kcal/mol. Therefore, this *E/Z*-isomerization mechanism is less likely.

Commented [LP1]: Yiming, can you confirm the following sentence is okay

Figure S17. An alternative mechanism for the isomerization between *E*-81 and *Z*-71. All energies are with respect to *E*-81 and F.

5. Characterization data of pyridinium tetrafluoroborates

To a solution of the corresponding pyridine (50 mmol, 1.0 equiv) in dry Et₂O (60 mL) was added a solution of HBF₄ in Et₂O (54 wt %, 8.0 mL, 60 mmol, 1.2 equiv) at 0 °C to give a white precipitate. After the mixture was allowed to reach room temperature, the solid was collected by filtration, the solid was washed twice with Et₂O and then dried under vacuum.

White solid (10.8 g, 92%) ¹H NMR (500 MHz, DMSO) δ 14.02 (s, 1H), 7.92 (t, J = 7.9 Hz, 1H), 7.56 (d, J = 7.9 Hz, 2H). ¹³C NMR (126 MHz, DMSO) δ 149.3, 142.9, 123.8. ¹⁹F NMR (471 MHz, DMSO) δ -148.11 (s), -148.16 (s).

Et₃N·HBF₄

White solid (9.0 g, 95%) ¹H NMR (500 MHz, DMSO) δ 8.82 (s, 1H), 3.10 (qd, J = 7.3, 4.8 Hz, 6H), 1.17 (t, J = 7.3 Hz, 9H). ¹³C NMR (126 MHz, DMSO) δ 45.8, 8.6. ¹⁹F NMR (471 MHz, DMSO) δ -148.32 (s), -148.37 (s).

White solid (9.4 g, 96%) ¹H NMR (300 MHz, DMSO) δ 15.21 (s, 1H), 8.36 (t, J = 7.9 Hz, 1H), 7.73 (d, J = 7.9 Hz, 2H), 2.69 (s, 6H). ¹³C NMR (126 MHz, DMSO) δ 153.0, 145.6, 124.6, 19.2. ¹⁹F NMR (471 MHz, DMSO) δ -148.22 (s), -148.28 (s).

White solid (7.5 g, 90%) ¹H NMR (500 MHz, DMSO) δ 15.12 (s, 1H), 8.96 – 8.89 (m, 2H), 8.62 (tt, *J* = 7.9, 1.5 Hz, 1H), 8.08 (dd, *J* = 7.7, 6.7 Hz, 2H). ^{13}C NMR (126 MHz, DMSO) δ 146.4, 142.2, 127.3. ^{19}F NMR (471 MHz, DMSO) δ -148.16 (s), -148.22 (s).

White solid (8.0 g, 86%)

¹H NMR (500 MHz, DMSO) δ 12.96 (s, 1H), 8.27 – 8.19 (m, 1H), 8.02 – 7.93 (m, 1H), 7.37 – 7.29 (m, 1H), 7.15 (dd, J = 8.3, 2.5 Hz, 1H). ¹³C NMR (126 MHz, DMSO) δ 163.2 (d, $J_{C-F} = 235.5$ Hz), 147.8 (d, $J_{C-F} = 14.6$ Hz), 142.3 (d, $J_{C-F} = 7.9$ Hz), 122.2 (d, $J_{C-F} = 4.0$ Hz), 109.8 (d, $J_{C-F} = 37.0$ Hz). ¹⁹F NMR (471 MHz, DMSO) δ -68.11 (s, 1F), -148.08 (s), -148.14 (s).

White solid (9.0 g, 90%)

¹H NMR (500 MHz, DMSO) δ 13.98 (s, 1H), 8.40 (ddd, J = 4.8, 2.0, 0.6 Hz, 1H), 7.85 (ddd, J = 8.0, 7.5, 2.0 Hz, 1H), 7.49 (dt, J = 8.1, 0.7 Hz, 1H), 7.40 (ddd, J = 7.4, 4.9, 0.9 Hz, 1H). ¹³C NMR (126 MHz, DMSO) δ 150.4, 150.1, 140.1, 124.6, 123.3. ¹⁹F NMR (471 MHz, DMSO) δ -148.08 (s), -148.13 (s).

White solid (10.7 g, 87%)

¹H NMR (500 MHz, DMSO) δ 14.21 (s, 1H), 8.38 (ddd, J = 4.8, 2.0, 0.6 Hz, 1H), 7.80 – 7.72 (m, 1H), 7.64 (dt, J = 8.1, 0.8 Hz, 1H), 7.44 (ddd, J = 7.4, 4.8, 1.0 Hz, 1H). ¹³C NMR (126 MHz, DMSO) δ 150.6, 141.5, 139.8, 128.4, 123.6. ¹⁹F NMR (471 MHz, DMSO) δ -148.09 (s), -148.14 (s).

White solid (10.9 g, 93%) ¹H NMR (500 MHz, DMSO) δ 13.94 (s, 1H), 8.61 (d, J = 2.1 Hz, 2H), 8.23 (t, J = 2.1 Hz, 1H). ¹³C NMR (126 MHz, DMSO) δ 146.8, 136.0, 131.7. ¹⁹F NMR (471 MHz, DMSO) δ -148.07 (s), -148.12 (s).

White solid (14.8 g, 92%)

¹H NMR (500 MHz, DMSO) δ 13.52 (s, 1H), 7.73 – 7.70 (m, 3H).
 ¹³C NMR (126 MHz, DMSO) δ 142.3, 140.1, 127.8.
 ¹⁹F NMR (471 MHz, DMSO) δ -148.12 (s), -148.17 (s).

White solid (11.6 g, 83%) ¹H NMR (500 MHz, DMSO) δ 12.94 (s, 1H), 7.82 (t, *J* = 7.8 Hz, 1H), 7.72 – 7.68 (m, 1H), 7.62 – 7.57 (m, 1H). ¹³C NMR (126 MHz, DMSO) δ 149.4, 142.6, 139.9, 127.5, 124.0. ¹⁹F NMR (471 MHz, DMSO) δ -148.12 (s), -148.18 (s).

White solid (10.8 g, 80%)

$$\label{eq:stars} \begin{split} ^{1}\!H \ NMR \ (500 \ \text{MHz}, \ \text{DMSO}) \ \delta \ 10.99 \ (s, \ 1H), \ 7.86 \ (s, \ 2H). \\ ^{13}\!C \ NMR \ (126 \ \text{MHz}, \ \text{DMSO}) \ \delta \ 150.1, \ 147.2, \ 123.8. \\ \end{split}$$

White solid (9.6 g, 91%)

¹H NMR (500 MHz, DMSO) δ 14.10 (s, 1H), 9.39 (d, J = 2.6 Hz, 1H), 8.97 (dd, J = 4.8, 1.3 Hz, 1H), 8.63 (ddd, J = 8.4, 2.6, 1.4 Hz, 1H), 7.75 (dd, J = 8.4, 4.8 Hz, 1H). ¹³C NMR (126 MHz, DMSO) δ 154.8, 144.6, 144.4, 132.1, 124.9. ¹⁹F NMR (471 MHz, DMSO) δ -148.10 (s), -148.15 (s).

White solid (11.2 g, 95%) ¹H NMR (500 MHz, DMSO) δ 14.78 (s, 1H), 9.01 (d, J = 6.0 Hz, 2H), 8.05 (d, J = 5.9 Hz, 2H). ¹³C NMR (126 MHz, DMSO) δ 148.8, 139.4 (q, $J_{CF} = 34.1$ Hz), 122.5 (q, $J_{CF} = 273.7$ Hz), 121.1 (q, $J_{CF} = 3.5$ Hz). ¹⁹F NMR (471 MHz, DMSO) δ -63.81 (s, 3F), -148.15 (s), -148.21 (s).

6. Characterization data of unreported starting materials

A flame-dried Schlenk-flask equipped with a magnetic stir bar was charged with bis(triphenylphosphine)palladium(II) dichloride (1.0 mol%), copper(I) iodide (3.0 mol%), and aryl iodide or aryl bromide (5.0 mmol, 1.0 equiv), sealed with a septum, and degassed by evacuation and backfilling with argon (repeated three times) before triethylamine (25 ml) was added. The corresponding terminal alkyne (5.0 mmol, 1.0 equiv) was added to the resulting suspension subsequently. The reaction mixture was then stirred at room temperature or 80 °C for 12 hours. After the reaction was complete, the reaction mixture was diluted with Et₂O (30 mL) and filtered through a small pad of silica gel. The solvent was purified by a silica gel column chromatography to give the corresponding pure alkynes.

Methyl 3-(cyclohexylethynyl)benzoate

MeO₂C

Yellow oil (1.08 g, 89% yield).

¹**H** NMR (400 MHz, CDCl₃) δ 8.05 (s, 1H), 7.89 (d, J = 7.9 Hz, 1H), 7.54 (d, J = 7.7 Hz, 1H), 7.32 (t, J = 7.8 Hz, 1H), 3.88 (s, 3H), 2.63 – 2.51 (m, 1H), 1.91 – 1.81 (m, 2H), 1.79 – 1.69 (m, 2H), 1.59 – 1.46 (m, 3H), 1.41 – 1.26 (m, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 166.4, 135.6, 132.6, 130.1, 128.3, 128.1, 124.5, 95.4, 79.5, 52.0, 32.5, 29.5, 25.8, 24.8.

HRMS (ESI) calcd for $C_{16}H_{19}O_2 [M+H]^+$: 243.1380 Found: 243.1377.

2-(4-(Cyclohexylethynyl)phenyl)isoindoline-1,3-dione

Yellow solid (1.25 g, 76% yield).

¹**H** NMR (500 MHz, CDCl₃) δ 7.93 (dd, *J* = 5.2, 3.0 Hz, 2H), 7.77 (dd, *J* = 5.2, 3.0 Hz, 2H), 7.51 (d, *J* = 8.3 Hz, 2H), 7.38 (d, *J* = 8.4 Hz, 2H), 2.60 (s, 1H), 1.95 – 1.82 (m, 2H), 1.81 – 1.70 (m, 2H), 1.62 – 1.47 (m, 3H), 1.42 – 1.30 (m, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 167.0, 134.4, 132.1, 131.6, 130.6, 126.0, 124.0, 123.7, 95.5, 79.9, 32.6, 29.6, 25.8, 24.8.

HRMS (ESI) calcd for C22H20NO2 [M+H]⁺: 330.1489, Found: 330.1479.

Methyl 3-(cyclohexylethynyl)-1-tosyl-1H-indole-6-carboxylate

MeO₂C

Yellow solid (1.59 g, 73% yield).

¹**H** NMR (400 MHz, CDCl₃) δ 8.66 (s, 1H), 7.96 (d, *J* = 8.2 Hz, 1H), 7.86 – 7.72 (m, 3H), 7.63 (d, *J* = 8.2 Hz, 1H), 7.22 (d, *J* = 8.0 Hz, 2H), 3.96 (s, 3H), 2.73 – 2.55 (m, 1H), 2.32 (s, 3H), 1.97 – 1.84 (m, 2H), 1.80 – 1.70 (m, 2H), 1.63 – 1.48 (m, 3H), 1.43 – 1.29 (m, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 167.0, 145.5, 134.8, 134.7, 133.6, 130.5, 130.0, 127.1, 126.9, 124.6, 120.3, 115.2, 105.9, 99.4, 70.4, 52.2, 32.6, 29.8, 25.8, 24.8, 21.5.

HRMS (ESI) calcd for $C_{25}H_{26}NO_4S\;[M{+}H]^+\!\!:436.1577,$ Found: 436.1557.

Methyl 5-(cyclohexylethynyl)furan-2-carboxylate

Yellow solid (916 mg, 79% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.11 (d, J = 3.6 Hz, 1H), 6.49 (d, J = 3.6 Hz, 1H), 3.87 (s, 3H), 2.66 – 2.52 (m, 1H), 1.91 – 1.79 (m, 2H), 1.76 – 1.65 (m, 2H), 1.58 – 1.44 (m, 3H), 1.38 – 1.25 (m, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 158.4, 143.5, 141.0, 118.8, 115.1, 100.8, 70.2, 51.9, 31.9, 29.6, 25.6, 24.7.

HRMS (ESI) calcd for C₁₄H₁₇O₃ [M+H]⁺: 233.1172, Found: 233.1163.

CI

1-(6-Chlorohex-1-yn-1-yl)-2-methoxy-4-nitrobenzene

ŌМе $O_2 N$

Yellow oil (1.13 g, 85% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.77 (dd, *J* = 8.4, 2.1 Hz, 1H), 7.69 (d, *J* = 2.1 Hz, 1H), 7.46 (d, *J* = 8.4 Hz, 1H), 3.95 (s, 3H), 3.61 (t, *J* = 6.6 Hz, 2H), 2.55 (t, *J* = 6.9 Hz, 2H), 2.02 – 1.94 (m, 2H), 1.84 – 1.75 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 160.1, 147.6, 133.4, 120.1, 115.6, 105.4, 99.3, 76.2, 56.3, 44.4, 31.5, 25.6, 19.2.

HRMS (ESI) calcd for $C_{13}H_{15}CINO_3 [M+H]^+: 268.0735$, Found: 268.0731.

$$R^1 \xrightarrow{R^2} + Ph \xrightarrow{MgBr} MgBr \xrightarrow{FeBr_2, THF/NMP} Ph \xrightarrow{R^2} R^1$$

An oven-dried 250 mL flask equipped with a magnetic stir bar was charged with FeBr₂ (216 mg, 1.0 mmol, 0.1 equiv), secondary alkyl halide (10.0 mmol, 1.0 equiv), and NMP solvent (40 mL) under argon atmosphere. Phenylethynylmagnesium bromide solution (0.5 M in THF, 30 mL, 1.5 equiv, prepared by addition of ethylmagnesium bromide and phenylacetylene) was then added by syringe. The reaction mixture was stirred at room temperature for 16 h to form a deep brown or black solution. After the reaction was complete (24 h), the crude product was quenched with water (30 mL). The aqueous layer was further extracted with EtOAc ($2 \times 20 \text{ mL}$). The combined organic layer were concentrated in vacuo with the aid of a rotary evaporator, and the residue was purified by flash column chromatography (hexanes as an eluent) to provide the substituted alkylated alkyne product.

(3-Methyldec-1-yn-1-yl)benzene

Yellow oil (1.05 g, 46% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.43 – 7.37 (m, 2H), 7.30 – 7.23 (m, 3H), 2.71 – 2.57 (m, 1H), 1.56 – 1.43 (m, 4H), 1.34 – 1.28 (m, 8H), 1.25 (d, *J* = 6.9 Hz, 3H), 0.89 (t, *J* = 6.9 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 131.6, 128.1, 127.4, 124.1, 94.9, 80.6, 37.0, 31.9, 29.4, 29.3, 27.4, 26.5, 22.7, 21.1, 14.1. HRMS (ASAP) calcd for C₁₇H₂₄ [M]⁺: 228.1878, Found: 228.1887.

(3r,5r,7r)-1-(3-Phenylprop-2-yn-1-yl)adamantane

Yellow oil (950 mg, 38% yield).

¹**H** NMR (400 MHz, CDCl₃) δ 7.44 – 7.38 (m, 2H), 7.31 – 7.22 (m, 3H), 2.16 (s, 2H), 2.03 – 1.97 (m, 3H), 1.76 – 1.72 (m, 1H), 1.72 – 1.69 (m, 2H), 1.68 – 1.65 (m, 2H), 1.64 (d, J = 2.4 Hz, 7H). ¹³C NMR (101 MHz, CDCl₃) δ 131.5, 128.1, 127.4, 124.2, 87.8, 82.6, 42.1, 36.9, 34.6, 33.1, 28.7. HRMS (ASAP) calcd for C₁₉H₂₃ [M+H]⁺: 251.1800, Found: 251.1811.

A 50-mL flask fitted with a stirring bar was charged with a solution of alcohol (5 mmol), EDCI (1.2 equiv), triethylamine (1.5 equiv), and DMAP (0.1 equiv) in dichloromethane (25 mL). The corresponding acid (1 equiv) was then added at 0 °C, and the reaction mixture was stirred overnight at room temperature. After the reaction was completed, the resulting mixture was diluted with DCM (50 mL), washed by 1 N HCl (2 x 20 mL), 1 N aqueous NaHCO₃ (2 x 20 mL), and brine (1 x 20 mL). The organic layer was dried (Na₂SO₄) and evaporated in vacuo. The resulting residue was purified by column chromatography to afford the desired ester.

A flame-dried Schlenk-flask equipped with a magnetic stir bar was charged with bis(triphenylphosphine)palladium(II) dichloride (1.0 mol%), copper(I) iodide (3.0 mol%), iodobenzene (2.0 mmol, 1.0 equiv), sealed with a septum, and degassed by alternating vacuum evacuation and argon backfilling (three times) before triethylamine (10 mL) was added. The corresponding terminal alkyne (2.0 mmol, 1.0 equiv) was added to the resulting suspension subsequently. The reaction mixture was then stirred at room temperature for 12 hours. After the reaction was completed, the reaction mixture was diluted with Et_2O (20 mL) and filtrated through a small pad of silica gel. The solvent was removed under reduced pressure with the aid of a rotary evaporator and the crude residue was purified by a silica gel column chromatography to give the corresponding pure alkyne.

Pent-4-yn-1-yl nicotinate

Colorless oil (737 mg, 78% yield).

¹**H** NMR (400 MHz, CDCl₃) δ 9.20 (d, *J* = 1.5 Hz, 1H), 8.75 (dd, *J* = 4.8, 1.5 Hz, 1H), 8.27 (dt, *J* = 7.9, 1.8 Hz, 1H), 7.37 (dd, *J* = 7.8, 4.9 Hz, 1H), 4.44 (t, *J* = 6.3 Hz, 2H), 2.36 (td, *J* = 7.0, 2.6 Hz, 2H), 2.04 – 1.93 (m, 3H).

$$\label{eq:stars} \begin{split} & {}^{13}\text{C NMR} \ (101 \ \text{MHz}, \text{CDCl}_3) \ \delta \ 165.1, \ 153.4, \ 150.8, \ 136.9, \ 126.0, \ 123.2, \ 82.7, \ 69.2, \ 63.9, \ 27.4, \ 15.2. \\ & \text{HRMS} \ (\text{ESI}) \ \text{calcd for} \ C_{11}\text{H}_1\text{NO2} \ [\text{M}+\text{H}]^+: \ 190.0863, \ \text{Found:} \ 190.0858. \end{split}$$

5-Phenylpent-4-yn-1-yl nicotinate

Yellow oil (445 mg, 84% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 9.25 (s, 1H), 8.78 (d, *J* = 3.8 Hz, 1H), 8.31 (d, *J* = 7.9 Hz, 1H), 7.42 – 7.34 (m, 3H), 7.32 – 7.24 (m, 3H), 4.54 (t, *J* = 6.2 Hz, 2H), 2.62 (t, *J* = 6.9 Hz, 2H), 2.17 – 2.05 (m, 2H).

 ^{13}C NMR (101 MHz, CDCl₃) δ 165.2, 153.4, 150.9, 137.0, 131.5, 128.2, 127.7, 126.1, 123.5, 123.2, 88.3, 81.5, 64.2, 27.8, 16.3.

HRMS (ESI) calcd for C17H16NO2 [M+H]+: 266.1176, Found: 266.1168.

(Pent-4-yn-1-yloxy)carbonyl ferrocene

Yellow oil (1.11 g, 75% yield). ¹H NMR (400 MHz, CDCl₃) δ 4.81 (s, 2H), 4.40 (s, 2H), 4.32 (t, J = 6.1 Hz, 2H), 4.21 (s, 5H), 2.39 (t, J = 5.6 Hz, 2H), 2.04 – 1.89 (m, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 171.6, 83.0, 71.2, 71.0, 70.0, 69.7, 69.1 62.5, 27.7, 15.2. HRMS (APCI) calcd for C₁₆H₁₇FeO₂ [M+H]⁺: 297.0578, Found: 297.0590.

(5-Phenylpent-4-yn-1-yloxy)carbonyl ferrocene

Ph

Yellow oil (662 mg, 89% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.46 – 7.36 (m, 2H), 7.34 – 7.22 (m, 3H), 4.83 (s, 2H), 4.47 – 4.31 (m, 4H), 4.22 (s, 5H), 2.62 (t, *J* = 7.0 Hz, 2H), 2.13 – 1.95 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 171.6, 131.6, 128.2, 127.7, 123.6, 88.6, 81.4, 71.2, 71.1, 70.1, 69.7, 62.8, 28.0, 16.2. HMMS (APC) solid for C, H, E-O, DM (HI[±], 272, 0801) Found: 272,0000

HRMS (APCI) calcd for $C_{22}H_{21}FeO_2$ [M+H]⁺: 373.0891, Found: 373.0909.

Pent-4-yn-1-yl((1S,4R)-7,7-dimethyl-2-oxobicyclo[2.2.1] heptan-1-yl) methanesulfonate

Colorless oil (1.07 g, 72% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 4.51 – 4.29 (m, 2H), 3.59 (d, *J* = 15.1 Hz, 1H), 2.98 (d, *J* = 15.1 Hz, 1H), 2.53 – 2.27 (m, 4H), 2.20 – 1.85 (m, 6H), 1.72 – 1.59 (m, 1H), 1.49 – 1.37 (m, 1H), 1.09 (s, 3H), 0.86 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 214.4, 82.2, 69.6, 68.7, 57.8, 47.9, 46.6, 42.6, 42.4, 27.9, 26.8, 24.8, 19.7, 19.6, 14.7.

HRMS (APCI) calcd for C15H23O4S [M+H]⁺: 299.1317, Found: 299.1330.

 $\label{eq:sphere} 5-Phenylpent-4-yn-1-yl((1S,4R)-7,7-dimethyl-2-oxobicyclo[2.2.1]heptan-1-yl) methanesulfonate$

Yellow oil (682 mg, 91% yield).

¹**H** NMR (400 MHz, CDCl₃) δ 7.43 – 7.35 (m, 2H), 7.30 – 7.24 (m, 3H), 4.52 – 4.41 (m, 2H), 3.63 (d, J = 15.1 Hz, 1H), 3.01 (d, J = 15.1 Hz, 1H), 2.57 (t, J = 6.9 Hz, 2H), 2.53 – 2.43 (m, 1H), 2.42 – 2.32 (m, 1H), 2.13 – 1.89 (m, 5H), 1.67 (ddd, J = 14.0, 9.4, 4.7 Hz, 1H), 1.42 (ddd, J = 13.0, 9.4, 3.9 Hz, 1H), 1.10 (s, 3H), 0.84 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 214.2, 131.4, 128.0, 127.6, 123.3, 87.6, 81.6, 68.8, 57.7, 47.8, 46.4, 42.5, 42.3, 28.1, 26.7, 24.7, 19.53, 19.42, 15.6.

HRMS (APCI) calcd for C₂₁H₂₇O₄S [M+H]⁺: 375.1630, Found: 375.1647.

Pent-4-yn-1-yl 4-(N,N-dipropylsulfamoyl)benzoate

Colorless oil (1.39 g, 79% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 8.15 (d, *J* = 8.6 Hz, 2H), 7.87 (d, *J* = 8.6 Hz, 2H), 4.46 (t, *J* = 6.3 Hz, 2H), 3.16 – 3.02 (m, 4H), 2.39 (td, *J* = 7.0, 2.6 Hz, 2H), 2.07 – 1.93 (m, 3H), 1.61 – 1.47 (m, 4H), 0.86 (t, *J* = 7.4 Hz, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 165.1, 144.3, 133.4, 130.2, 127.0, 82.8, 69.2, 64.1, 49.9, 27.5, 21.9, 15.3, 11.1.

HRMS (APCI) calcd for C₁₈H₂₆NO₄S [M+H]⁺: 352.1583, Found: 352.1598.

5-Phenylpent-4-yn-1-yl 4-(*N*,*N*-dipropylsulfamoyl)benzoate

Yellow oil (769 mg, 90% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 8.17 (d, *J* = 8.5 Hz, 2H), 7.84 (d, *J* = 8.5 Hz, 2H), 7.42 – 7.34 (m, 2H), 7.31 – 7.23 (m, 3H), 4.52 (t, *J* = 6.2 Hz, 2H), 3.14 – 3.02 (m, 4H), 2.62 (t, *J* = 6.9 Hz, 2H), 2.15 – 2.04 (m, 2H), 1.60 – 1.48 (m, 4H), 0.87 (t, *J* = 7.4 Hz, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 165.0, 144.1, 133.4, 131.4, 130.1, 128.1, 127.6, 126.8, 123.4, 88.3, 81.3, 64.3, 49.8, 27.7, 21.8, 16.3, 11.0.

HRMS (APCI) calcd for C₂₄H₃₀NO₄S [M+H]⁺: 428.1896, Found: 428.1914.

Pent-4-yn-1-yl 2-(3-cyano-4-isobutoxyphenyl)-4-methylthiazole-5-carboxylate

White solid (1.39 g, 73% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.18 (d, J = 2.2 Hz, 1H), 8.09 (dd, J = 8.8, 2.2 Hz, 1H), 7.01 (d, J = 8.9 Hz, 1H), 4.41 (t, J = 6.2 Hz, 2H), 3.90 (d, J = 6.5 Hz, 2H), 2.76 (s, 3H), 2.38 (td, J = 7.0, 2.6 Hz, 2H), 2.27 - 2.14 (m, 1H), 2.04 - 1.92 (m, 3H), 1.09 (d, J = 6.7 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 167.3, 162.5, 161.9, 161.3, 132.5, 132.1, 126.0, 121.6, 115.4, 112.6,

 $103.0, 82.7, 75.7, 69.3, 63.8, 28.1, 27.5, 19.0, 17.5, 15.3. \\ \textbf{HRMS} (APCI) calcd for C_{21}H_{23}N_2O_3S \ [M+H]^+: 383.1429, Found: 383.1447. \\ \label{eq:main_state}$

5-Phenylpent-4-yn-1-yl 2-(3-cyano-4-isobutoxyphenyl)-4-methylthiazole-5-carboxylate

White solid (687 mg, 75% yield).

¹**H** NMR (400 MHz, CDCl₃) δ 8.11 (d, J = 1.5 Hz, 1H), 8.02 (dd, J = 8.7, 1.6 Hz, 1H), 7.49 – 7.32 (m, 2H), 7.31 – 7.12 (m, 3H), 6.97 (d, J = 8.9 Hz, 1H), 4.45 (t, J = 6.0 Hz, 2H), 3.87 (d, J = 6.4 Hz, 2H), 2.75 (s, 3H), 2.59 (t, J = 6.8 Hz, 2H), 2.28 – 2.12 (m, 1H), 2.12 – 1.94 (m, 2H), 1.08 (d, J = 6.6 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 167.1, 162.4, 161.8, 161.1, 132.4, 131.9, 131.4, 128.1, 127.6, 125.8, 123.5, 121.5, 115.3, 112.5, 102.8, 88.3, 81.4, 75.6, 64.0, 28.0, 27.7, 18.9, 17.4, 16.3. HRMS (APCI) calcd for C₂₇H₂₇N₂O₃S [M+H]⁺: 459.1742, Found: 459.1764.

Pent-4-yn-1-yl

4'-((1,7'-dimethyl-2'-propyl-1H,3'H-[2,5'-bibenzo[d]imidazol]-3'-yl)methyl)-[1,1'-biphenyl]-2-car boxylate

White solid (1.86 g, 64% yield).

¹**H** NMR (400 MHz, CDCl₃) δ 7.76 (d, J = 7.8 Hz, 2H), 7.45 – 7.36 (m, 3H), 7.32 (t, J = 7.5 Hz, 1H), 7.25 – 7.15 (m, 6H), 7.04 (d, J = 7.8 Hz, 2H), 5.38 (s, 2H), 4.04 (t, J = 5.7 Hz, 2H), 3.67 (s, 3H), 2.95 – 2.81 (m, 2H), 2.73 (s, 3H), 1.89 (t, J = 2.4 Hz, 1H), 1.87 – 1.73 (m, 4H), 1.55 – 1.43 (m, 2H), 1.01 (t, J = 7.2 Hz, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 168.1, 156.2, 154.3, 142.9, 142.6, 141.2, 141.0, 136.4, 134.7, 134.6, 131.1, 130.5, 130.4, 129.7, 129.1, 128.7, 127.1, 125.7, 123.6, 122.2, 122.0, 119.2, 109.3, 108.6, 82.8, 68.8, 63.2, 46.7, 31.5, 29.5, 27.0, 21.6, 16.6, 14.6, 13.8.

HRMS (ESI) calcd for $C_{38}H_{37}N_4O_2 \,[M+H]^+: 581.2917$, Found: 581.2901.

5-Phenylpent-4-yn-1-yl

4'-((1,7'-dimethyl-2'-propyl-1H,3'H-[2,5'-bibenzo[d]imidazol]-3'-yl)methyl)-[1,1'-biphenyl]-2-car boxylate

White solid (971 m g, 74% yield).

¹**H NMR** (500 MHz, CDCl₃) δ 7.84 (d, J = 6.9 Hz, 1H), 7.82 – 7.76 (m, 1H), 7.50 (td, J = 7.6, 1.1 Hz, 1H), 7.47 (s, 1H), 7.43 (s, 1H), 7.39 (td, J = 7.7, 0.8 Hz, 1H), 7.37 – 7.31 (m, 3H), 7.29 – 7.25 (m, 8H), 7.09 (d, J = 8.0 Hz, 2H), 5.42 (s, 2H), 4.17 (t, J = 6.0 Hz, 2H), 3.79 (s, 3H), 2.97 – 2.87 (m, 2H), 2.76 (s, 3H), 2.10 (t, J = 7.0 Hz, 2H), 1.93 – 1.81 (m, 2H), 1.69 – 1.62 (m, 2H), 1.05 (t, J = 7.3 Hz, 3H). ¹³**C NMR** (126 MHz, CDCl₃) δ 168.3, 156.3, 154.6, 143.1, 142.8, 141.5, 141.2, 136.6, 134.9, 134.8, 131.4, 131.2, 130.7, 130.6, 129.9, 129.4, 128.9, 128.2, 127.7, 127.3, 125.9, 123.83, 123.78, 123.5, 122.4, 122.2, 119.5, 109.4, 108.8, 88.6, 81.2, 63.6, 46.9, 31.7, 29.7, 27.4, 21.8, 16.8, 15.9, 14.0. **HRMS** (ESI) calcd for C₄₄H₄₁N₄O₂ [M+H]⁺: 657.3224, Found: 657.3205.

7. General procedure for hydrofluorination of alkynes

Condition A: A reaction tube (13 mm \times 100 mm, Fisherbrand, part # 14-959-35C) equipped with a magnetic stir bar was flame dried under vacuum. The reaction tube was cooled under argon and transferred into an argon-filled glovebox. In the glovebox, 2,6-dichloropyridinium tetrafluoroborate (0.2 mmol, 47 mg, 1.0 equiv), LiBF₄ (0.05 mmol, 4.7 mg, 25 mol%), dry CHCl₃ (1.0 mL) and alkyne (0.2 mmol, 1.0 equiv) were added in succession. The reaction tube was sealed and removed from the glovebox. After stirred at 70 or 90 °C for 6 hours, the reaction mixture was cooled to room temperature. The resulting mixture was passed through a pad of silica gel and eluted with CH₂Cl₂. The filtrate was concentrated *in vacuo* and purified by flash column chromatography to provide the desired product.

Condition B: A reaction tube (13 mm \times 100 mm, Fisherbrand, part # 14-959-35C) equipped with a magnetic stir bar was flame dried under vacuum. The reaction tube was cooled under argon and transferred into an argon-filled glovebox. In the glovebox, dry CHCl₃ (1.0 mL), alkyne (0.2 mmol, 1.0 equiv) and HBF4·EtcO (27 µL, 0.2 mmol, 1.0 equiv) were added in succession. The reaction tube was sealed and removed from the glovebox and stirred at room temperature for 6 hours. The resulting mixture was passed through a pad of silica gel and eluted with CH₂Cl₂. The filtrate was concentrated *in vacuo* and purified by flash column chromatography to provide the desired product.

Condition C: A reaction tube (13 mm \times 100 mm, Fisherbrand, part # 14-959-35C) equipped with a magnetic stir bar was flame dried under vacuum. The reaction tube was cooled under argon and transferred into an argon-filled glovebox. In the glovebox, 2,6-dichloropyridinium tetrafluoroborate (0.6 mmol, 141 mg, 3.0 equiv), dry CHCl₃ (3.0 mL) and alkyne (0.2 mmol, 1.0 equiv) were added in succession. The reaction tube was sealed and removed from the glovebox. After stirred at 80 or 100 °C for 12 hours, the reaction mixture was cooled to room temperature. The resulting mixture was passed through a pad of silica gel and eluted with CH₂Cl₂. The filtrate was concentrated *in vacuo* and purified by flash column chromatography to provide the desired product.

Condition D: A reaction tube (13 mm \times 100 mm, Fisherbrand, part # 14-959-35C) equipped with a magnetic stir bar was flame dried under vacuum. The reaction tube was cooled under argon and transferred into an argon-filled glovebox. In the glovebox, 2,6-dichloropyridinium tetrafluoroborate (0.4 mmol, 97 mg, 2.0 equiv), dry DCE (2.0 mL) and alkyne (0.2 mmol, 1.0 equiv) were added in succession. The reaction tube was sealed and removed from the glovebox. After stirred at 100 °C for 12 hours, the reaction mixture was cooled to room temperature. The resulting mixture was passed through

a pad of silica gel and eluted with CH₂Cl₂. The filtrate was concentrated *in vacuo* and purified by flash column chromatography to provide the desired product.

Condition A (reaction under air): A sample (~1 g) of 2,6-dichloropyridinium tetrafluoroborate was removed from the glovebox and condition **A** was repeated outside of the glovebox for (cyclohexylethynyl)benzene (0.2 mmol) by charging an oven-dried reaction tube with fluorinating reagent, dried solvent, and substrate sequentially. The reaction tube was sealed under air and placed in an oil bath at 70 °C. After a reaction time of 6 h, the NMR yield of the desired product (1) was determined to be 78% using trifluorotoluene as the internal standard

8. Characterization data of products

(Z)-(2-Cyclohexyl-1-fluorovinyl)benzene (1)

Prepared following the general procedure (condition A): 2,6-dichloropyridinium tetrafluoroborate (0.2 mmol, 47 mg, 1.0 equiv), LiBF₄ (0.25 mmol, 4.7 mg, 0.25 equiv), dry CHCl₃ (1.0 mL), (cyclohexylethynyl)benzene (0.2 mmol, 37 mg, 1.0 equiv) at 70 °C. The reaction mixture was quenched after 6 h, and the crude residue was purified by flash column chromatography (hexanes) to provide the title compound 1 with spectral properties identical to the reported in the literature^[1]. Pale yellow oil (31 mg, 76% yield, Z/E > 50 : 1).

¹**H NMR** (500 MHz, CDCl₃) δ 7.51 (d, *J* = 7.4 Hz, 2H), 7.35 (t, *J* = 7.7 Hz, 2H), 7.32 – 7.27 (m, 1H), 5.29 (dd, *J* = 38.2, 9.2 Hz, 1H), 2.73 – 2.59 (m, 1H), 1.84 – 1.73 (m, 4H), 1.72 – 1.65 (m, 1H), 1.42 – 1.32 (m, 2H), 1.28 – 1.14 (m, 3H).

¹³**C** NMR (126 MHz, CDCl₃) δ 155.4 (d, J_{CF} = 245.3 Hz), 132.9 (d, J_{CF} = 29.4 Hz), 128.3 (d, J_{CF} = 1.9 Hz), 128.2, 123.8 (d, J_{CF} = 7.0 Hz), 112.0 (d, J_{CF} = 17.1 Hz), 33.8 (d, J_{CF} = 3.6 Hz), 33.2 (d, J_{CF} = 1.2 Hz), 26.0, 25.8.

¹⁹**F NMR** (471 MHz, CDCl₃) δ -121.8 (d, J = 38.2 Hz).

(E)-(2-Cyclohexyl-1-fluorovinyl)benzene (2)

Prepared following the general procedure (condition B): (cyclohexylethynyl)benzene (0.2 mmol, 37 mg, 1.0 equiv), dry CHCl₃ (1.0 mL), HBF₄·Et₂O (27 μ L, 0.2 mmol, 1.0 equiv) at room temperature. The reaction mixture was quenched after 6 h, and the crude residue was purified by flash column chromatography (hexanes) to provide the title compound **2**. Pale yellow oil (17 mg, 42% yield, E/Z = 11:1).

¹**H NMR** (500 MHz, CDCl₃) δ 7.51 – 7.43 (m, 2H), 7.43 – 7.32 (m, 3H), 5.26 (dd, *J* = 23.1, 10.8 Hz, 1H), 2.37 – 2.18 (m, 1H), 1.83 – 1.69 (m, 4H), 1.69 – 1.60 (m, 1H), 1.32 – 1.14 (m, 5H).

¹³**C** NMR (126 MHz, CDCl₃) δ 155.7 (d, J_{CF} = 240.1 Hz), 132.4 (d, J_{C-F} = 30.2 Hz), 128.8 (d, J_{C-F} = 1.1 Hz), 128.2, 127.5 (d, J_{C-F} = 5.0 Hz), 114.5 (d, J_{C-F} = 21.9 Hz), 35.2 (d, J_{C-F} = 7.6 Hz), 33.8 (d, J_{C-F} = 2.3 Hz), 25.9, 25.6.

¹⁹**F NMR** (471 MHz, CDCl₃) δ -103.5 (d, J = 23.1 Hz). HRMS (APCI) calcd for C₁₄H₁₈F [M+H]⁺: 205.1387, Found: 205.1377.

(Z)-1-(2-Cyclohexyl-1-fluorovinyl)-4-fluorobenzene (3)

Prepared following the general procedure (**condition A**): 2,6-dichloropyridinium tetrafluoroborate (0.2 mmol, 47 mg, 1.0 equiv), LiBF₄ (0.25 mmol, 4.7 mg, 0.25 equiv), dry CHCl₃ (1.0 mL), 1-(cyclohexylethynyl)-4-fluorobenzene (0.2 mmol, 41 mg, 1.0 equiv) at 70 °C. The reaction mixture was quenched after 6 h, and the crude residue was purified by flash column chromatography (hexanes) to provide the title compound **3**. Pale yellow oil (33 mg, 74% yield, Z/E > 50 : 1).

¹**H NMR** (500 MHz, CDCl₃) δ 7.50 – 7.43 (m, 2H), 7.03 (t, *J* = 8.7 Hz, 2H), 5.19 (dd, *J* = 38.1, 9.2 Hz, 1H), 2.68 – 2.56 (m, 1H), 1.81 – 1.71 (m, 4H), 1.71 – 1.64 (m, 1H), 1.41 – 1.30 (m, 2H), 1.28 – 1.11 (m, 3H).

¹³**C** NMR (126 MHz, CDCl₃) δ 162.7 (d, $J_{C-F} = 247.9$ Hz), 154.7 (d, $J_{C-F} = 245.1$ Hz), 129.2 (dd, $J_{C-F} = 30.2$, 3.3 Hz), 125.8 (dd, $J_{C-F} = 7.9$, 7.2 Hz), 115.3 (dd, $J_{C-F} = 21.8$, 1.8 Hz), 111.8 (dd, $J_{C-F} = 17.1$, 1.7 Hz), 33.8 (d, $J_{C-F} = 3.6$ Hz), 33.2 (d, $J_{C-F} = 1.0$ Hz), 26.0, 25.8.

¹⁹**F NMR** (471 MHz, CDCl₃) δ -113.2 - -113.4 (m, 1F), -120.7 (d, J = 38.1 Hz, 1F). **HRMS** (ASAP) calcd for C₁₄H₁₆F₂ [M]⁺: 222.1220, Found: 222.1227.

(E)-1-(2-Cyclohexyl-1-fluorovinyl)-4-fluorobenzene (4)

Prepared following the general procedure (condition B): 1-(cyclohexylethynyl)-4-fluorobenzene (0.2 mmol, 41 mg, 1.0 equiv), dry CHCl₃ (1.0 mL), HBF₄·Et₂O (27 μ L, 0.2 mmol, 1.0 equiv) at room temperature. The reaction mixture was quenched after 6 h, and the crude residue was purified by flash column chromatography (hexanes) to provide the title compound **4**. Pale yellow oil (20 mg, 45% yield, E/Z = 11 : 1).

¹**H** NMR (500 MHz, CDCl₃) δ 7.42 (dd, J = 8.6, 5.6 Hz, 2H), 7.09 (t, J = 8.7 Hz, 2H), 5.24 (dd, J = 22.8, 10.8 Hz, 1H), 2.28 – 2.12 (m, 1H), 1.78 – 1.69 (m, 4H), 1.68 – 1.61 (m, 1H), 1.29 – 1.15 (m, 5H). ¹³C NMR (126 MHz, CDCl₃) δ 162.8 (d, $J_{C-F} = 248.9$ Hz), 154.9 (d, $J_{C-F} = 240.2$ Hz), 129.4 (dd, $J_{C-F} = 8.3$, 4.8 Hz), 128.6 (dd, $J_{C-F} = 31.0$, 3.4 Hz), 115.3 (d, $J_{C-F} = 21.7$ Hz), 114.4 (d, $J_{C-F} = 21.8$ Hz), 35.3 (d, $J_{C-F} = 7.4$ Hz), 33.7 (d, $J_{C-F} = 2.2$ Hz), 25.8, 25.6. ¹⁹F NMR (471 MHz, CDCl₃) δ (*E*): -102.5 (d, *J* = 22.8 Hz), -111.6 - -111.9 (m), (*Z*): -113.3 - -113.4 (m), -120.8 (d, *J* = 38.0 Hz).
HRMS (APCI) calcd for C₁₄H₁₆F₂ [M]⁺: 222.1215, Found: 222.1205.

(Z)-1-Chloro-4-(2-cyclohexyl-1-fluorovinyl)benzene (5)

Prepared following the general procedure (**condition A**): 2,6-dichloropyridinium tetrafluoroborate (0.2 mmol, 47 mg, 1.0 equiv), LiBF₄ (0.25 mmol, 4.7 mg, 0.25 equiv), dry CHCl₃ (1.0 mL), 1-chloro-4-(cyclohexylethynyl)benzene (0.2 mmol, 44 mg, 1.0 equiv) at 70 °C. The reaction mixture was quenched after 6 h, and the crude residue was purified by flash column chromatography (hexanes) to provide the title compound **5**. Pale yellow oil (36 mg, 76% yield, Z/E > 50 : 1).

¹**H** NMR (500 MHz, CDCl₃) δ 7.44 – 7.38 (m, 2H), 7.31 (d, *J* = 8.3 Hz, 2H), 5.26 (dd, *J* = 38.0, 9.2 Hz, 1H), 2.68 – 2.56 (m, 1H), 1.82 – 1.71 (m, 4H), 1.71 – 1.64 (m, 1H), 1.41 – 1.30 (m, 2H), 1.27 – 1.11 (m, 3H).

¹³**C NMR** (126 MHz, CDCl₃) δ 154.5 (d, $J_{C-F} = 245.1$ Hz), 134.0, 131.4 (d, $J_{C-F} = 30.1$ Hz), 128.6 (d, $J_{C-F} = 1.9$ Hz), 125.2 (d, $J_{C-F} = 7.0$ Hz), 112.6 (d, $J_{C-F} = 17.0$ Hz), 33.8 (d, $J_{C-F} = 3.4$ Hz), 33.1 (d, $J_{C-F} = 1.1$ Hz), 26.0, 25.8.

¹⁹**F NMR** (471 MHz, CDCl₃) δ -121.7 (d, J = 38.0 Hz).

HRMS (ASAP) calcd for C₁₄H₁₆ClF [M]⁺: 238.0925, Found: 238.0936.

(E)-1-Chloro-4-(2-cyclohexyl-1-fluorovinyl)benzene (6)

Prepared following the general procedure (condition B): 1-chloro-4-(cyclohexylethynyl)benzene (0.2 mmol, 44 mg, 1.0 equiv), dry CHCl₃ (1.0 mL), HBF₄·Et₂O (27 μ L, 0.2 mmol, 1.0 equiv) at room temperature. The reaction mixture was quenched after 6 h, and the crude residue was purified by flash column chromatography (hexanes) to provide the title compound **6**. Pale yellow oil (19 mg, 41% yield, E/Z = 11 : 1).

¹**H NMR** (500 MHz, CDCl₃) δ 7.44 – 7.27 (m, 4H), 5.27 (dd, *J* = 22.9, 10.8 Hz, 1H), 2.31 – 2.13 (m, 1H), 1.79 – 1.69 (m, 4H), 1.68 – 1.61 (m, 1H), 1.29 – 1.13 (m, 5H).

¹³**C NMR** (126 MHz, CDCl₃) δ 154.7 (d, $J_{C-F} = 240.1$ Hz), 134.7, 130.8 (d, $J_{C-F} = 30.9$ Hz), 128.8 (d, $J_{C-F} = 4.9$ Hz), 128.5, 115.1 (d, $J_{C-F} = 21.7$ Hz), 35.3 (d, $J_{C-F} = 7.3$ Hz), 33.7 (d, $J_{C-F} = 2.1$ Hz), 25.8, 25.6.

¹⁹**F NMR** (471 MHz, CDCl₃) δ (*E*): -103.9 (d, *J* = 22.8 Hz), (*Z*): -121.7 (d, *J* = 38.1 Hz). **HRMS** (APCI) calcd for C₁₄H₁₆ClF [M]⁺: 238.0919, Found: 238.0909.

(Z)-1-Bromo-4-(2-cyclohexyl-1-fluorovinyl)benzene (7)

Prepared following the general procedure (**condition A**): 2,6-dichloropyridinium tetrafluoroborate (0.2 mmol, 47 mg, 1.0 equiv), LiBF₄ (0.25 mmol, 4.7 mg, 0.25 equiv), dry CHCl₃ (1.0 mL), 1-bromo-4-(cyclohexylethynyl)benzene (0.2 mmol, 53 mg, 1.0 equiv) at 70 °C. The reaction mixture was quenched after 6 h, and the crude residue was purified by flash column chromatography (hexanes) to provide the title compound 7. Pale yellow oil (39 mg, 70% yield, Z/E > 50 : 1).

¹**H** NMR (500 MHz, CDCl₃) δ 7.46 (d, *J* = 8.4 Hz, 2H), 7.37 – 7.32 (m, 2H), 5.27 (dd, *J* = 38.0, 9.3 Hz, 1H), 2.68 – 2.56 (m, 1H), 1.81 – 1.71 (m, 4H), 1.71 – 1.63 (m, 1H), 1.41 – 1.30 (m, 2H), 1.27 – 1.11 (m, 3H).

¹³**C** NMR (126 MHz, CDCl₃) δ 154.6 (d, J_{CF} = 245.1 Hz), 131.9 (d, J_{CF} = 30.0 Hz), 131.5 (d, J_{CF} = 1.9 Hz), 125.4 (d, J_{CF} = 6.9 Hz), 122.2, 112.7 (d, J_{CF} = 17.0 Hz), 33.8 (d, J_{CF} = 3.5 Hz), 33.0 (d, J_{CF} = 1.2 Hz), 26.0, 25.8.

¹⁹**F NMR** (471 MHz, CDCl₃) δ -121.8 (d, J = 38.0 Hz).

HRMS (ASAP) calcd for C14H16BrF [M]+: 282.0419, Found: 282.0432.

(E)-1-Bromo-4-(2-cyclohexyl-1-fluorovinyl)benzene (8)

Prepared following the general procedure (condition B): 1-bromo-4-(cyclohexylethynyl)benzene (0.2 mmol, 53 mg, 1.0 equiv), dry CHCl₃ (1.0 mL), HBF₄·Et₂O (27 μ L, 0.2 mmol, 1.0 equiv) at room temperature. The reaction mixture was quenched after 6 h, and the crude residue was purified by flash column chromatography (hexanes) to provide the title compound **8**. Pale yellow oil (27 mg, 48% yield, E/Z > 20: 1).

¹**H NMR** (500 MHz, CDCl₃) δ 7.53 (d, *J* = 8.3 Hz, 2H), 7.31 (d, *J* = 8.4 Hz, 2H), 5.28 (dd, *J* = 22.9, 10.8 Hz, 1H), 2.33 – 2.12 (m, 1H), 1.80 – 1.69 (m, 4H), 1.69 – 1.61 (m, 1H), 1.29 – 1.14 (m, 5H).

¹³**C** NMR (126 MHz, CDCl₃) δ 154.7 (d, $J_{C-F} = 240.1$ Hz), 131.5, 131.3 (d, $J_{C-F} = 30.9$ Hz), 129.0 (d, $J_{C-F} = 4.9$ Hz), 123.0 (d, $J_{C-F} = 1.5$ Hz), 115.2 (d, $J_{C-F} = 21.6$ Hz), 35.3 (d, $J_{C-F} = 7.4$ Hz), 33.6 (d, $J_{C-F} = 2.2$ Hz), 25.8, 25.6.

¹⁹**F NMR** (471 MHz, CDCl₃) δ (*E*): -104.2 (d, *J* = 22.9 Hz), (*Z*): -121.9 (d, *J* = 37.9 Hz). **HRMS** (APCI) calcd for C₁₄H₁₆BrF [M]⁺: 282.0414, Found: 282.0403.

(Z)-1-(2-Cyclohexyl-1-fluorovinyl)-4-(trifluoromethyl)benzene (9)

Prepared following general **condition D**: 2,6-dichloropyridinium tetrafluoroborate (0.4 mmol, 94 mg, 2.0 equiv), dry DCE (2.0 mL), 1-(cyclohexylethynyl)-4-(trifluoromethyl)benzene (0.2 mmol, 50 mg,

1.0 equiv) at 90 °C. The reaction mixture was quenched after 12 h, and the crude residue was purified by flash column chromatography (hexanes) to provide the title compound **9**. Pale yellow oil (39 mg, 72% yield, Z/E > 50: 1).

¹**H** NMR (500 MHz, CDCl₃) δ 7.59 (s, 4H), 5.40 (dd, J = 37.7, 9.3 Hz, 1H), 2.65 (dt, J = 20.8, 7.3 Hz, 1H), 1.82 – 1.72 (m, 4H), 1.71 – 1.65 (m, 1H), 1.42 – 1.30 (m, 2H), 1.28 – 1.14 (m, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 154.2 (d, $J_{CF} = 245.4$ Hz), 136.3 (d, $J_{CF} = 29.7$ Hz), 130.1 (q, $J_{CF} = 32.5$ Hz), 125.47 – 125.27 (m), 124.02 (d, $J_{CF} = 7.0$ Hz), 124.01 (q, $J_{CF} = 273.4$ Hz), 114.5 (d, $J_{CF} = 16.8$ Hz), 33.9 (d, $J_{CF} = 3.4$ Hz), 33.0 (d, $J_{CF} = 1.1$ Hz), 25.9, 25.8. ¹⁹F NMR (471 MHz, CDCl₃) δ -62.7 (s, 3F), -122.2 (d, J = 37.7 Hz, 1F). HRMS (ASAP) calcd for C₁₅H₁₆F4 [M]⁺: 272.1188, Found: 272.1198.

(Z)-4-(2-Cyclohexyl-1-fluorovinyl)-1,1'-biphenyl (10)

Prepared following the general procedure (**condition A**): 2,6-dichloropyridinium tetrafluoroborate (0.2 mmol, 47 mg, 1.0 equiv), LiBF₄ (0.25 mmol, 4.7 mg, 0.25 equiv), dry CHCl₃ (1.0 mL), 4-(cyclohexylethynyl)-1,1'-biphenyl (0.2 mmol, 52 mg, 1.0 equiv) at 70 °C. The reaction mixture was quenched after 6 h, and the crude residue was purified by flash column chromatography (hexanes) to provide the title compound **10**. Pale yellow oil (39 mg, 70% yield, Z/E > 50 : 1).

¹**H** NMR (500 MHz, CDCl₃) δ 7.65 – 7.52 (m, 6H), 7.45 (m, 2H), 7.36 (m, 1H), 5.32 (dd, *J* = 38.2, 9.2 Hz, 1H), 2.74 – 2.59 (m, 1H), 1.85 – 1.72 (m, 4H), 1.72 – 1.63 (m, 1H), 1.43 – 1.32 (m, 2H), 1.29 – 1.13 (m, 3H).

¹³**C NMR** (126 MHz, CDCl₃) δ 155.2 (d, $J_{C-F} = 245.0$ Hz), 141.0, 140.5, 131.9 (d, $J_{C-F} = 29.7$ Hz), 128.8, 127.5, 127.04 (d, $J_{C-F} = 1.9$ Hz), 126.97, 124.3 (d, $J_{C-F} = 6.9$ Hz), 112.2 (d, $J_{C-F} = 17.2$ Hz), 33.9 (d, $J_{C-F} = 3.6$ Hz), 33.2, 26.0, 25.9.

¹⁹**F NMR** (471 MHz, CDCl₃) δ -121.8 (d, J = 38.2 Hz).

HRMS (ASAP) calcd for $C_{20}H_{22}F$ [M+H]⁺: 281.1706, Found: 281.1695.

(E)-4-(2-Cyclohexyl-1-fluorovinyl)-1,1'-biphenyl (11)

Prepared following the general procedure (**condition B**): 4-(cyclohexylethynyl)-1,1'-biphenyl (0.2 mmol, 52 mg, 1.0 equiv), dry CHCl₃ (1.0 mL), HBF₄·Et₂O (27 μ L, 0.2 mmol, 1.0 equiv) at room temperature. The reaction mixture was quenched after 6 h, and the crude residue was purified by flash column chromatography (hexanes) to provide the title compound **11**. Pale yellow oil (18 mg, 32% yield, E/Z > 20: 1).

¹**H** NMR (500 MHz, CDCl₃) δ 7.63 (t, *J* = 7.5 Hz, 4H), 7.53 (d, *J* = 8.2 Hz, 2H), 7.46 (t, *J* = 7.6 Hz, 2H), 7.38 (t, *J* = 7.4 Hz, 1H), 5.29 (dd, *J* = 23.1, 10.8 Hz, 1H), 2.44 – 2.24 (m, 1H), 1.86 – 1.70 (m, 4H), 1.70 – 1.63 (m, 1H), 1.34 – 1.17 (m, 5H).

¹³**C** NMR (126 MHz, CDCl₃) δ 155.5 (d, $J_{C-F} = 239.7$ Hz), 141.6, 140.4, 131.3 (d, $J_{C-F} = 30.4$ Hz), 128.8, 127.8 (d, $J_{C-F} = 5.1$ Hz), 127.6, 127.1, 126.9, 114.7 (d, $J_{C-F} = 22.1$ Hz), 35.3 (d, $J_{C-F} = 7.6$ Hz), 33.8 (d, $J_{C-F} = 2.1$ Hz), 25.9, 25.7. ¹⁹**F** NMR (471 MHz, CDCl₃) δ -104.1 (d, J = 23.0 Hz).

HRMS (APCI) calcd for $C_{20}H_{21}F$ [M]⁺: 280.1622, Found: 280.1610.

(Z)-1-(2-Cyclohexyl-1-fluorovinyl)-4-methylbenzene (12)

Me

Prepared following the general procedure (condition A): 2,6-dichloropyridinium tetrafluoroborate (0.2 mmol, 47 mg, 1.0 equiv), LiBF₄ (0.25 mmol, 4.7 mg, 0.25 equiv), dry CHCl₃ (1.0 mL), 1-(cyclohexylethynyl)-4-methylbenzene (0.2 mmol, 40 mg, 1.0 equiv) at 70 °C. The reaction mixture was quenched after 6 h, and the crude residue was purified by flash column chromatography (hexanes) to provide the title compound **12**. Pale yellow oil (34 mg, 78% yield, Z/E > 50 : 1).

¹**H** NMR (500 MHz, CDCl₃) δ 7.38 (d, *J* = 8.2 Hz, 2H), 7.15 (d, *J* = 8.2 Hz, 2H), 5.21 (dd, *J* = 38.4, 9.2 Hz, 1H), 2.69 – 2.56 (m, 1H), 2.35 (s, 3H), 1.82 – 1.70 (m, 4H), 1.70 – 1.64 (m, 1H), 1.41 – 1.30 (m, 2H), 1.26 – 1.10 (m, 3H).

¹³**C** NMR (126 MHz, CDCl₃) δ 155.5 (d, $J_{C-F} = 245.1$ Hz), 138.1, 130.2 (d, $J_{C-F} = 29.6$ Hz), 129.0 (d, $J_{C-F} = 1.8$ Hz), 123.8 (d, $J_{C-F} = 6.9$ Hz), 111.1 (d, $J_{C-F} = 17.2$ Hz), 33.8 (d, $J_{C-F} = 3.7$ Hz), 33.2 (d, $J_{C-F} = 1.0$ Hz), 26.0, 25.9, 21.2.

¹⁹**F NMR** (471 MHz, CDCl₃) δ -121.5 (d, J = 38.4 Hz). **HRMS** (ASAP) calcd for C1₅H1₉F [M]⁺: 218.1471, Found: 218.1480.

Prepared following the general procedure (condition B): 1-(cyclohexylethynyl)-4-methylbenzene (0.2 mmol, 40 mg, 1.0 equiv), dry CHCl₃ (1.0 mL), HBF₄·Et₂O (27 μ L, 0.2 mmol, 1.0 equiv) at room temperature. The reaction mixture was quenched after 6 h, and the crude residue was purified by flash column chromatography (hexanes) to provide the title compound **13**. Pale yellow oil (16 mg, 36% yield, E/Z > 20: 1).

¹**H** NMR (500 MHz, CDCl₃) δ 7.34 (d, *J* = 8.0 Hz, 2H), 7.20 (d, *J* = 7.9 Hz, 2H), 5.20 (dd, *J* = 23.0, 10.7 Hz, 1H), 2.38 (s, 3H), 2.31 – 2.20 (m, 1H), 1.80 – 1.68 (m, 4H), 1.67 – 1.60 (m, 1H), 1.28 – 1.14 (m, 5H).

¹³**C** NMR (126 MHz, CDCl₃) δ 155.9 (d, $J_{C-F} = 239.9$ Hz), 138.8, 129.6 (d, $J_{C-F} = 30.4$ Hz), 128.9, 127.4 (d, $J_{C-F} = 4.9$ Hz), 113.9 (d, $J_{C-F} = 22.3$ Hz), 35.2 (d, $J_{C-F} = 7.6$ Hz), 33.8 (d, $J_{C-F} = 2.2$ Hz), 25.9, 25.7, 21.3.

¹⁹F NMR (471 MHz, CDCl₃) δ -103.1 (d, *J* = 22.9 Hz).

HRMS (APCI) calcd for C₁₅H₁₉F [M]⁺: 218.1465, Found: 218.1456.
(Z)-1-(2-Cyclohexyl-1-fluorovinyl)-2-fluorobenzene (14)

Prepared following the general procedure (condition A): 2,6-dichloropyridinium tetrafluoroborate (0.2 mmol, 47 mg, 1.0 equiv), LiBF4 (0.25 mmol, 4.7 mg, 0.25 equiv), dry CHCl₃ (1.0 mL), 1-(cyclohexylethynyl)-2-fluorobenzene (0.2 mmol, 41 mg, 1.0 equiv) at 70 °C. The reaction mixture was quenched after 6 h, and the crude residue was purified by flash column chromatography (hexanes) to provide the title compound 14. Pale yellow oil (34 mg, 77% yield, Z/E > 50 : 1).

¹**H** NMR (500 MHz, CDCl₃) δ 7.51 (td, *J* = 7.8, 1.7 Hz, 1H), 7.29 – 7.21 (m, 1H), 7.14 (t, *J* = 7.6 Hz, 1H), 7.07 (m, 1H), 5.48 (dd, *J* = 40.0, 9.3 Hz, 1H), 2.75 – 2.59 (m, 1H), 1.86 – 1.70 (m, 4H), 1.70 – 1.62 (m, 1H), 1.42 – 1.30 (m, 2H), 1.27 – 1.14 (m, 3H).

¹³**C** NMR (126 MHz, CDCl₃) δ 159.2 (dd, *J*_{C-F} = 251.5, 5.4 Hz), 150.0 (dd, *J*_{C-F} = 242.9, 5.5 Hz), 129.4 (d, *J*_{C-F} = 8.6 Hz), 127.0 (dd, *J*_{C-F} = 8.5, 2.4 Hz), 124.0 (dd, *J*_{C-F} = 3.6, 1.1 Hz), 121.0 (dd, *J*_{C-F} = 31.2, 11.0 Hz), 118.2 (dd, *J*_{C-F} = 15.4, 12.3 Hz), 116.0 (dd, *J*_{C-F} = 22.8, 2.4 Hz), 34.1 (d, *J*_{C-F} = 4.1 Hz), 33.0 (d, *J*_{C-F} = 1.1 Hz), 26.0, 25.8.

¹⁹**F NMR** (471 MHz, CDCl₃) δ -112.3 – -112.6 (m, 1F), -117.5 (dd, J = 40.0, 7.4 Hz, 1F). HRMS (ASAP) calcd for C₁₄H₁₆F₂ [M]⁺: 222.1220, Found: 222.1217.

(E)-1-(2-Cyclohexyl-1-fluorovinyl)-2-fluorobenzene (15)

Prepared following the general procedure (condition B): 1-(cyclohexylethynyl)-2-fluorobenzene (0.2 mmol, 41 mg, 1.0 equiv), dry CHCl₃ (1.0 mL), HBF₄·Et₂O (27 μ L, 0.2 mmol, 1.0 equiv) at room temperature. The reaction mixture was quenched after 6 h, and the crude residue was purified by flash column chromatography (hexanes) to provide the title compound **15**. Pale yellow oil (20 mg, 46% yield, E/Z > 20: 1).

¹H NMR (500 MHz, CDCl₃) δ 7.45 – 7.30 (m, 2H), 7.15 (dt, J = 18.3, 8.2 Hz, 2H), 5.38 (dd, J = 20.4, 10.9 Hz, 1H), 1.96 – 1.84 (m, 1H), 1.74 – 1.64 (m, 4H), 1.63 – 1.56 (m, 1H), 1.23 – 1.09 (m, 5H). ¹³C NMR (126 MHz, CDCl₃) δ 160.0 (d, $J_{C\cdot F} = 249.3$ Hz), 150.9 (d, $J_{C\cdot F} = 242.7$ Hz), 131.1 (dd, $J_{C\cdot F} = 8.3$, 1.9 Hz), 130.9 (t, $J_{C\cdot F} = 2.6$ Hz), 123.9 (d, $J_{C\cdot F} = 3.5$ Hz), 120.3 (dd, $J_{C\cdot F} = 30.1$, 15.4 Hz), 116.9 (d, $J_{C\cdot F} = 19.8$ Hz), 116.0 (d, $J_{C\cdot F} = 21.9$ Hz), 35.5 (d, $J_{C\cdot F} = 5.6$ Hz), 33.4 (d, $J_{C\cdot F} = 2.3$ Hz), 25.8, 25.6. ¹⁹F NMR (471 MHz, CDCl₃) δ -100.0 (dd, J = 20.3, 7.7 Hz, 1F), -112.2 – -112.3 (m, 1F). HRMS (ASAP) calcd for C₁₄H₁₇F₂ [M+H]⁺: 223.1298, Found: 223.1304.

(Z)-1-Chloro-2-(2-cyclohexyl-1-fluorovinyl)benzene (16)

Prepared following the general procedure (**condition A**): 2,6-dichloropyridinium tetrafluoroborate (0.2 mmol, 47 mg, 1.0 equiv), LiBF₄ (0.25 mmol, 4.7 mg, 0.25 equiv), dry CHCl₃ (1.0 mL), 1-chloro-2-(cyclohexylethynyl)benzene (0.2 mmol, 44 mg, 1.0 equiv) at 90 °C. The reaction mixture was quenched after 6 h, and the crude residue was purified by flash column chromatography (hexanes) to provide the title compound **16**. Pale yellow oil (32 mg, 68% yield, Z/E > 20 : 1).

¹**H NMR** (400 MHz, CDCl₃) δ 7.51 – 7.36 (m, 2H), 7.30 – 7.25 (m, 2H), 5.22 (dd, *J* = 37.8, 9.3 Hz, 1H), 2.75 – 2.61 (m, 1H), 1.88 – 1.80 (m, 2H), 1.79 – 1.72 (m, 2H), 1.72 – 1.66 (m, 1H), 1.44 – 1.33 (m, 2H), 1.29 – 1.15 (m, 3H).

¹³**C** NMR (101 MHz, CDCl₃) δ 153.0 (d, J_{CF} = 247.6 Hz), 132.4 (d, J_{CF} = 24.1 Hz), 132.2 (d, J_{C-F} = 2.7 Hz), 130.3, 130.0 (d, J_{CF} = 4.9 Hz), 129.7 (d, J_{C-F} = 1.0 Hz), 126.5, 118.0 (d, J_{C-F} = 16.3 Hz), 34.0 (d, J_{C-F} = 2.7 Hz), 33.0 (d, J_{C-F} = 1.4 Hz), 26.0, 25.8.

¹⁹F NMR (376 MHz, CDCl₃) δ -108.0 (d, J = 37.8 Hz).

HRMS (ASAP) calcd for C₁₄H₁₇ClF [M+H]⁺: 239.1003, Found: 239.0989.

(Z)-1-(2-Cyclohexyl-1-fluorovinyl)-2-methylbenzene (17)

Prepared following the general procedure (**condition A**): 2,6-dichloropyridinium tetrafluoroborate (0.2 mmol, 47 mg, 1.0 equiv), LiBF₄ (0.25 mmol, 4.7 mg, 0.25 equiv), dry CHCl₃ (1.0 mL), 1-(cyclohexylethynyl)-2-methylbenzene (0.2 mmol, 40 mg, 1.0 equiv) at 70 °C. The reaction mixture was quenched after 6 h, and the crude residue was purified by flash column chromatography (hexanes) to provide the title compound **17**. Pale yellow oil (33 mg, 76% yield, Z/E > 50 : 1).

¹**H** NMR (500 MHz, CDCl₃) δ 7.32 (d, *J* = 7.5 Hz, 1H), 7.26 – 7.21 (m, 1H), 7.17 (m, 2H), 4.86 (dd, *J* = 37.5, 9.2 Hz, 1H), 2.69 – 2.58 (m, 1H), 2.39 (d, *J* = 3.2 Hz, 3H), 1.86 – 1.70 (m, 4H), 1.70 – 1.63 (m, 1H), 1.42 – 1.32 (m, 2H), 1.20 (m, 3H).

¹³**C** NMR (126 MHz, CDCl₃) δ 156.4 (d, *J*_{C-F} = 249.6 Hz), 136.4, 133.3 (d, *J*_{C-F} = 26.7 Hz), 130.5, 128.8 (d, *J*_{C-F} = 1.1 Hz), 128.7 (d, *J*_{C-F} = 4.8 Hz), 125.5, 116.0 (d, *J*_{C-F} = 17.3 Hz), 33.9 (d, *J*_{C-F} = 2.6 Hz), 33.3 (d, *J*_{C-F} = 1.2 Hz), 26.0, 25.8, 20.5 (d, *J*_{C-F} = 3.3 Hz).

¹⁹**F NMR** (471 MHz, CDCl₃) δ -104.9 (d, J = 37.5 Hz).

HRMS (ASAP) calcd for $C_{15}H_{20}F$ [M+H]⁺: 219.1549, Found: 219.1537.

(Z)-1-(2-Cyclohexyl-1-fluorovinyl)-3-methoxybenzene (18)

Prepared following the general procedure (**condition A**): 2,6-dichloropyridinium tetrafluoroborate (0.2 mmol, 47 mg, 1.0 equiv), LiBF₄ (0.25 mmol, 4.7 mg, 0.25 equiv), dry CHCl₃ (1.0 mL), 1-(cyclohexylethynyl)-3-methoxybenzene (0.2 mmol, 43 mg, 1.0 equiv) at 70 °C. The reaction mixture was quenched after 6 h, and the crude residue was purified by flash column chromatography (hexanes/EtOAc = 10 : 1) to provide the title compound **18**. Pale yellow oil (18 mg, 39% yield, Z/E > 50 : 1).

¹**H** NMR (500 MHz, CDCl₃) δ 7.25 (t, J = 8.2 Hz, 1H), 7.08 (d, J = 7.8 Hz, 1H), 7.05 – 6.99 (m, 1H), 6.84 (ddd, J = 8.2, 2.5, 0.7 Hz, 1H), 5.27 (dd, J = 38.1, 9.3 Hz, 1H), 3.82 (s, 3H), 2.70 – 2.56 (m, 1H), 1.82 – 1.71 (m, 4H), 1.70 – 1.65 (m, 1H), 1.40 – 1.30 (m, 2H), 1.25 – 1.13 (m, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 159.6 (d, $J_{CF} = 2.1$ Hz), 155.2 (d, $J_{CF} = 245.5$ Hz), 134.4 (d, $J_{CF} = 29.3$ Hz), 129.4 (d, $J_{CF} = 2.0$ Hz), 116.4 (d, $J_{CF} = 6.9$ Hz), 114.0, 112.4 (d, $J_{CF} = 17.2$ Hz), 109.4 (d, $J_{CF} = 7.5$ Hz), 55.3, 33.8 (d, $J_{CF} = 3.7$ Hz), 33.1 (d, $J_{CF} = 1.1$ Hz), 26.0, 25.8. ¹⁹F NMR (471 MHz, CDCl₃) δ -121.2 (d, J = 38.1 Hz). HRMS (APCI) calcd for C15H19FO [M]⁺: 234.1414, Found:234.1411.

Methyl (Z)-3-(2-cyclohexyl-1-fluorovinyl)benzoate (19)

Prepared following the general procedure (**condition D**): 2,6-dichloropyridinium tetrafluoroborate (0.4 mmol, 94 mg, 2.0 equiv), dry DCE (2.0 mL), methyl 3-(cyclohexylethynyl)benzoate (0.2 mmol, 48 mg, 1.0 equiv) at 70 °C. The reaction mixture was quenched after 12 h, and the crude residue was purified by flash column chromatography (hexanes/EtOAc = 10 : 1) to provide the title compound **19**. Pale yellow oil (35 mg, 67% yield, Z/E > 50 : 1).

¹**H** NMR (400 MHz, CDCl₃) δ 8.15 (s, 1H), 7.95 (d, J = 7.8 Hz, 1H), 7.67 (d, J = 7.9 Hz, 1H), 7.42 (t, J = 7.8 Hz, 1H), 5.37 (dd, J = 38.0, 9.3 Hz, 1H), 3.93 (s, 3H), 2.73 – 2.56 (m, 1H), 1.81 – 1.65 (m, 5H), 1.40 – 1.31 (m, 2H), 1.26 – 1.13 (m, 3H).

¹³**C** NMR (101 MHz, CDCl₃) δ 166.8, 154.5 (d, J = 245.3 Hz), 133.3 (d, J = 30.0 Hz), 130.4 (d, J = 2.2 Hz), 129.2, 128.5 (d, J = 1.8 Hz), 128.0 (d, J = 6.8 Hz), 125.0 (d, J = 7.1 Hz), 113.2 (d, J = 16.8 Hz), 52.2, 33.8 (d, J = 3.6 Hz), 33.0, 26.0, 25.8.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -121.9 (d, J = 38.0 Hz).

HRMS (ESI) calcd for $C_{16}H_{20}FO_2 [M+H]^+: 263.1442$, Found: 263.1440.

(Z)-3-(2-Cyclohexyl-1-fluorovinyl)benzonitrile (20)

Prepared following the general procedure (**condition D**): 2,6-dichloropyridinium tetrafluoroborate (0.4 mmol, 94 mg, 2.0 equiv), dry DCE (2.0 mL), 3-(cyclohexylethynyl)benzonitrile (0.2 mmol, 42 mg, 1.0 equiv) at 100 °C. The reaction mixture was quenched after 6 h, and the crude residue was purified by flash column chromatography (hexanes/EtOAc = 10 : 1) to provide the title compound **20**. Pale yellow oil (25 mg, 54% yield, Z/E = 13 : 1).

¹**H** NMR (400 MHz, CDCl₃) δ 7.76 (s, 1H), 7.70 (d, *J* = 8.1 Hz, 1H), 7.61 – 7.51 (m, 1H), 7.45 (t, *J* = 7.8 Hz, 1H), 5.37 (dd, *J* = 37.6, 9.3 Hz, 1H), 2.73 – 2.55 (m, 1H), 1.82 – 1.63 (m, 5H), 1.44 – 1.29 (m, 2H), 1.27 – 1.14 (m, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 153.4 (d, *J* = 245.4 Hz), 134.2 (d, *J* = 30.6 Hz), 131.5, 129.2 (d, *J* = 2.0 Hz), 127.8 (d, *J* = 6.8 Hz), 127.4 (d, *J* = 7.4 Hz), 118.5, 114.5 (d, *J* = 16.6 Hz), 112.8 (d, *J* = 2.3 Hz), 33.9 (d, *J* = 3.4 Hz), 32.9 (d, *J* = 1.3 Hz), 25.9, 25.7.

¹⁹**F NMR** (376 MHz, CDCl₃) δ (*E*): -105.4 (d, J = 22.8 Hz), (*Z*): -122.6 (d, J = 37.6 Hz). **HRMS** (ESI) calcd for C₁₅H₁₇FN [M+H]⁺: 230.1340, Found: 230.1339.

(Z)-1-(2-Cyclohexyl-1-fluorovinyl)-4-(trifluoromethoxy)benzene (21)

Prepared following the general procedure (condition A): 2,6-dichloropyridinium tetrafluoroborate (0.2 mmol, 47 mg, 1.0 equiv), LiBF₄ (0.25 mmol, 4.7 mg, 0.25 equiv), dry CHCl₃ (1.0 mL), 1-(cyclohexylethynyl)-4-(trifluoromethoxy)benzene (0.2 mmol, 54 mg, 1.0 equiv) at 90 °C. The reaction mixture was quenched after 6 h, and the crude residue was purified by flash column chromatography (hexanes) to provide the title compound **21**. Pale yellow oil (41 mg, 71% yield, Z/E > 50 : 1).

¹**H** NMR (500 MHz, CDCl₃) δ 7.54 – 7.48 (m, 2H), 7.19 (d, *J* = 8.7 Hz, 2H), 5.27 (dd, *J* = 37.9, 9.3 Hz, 1H), 2.71 – 2.58 (m, 1H), 1.82 – 1.71 (m, 4H), 1.68 (m, 1H), 1.42 – 1.31 (m, 2H), 1.27 – 1.12 (m, 3H). ¹³**C** NMR (126 MHz, CDCl₃) δ 154.3 (d, *J*_{C-F} = 245.2 Hz), 149.0 (d, *J*_{C-F} = 1.7 Hz), 131.7 (d, *J*_{C-F} = 30.1 Hz), 125.4 (d, *J*_{C-F} = 6.9 Hz), 120.8, 120.4 (d, *J*_{C-F} = 257.0 Hz), 112.9 (d, *J*_{C-F} = 16.9 Hz), 33.9 (d, *J*_{C-F} = 3.5 Hz), 33.1 (d, *J*_{C-F} = 1.2 Hz), 26.0, 25.8.

¹⁹**F NMR** (471 MHz, CDCl₃) δ -57.9 (s, 3F), -121.4 (d, J = 37.9 Hz, 1F). **HRMS** (ASAP) calcd for C₁₅H₁₆F₄O [M]⁺: 288.1137, Found: 288.1122.

(Z)-4-(2-Cyclohexyl-1-fluorovinyl)phenyl trifluoromethanesulfonate (22)

Prepared following the general procedure (**condition A**): 2,6-dichloropyridinium tetrafluoroborate (0.2 mmol, 47 mg, 1.0 equiv), LiBF₄ (0.25 mmol, 4.7 mg, 0.25 equiv), dry CHCl₃ (1.0 mL), 4-(cyclohexylethynyl)phenyl trifluoromethanesulfonate (0.2 mmol, 67 mg, 1.0 equiv) at 90 °C. The reaction mixture was quenched after 6 h, and the crude residue was purified by flash column chromatography (hexanes/EtOAc = 10 : 1) to provide the title compound **22**. White solid (52 mg, 74% yield, Z/E > 50 : 1).

¹**H** NMR (400 MHz, CDCl₃) δ 7.56 (d, *J* = 8.9 Hz, 2H), 7.25 (d, *J* = 8.8 Hz, 2H), 5.32 (dd, *J* = 37.7, 9.3 Hz, 1H), 2.72 – 2.57 (m, 1H), 1.82 – 1.65 (m, 5H), 1.41 – 1.30 (m, 2H), 1.27 – 1.13 (m, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 153.8 (d, $J_{C:F}$ = 245.3 Hz), 149.1, 133.3 (d, $J_{C:F}$ = 30.3 Hz), 125.6 (d, $J_{C:F}$ = 7.0 Hz), 121.4, 118.7 (d, $J_{C:F}$ = 320.9 Hz), 114.0 (d, $J_{C:F}$ = 16.8 Hz), 33.9 (d, $J_{C:F}$ = 3.4 Hz), 33.0 (d, $J_{C:F}$ = 1.3 Hz), 25.9, 25.7.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -72.8 (s, 3F), -121.7 (d, *J* = 37.7 Hz, 1F). **HRMS** (ASAP) calcd for C₁₅H₁₆F₄O₃S [M]⁺: 352.0756, Found: 352.0769.

(Z)-2-(4-(2-Cyclohexyl-1-fluorovinyl)phenyl)isoindoline-1,3-dione (23)

Prepared following the general procedure (**condition A**): 2,6-dichloropyridinium tetrafluoroborate (0.2 mmol, 47 mg, 1.0 equiv), LiBF4 (0.25 mmol, 4.7 mg, 0.25 equiv), dry CHCl₃ (1.0 mL), 2-(4-(cyclohexylethynyl)phenyl)isoindoline-1,3-dione (0.2 mmol, 66 mg, 1.0 equiv) at 70 °C. The reaction mixture was quenched after 6 h, and the crude residue was purified by flash column chromatography (hexanes/EtOAc = 10 : 1) to provide the title compound **23**. Yellow solid (43 mg, 62% yield, Z/E > 50 : 1).

¹**H** NMR (300 MHz, CDCl₃) δ 7.96 (dd, *J* = 5.4, 3.0 Hz, 2H), 7.80 (dd, *J* = 5.4, 3.0 Hz, 2H), 7.62 (d, *J* = 8.6 Hz, 2H), 7.45 (d, *J* = 8.5 Hz, 2H), 5.33 (dd, *J* = 37.9, 9.2 Hz, 1H), 2.75 – 2.56 (m, 1H), 1.84 – 1.62 (m, 5H), 1.41 – 1.30 (m, 2H), 1.27 – 1.13 (m, 3H).

¹³**C** NMR (126 MHz, CDCl₃) δ 167.1, 154.7 (d, $J_{C-F} = 245.2$ Hz), 134.4, 132.6 (d, $J_{C-F} = 29.8$ Hz), 131.7, 131.5, 126.3 (d, $J_{C-F} = 1.7$ Hz), 124.5 (d, $J_{C-F} = 6.9$ Hz), 123.8, 113.1 (d, $J_{C-F} = 16.9$ Hz), 33.9 (d, $J_{C-F} = 3.4$ Hz), 33.1, 26.0, 25.8.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -121.9 (d, J = 37.9 Hz).

HRMS (ESI) calcd for $C_{22}H_{21}FNO_2 \ [M+H]^+: 350.1551$, Found: 350.1539.

Methyl (Z)-3-(2-cyclohexyl-1-fluorovinyl)-1-tosyl-1H-indole-6-carboxylate (24)

Prepared following the general procedure (**condition A**): 2,6-dichloropyridinium tetrafluoroborate (0.2 mmol, 47 mg, 1.0 equiv), LiBF₄ (0.25 mmol, 4.7 mg, 0.25 equiv), dry CHCl₃ (1.0 mL), methyl 3-(cyclohexylethynyl)-1-tosyl-1H-indole-6-carboxylate (0.2 mmol, 87 mg, 1.0 equiv) at 70 °C. The reaction mixture was quenched after 6 h, and the crude residue was purified by flash column chromatography (hexanes/EtOAc = 5 : 1) to provide the title compound **24**. Yellow solid (42 mg, 46% yield, Z/E > 50 : 1).

¹**H** NMR (500 MHz, CDCl₃) δ 8.69 (d, J = 1.2 Hz, 1H), 7.97 (dd, J = 8.4, 1.4 Hz, 1H), 7.83 (s, 1H), 7.82 (d, J = 8.4 Hz, 2H), 7.70 (d, J = 8.4 Hz, 1H), 7.26 (d, J = 8.3 Hz, 2H), 5.21 (dd, J = 39.0, 9.3 Hz, 1H), 3.97 (s, 3H), 2.72 – 2.61 (m, 1H), 2.35 (s, 3H), 1.84 – 1.71 (m, 4H), 1.42 – 1.31 (m, 2H), 1.28 – 1.15 (m, 4H).

¹³**C** NMR (126 MHz, CDCl₃) δ 167.0, 150.0 (d, J_{CF} = 241.2 Hz), 145.6, 134.8 (d, J_{CF} = 1.0 Hz), 134.7, 130.4 (d, J_{CF} = 5.5 Hz), 130.1, 127.0, 126.9, 126.1 (d, J_{CF} = 6.3 Hz), 124.8, 120.6, 116.1 (d, J_{CF} = 34.0 Hz), 115.4, 114.70 (d, J_{CF} = 15.8 Hz), 52.3, 33.8 (d, J_{CF} = 3.2 Hz), 33.2, 26.0, 25.8, 21.6.

¹⁹**F NMR** (282 MHz, CDCl₃) δ -114.1 (d, J = 39.0 Hz).

HRMS (ESI) calcd for $C_{25}H_{27}FNO_4S\;[M\text{+}H]^+\!\!:456.1645,$ Found: 456.1633.

Methyl (Z)-5-(2-cyclohexyl-1-fluorovinyl)furan-2-carboxylate (25)

Prepared following the general procedure (**condition A**): 2,6-dichloropyridinium tetrafluoroborate (0.2 mmol, 47 mg, 1.0 equiv), LiBF4 (0.25 mmol, 4.7 mg, 0.25 equiv), dry CHCl₃ (1.0 mL), methyl 5-(cyclohexylethynyl)furan-2-carboxylate (0.2 mmol, 46 mg, 1.0 equiv) at 70 °C. The reaction mixture was quenched after 6 h, and the crude residue was purified by flash column chromatography (hexanes/EtOAc = 5:1) to provide the title compound **25**. Pale yellow oil (18 mg, 35% yield, Z/E > 50:1).

¹**H NMR** (500 MHz, CDCl₃) δ 7.16 (d, *J* = 3.5 Hz, 1H), 6.48 (d, *J* = 2.9 Hz, 1H), 5.53 (dd, *J* = 38.2, 9.6 Hz, 1H), 3.89 (s, 3H), 2.66 – 2.54 (m, 1H), 1.79 – 1.71 (m, 4H), 1.70 – 1.64 (m, 1H), 1.37 – 1.29 (m, 2H), 1.24 – 1.17 (m, 3H).

¹³**C** NMR (126 MHz, CDCl₃) δ 158.9, 150.7 (d, $J_{C-F} = 52.2$ Hz), 147.2 (d, $J_{C-F} = 236.2$ Hz), 143.9, 119.4, 114.7 (d, $J_{C-F} = 12.0$ Hz), 107.8, 52.0, 33.6 (d, $J_{C-F} = 2.0$ Hz), 32.8 (d, $J_{C-F} = 1.2$ Hz), 25.9, 25.7. ¹⁹**F** NMR (471 MHz, CDCl₃) δ -131.2 (d, J = 38.1 Hz).

HRMS (ESI) calcd for C₁₄H₁₈FO₃ [M+H]⁺: 253.1234 Found: 253.1227.

Methyl (E)-5-(2-cyclohexyl-1-fluorovinyl)furan-2-carboxylate (26)

Prepared following the general procedure (condition B): methyl 5-(cyclohexylethynyl)furan-2-carboxylate (0.2 mmol, 46 mg, 1.0 equiv), dry CHCl₃ (1.0 mL), HBF4·Et₂O (27 μ L, 0.2 mmol, 1.0 equiv) at room temperature. The reaction mixture was quenched after 6 h, and the crude residue was purified by flash column chromatography (hexanes/EtOAc = 5 : 1) to provide the title compound **26**. Pale yellow oil (17 mg, 33% yield, E/Z > 20:1).

¹**H** NMR (500 MHz, CDCl₃) δ 7.19 (d, *J* = 3.3 Hz, 1H), 6.56 (d, *J* = 3.6 Hz, 1H), 5.39 (dd, *J* = 22.8, 10.3 Hz, 1H), 3.90 (s, 3H), 2.90 – 2.76 (m, 1H), 1.86 – 1.72 (m, 4H), 1.72 – 1.64 (m, 1H), 1.46 – 1.32 (m, 2H), 1.24 – 1.12 (m, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 158.8, 150.2 (d, $J_{C-F} = 50.5$ Hz), 146.9 (d, $J_{C-F} = 230.2$ Hz), 144.3, 118.7, 117.6 (d, $J_{C-F} = 17.2$ Hz), 110.4, 52.0, 34.2 (d, $J_{C-F} = 6.6$ Hz), 33.5 (d, $J_{C-F} = 2.1$ Hz), 25.9, 25.7. ¹⁹F NMR (471 MHz, CDCl₃) δ -123.6 (d, J = 22.7 Hz).

HRMS (ESI) calcd for C₁₄H₁₈FO₃ [M+H]⁺: 253.1234, Found: 253.1230.

(Z)-1-Bromo-4-(1-fluoro-3-methylbut-1-en-1-yl)benzene (27)

Prepared following the general procedure (**condition A**): 2,6-dichloropyridinium tetrafluoroborate (0.2 mmol, 47 mg, 1.0 equiv), LiBF₄ (0.25 mmol, 4.7 mg, 0.25 equiv), dry CHCl₃ (1.0 mL), 1-bromo-4-(3-methylbut-1-yn-1-yl)benzene (0.2 mmol, 45 mg, 1.0 equiv) at 70 °C. The reaction mixture was quenched after 6 h, and the crude residue was purified by flash column chromatography (hexanes) to provide the title compound **27**. Pale yellow oil (35 mg, 73% yield, Z/E > 50 : 1).

¹**H** NMR (500 MHz, CDCl₃) δ 7.47 (d, *J* = 8.5 Hz, 2H), 7.35 (d, *J* = 8.5 Hz, 2H), 5.26 (dd, *J* = 37.7, 9.3 Hz, 1H), 3.02 – 2.85 (m, 1H), 1.08 (d, *J* = 6.7 Hz, 6H).

¹³C NMR (126 MHz, CDCl₃) δ 154.4 (d, J_{CF} = 245.1 Hz), 131.8 (d, J_{CF} = 29.9 Hz), 131.5 (d, J_{CF} = 1.9 Hz), 125.4 (d, J_{CF} = 6.9 Hz), 122.2, 114.2 (d, J_{CF} = 17.0 Hz), 24.4 (d, J_{CF} = 4.5 Hz), 22.9 (d, J_{CF} = 1.3 Hz).

¹⁹**F** NMR (471 MHz, CDCl₃) δ -122.0 (d, J = 37.6 Hz).

HRMS (ASAP) calcd for C₁₁H₁₂BrF [M]⁺: 242.0106, Found: 242.0109.

(E)-1-Bromo-4-(1-fluoro-3-methylbut-1-en-1-yl)benzene (28)

Prepared following the general procedure (condition B): 1-bromo-4-(3-methylbut-1-yn-1-yl)benzene (0.2 mmol, 45 mg, 1.0 equiv), dry CHCl₃ (1.0 mL), HBF₄·Et₂O (27 μ L, 0.2 mmol, 1.0 equiv) at room temperature. The reaction mixture was quenched after 6 h, and the crude residue was purified by flash column chromatography (hexanes) to provide the title compound **28**. Pale yellow oil (23 mg, 47% yield, E/Z = 4 : 1).

¹**H** NMR (500 MHz, CDCl₃) δ 7.53 (d, *J* = 8.5 Hz, 2H), 7.32 (d, *J* = 8.5 Hz, 2H), 5.25 (dd, *J* = 22.7, 10.9 Hz, 1H), 2.63 – 2.48 (m, 1H), 1.07 (d, *J* = 6.8 Hz, 6H).

¹³C NMR (126 MHz, CDCl₃) δ 154.4 (d, J_{CF} = 240.1 Hz), 131.5, 131.2 (d, J_{CF} = 30.7 Hz), 129.1 (d, J_{CF} = 4.8 Hz), 123.0, 116.5 (d, J_{CF} = 21.6 Hz), 25.9 (d, J_{CF} = 7.9 Hz), 23.5 (d, J_{CF} = 2.2 Hz). ¹⁹F NMR (471 MHz, CDCl₃) δ (*E*): -104.47 (d, J = 22.6 Hz), (*Z*): -122.04 (d, J = 37.7 Hz). HRMS (ASAP) calcd for C₁₁H₁₃BrF [M+H]⁺: 243.0185, Found: 243.0174.

(Z)-(2-Cyclobutyl-1-fluorovinyl)benzene (29)

Prepared following the general procedure (**condition A**): 2,6-dichloropyridinium tetrafluoroborate (0.2 mmol, 47 mg, 1.0 equiv), LiBF₄ (0.25 mmol, 4.7 mg, 0.25 equiv), dry CHCl₃ (1.0 mL), (cyclobutylethynyl)benzene (0.2 mmol, 31 mg, 1.0 equiv) at 70 °C. The reaction mixture was quenched after 6 h, and the crude residue was purified by flash column chromatography (hexanes) to provide the title compound **29**. Pale yellow oil (24 mg, 68% yield, Z/E > 50 : 1).

¹**H** NMR (500 MHz, CDCl₃) δ 7.52 – 7.46 (m, 2H), 7.35 (m, 2H), 7.29 (m, 1H), 5.50 (dd, *J* = 37.8, 8.8 Hz, 1H), 3.57 – 3.42 (m, 1H), 2.34 – 2.15 (m, 2H), 2.00 – 1.90 (m, 3H), 1.89 – 1.81 (m, 1H).

¹³**C** NMR (126 MHz, CDCl₃) δ 155.0 (d, J_{CF} = 246.0 Hz), 132.7 (d, J_{CF} = 29.1 Hz), 128.4 (d, J_{CF} = 2.0 Hz), 128.3, 123.8 (d, J_{CF} = 7.0 Hz), 111.3 (d, J_{CF} = 17.2 Hz), 31.1 (d, J_{CF} = 4.0 Hz), 29.8 (d, J_{CF} = 2.2 Hz), 19.1. ¹⁹**F** NMR (471 MHz, CDCl₃) δ -120.9 (d, J = 37.8 Hz).

HRMS (ASAP) calcd for $C_{12}H_{14}F$ [M+H]⁺: 177.1080, Found: 177.1078.

(E)-(2-Cyclobutyl-1-fluorovinyl)benzene (30)

Prepared following the general procedure (condition B): (cyclobutylethynyl)benzene (0.2 mmol, 31 mg, 1.0 equiv), dry CHCl₃ (1.0 mL), HBF₄·Et₂O (27 μ L, 0.2 mmol, 1.0 equiv) at room temperature. The reaction mixture was quenched after 6 h, and the crude residue was purified by flash column chromatography (hexanes) to provide the title compound **30**. Pale yellow oil (14 mg, 40% yield, E/Z = 10:1).

¹**H** NMR (500 MHz, CDCl₃) δ 7.45 – 7.31 (m, 5H), 5.52 (dd, *J* = 21.8, 9.8 Hz, 1H), 3.26 – 3.09 (m, 1H), 2.30 – 2.14 (m, 2H), 1.99 – 1.80 (m, 4H).

¹³**C** NMR (126 MHz, CDCl₃) δ 155.8 (d, $J_{C-F} = 242.0$ Hz), 132.2 (d, $J_{C-F} = 29.8$ Hz), 128.9 (d, $J_{C-F} = 0.9$ Hz), 128.1, 127.4 (d, $J_{C-F} = 5.1$ Hz), 113.8 (d, $J_{C-F} = 22.6$ Hz), 32.6 (d, $J_{C-F} = 7.5$ Hz), 30.1 (d, $J_{C-F} = 2.2$ Hz), 18.7 (d, $J_{C-F} = 1.2$ Hz).

¹⁹**F NMR** (471 MHz, CDCl₃) δ (*E*): -105.0 (d, *J* = 21.8 Hz), (*Z*): -120.8 (d, *J* = 37.8 Hz). **HRMS** (ASAP) calcd for C₁₂H₁₄F [M+H]⁺: 177.1071, Found: 177.1070.

(Z)-1-Bromo-4-(2-cyclopentyl-1-fluorovinyl)benzene (31)

Prepared following the general procedure (**condition A**): 2,6-dichloropyridinium tetrafluoroborate (0.2 mmol, 47 mg, 1.0 equiv), LiBF₄ (0.25 mmol, 4.7 mg, 0.25 equiv), dry CHCl₃ (1.0 mL), 1-bromo-4-(cyclopentylethynyl)benzene (0.2 mmol, 50 mg, 1.0 equiv) at 70 °C. The reaction mixture was quenched after 6 h, and the crude residue was purified by flash column chromatography (hexanes) to provide the title compound **31**. Pale yellow oil (41 mg, 76% yield, Z/E > 50 : 1).

¹**H NMR** (500 MHz, CDCl₃) δ 7.46 (d, *J* = 8.4 Hz, 2H), 7.38 – 7.32 (m, 2H), 5.35 (dd, *J* = 37.5, 9.3 Hz, 1H), 3.09 – 2.93 (m, 1H), 1.99 – 1.83 (m, 2H), 1.77 – 1.67 (m, 2H), 1.67 – 1.57 (m, 2H), 1.37 – 1.28 (m, 2H).

¹³**C** NMR (126 MHz, CDCl₃) δ 155.0 (d, $J_{C-F} = 244.9$ Hz), 131.8 (d, $J_{C-F} = 29.9$ Hz), 131.5 (d, $J_{C-F} = 1.9$ Hz), 125.4 (d, $J_{C-F} = 6.9$ Hz), 122.2, 112.2 (d, $J_{C-F} = 17.0$ Hz), 35.5 (d, $J_{C-F} = 3.7$ Hz), 33.6 (d, $J_{C-F} = 1.1$ Hz), 25.2.

¹⁹**F NMR** (471 MHz, CDCl₃) δ -122.2 (d, J = 37.6 Hz).

HRMS (ASAP) calcd for $C_{13}H_{14}BrF \ [M]^+: 268.0263$, Found: 268.0275.

(Z)-(3-Cyclopentyl-1-fluoroprop-1-en-1-yl)benzene (32)

Prepared following the general procedure (**condition A**): 2,6-dichloropyridinium tetrafluoroborate (0.2 mmol, 47 mg, 1.0 equiv), LiBF₄ (0.25 mmol, 4.7 mg, 0.25 equiv), dry CHCl₃ (1.0 mL), (3-cyclopentylprop-1-yn-1-yl)benzene (0.2 mmol, 37 mg, 1.0 equiv) at 70 °C. The reaction mixture was quenched after 6 h, and the crude residue was purified by flash column chromatography (hexanes) to provide the title compound **32**. Pale yellow oil (30 mg, 73% yield, Z/E > 50 : 1).

¹**H** NMR (500 MHz, CDCl₃) δ 7.53 – 7.47 (m, 2H), 7.38 – 7.32 (m, 2H), 7.30 (ddd, *J* = 7.3, 3.7, 1.3 Hz, 1H), 5.42 (dt, *J* = 37.5, 7.7 Hz, 1H), 2.29 (td, *J* = 7.5, 1.8 Hz, 2H), 2.00 – 1.89 (m, 1H), 1.85 – 1.73 (m, 2H), 1.70 – 1.59 (m, 2H), 1.59 – 1.49 (m, 2H), 1.28 – 1.17 (m, 2H).

¹³**C NMR** (126 MHz, CDCl₃) δ 156.7 (d, J_{CF} = 245.3 Hz), 132.9 (d, J_{CF} = 29.4 Hz), 128.4 (d, J_{CF} = 2.0 Hz), 128.2, 123.8 (d, J_{CF} = 6.9 Hz), 105.6 (d, J_{CF} = 17.7 Hz), 40.1 (d, J_{CF} = 1.5 Hz), 32.3, 30.1 (d, J_{CF} = 4.2 Hz), 25.2.

¹⁹**F NMR** (471 MHz, CDCl₃) δ -121.1 (d, J = 37.5 Hz).

HRMS (ASAP) calcd for $C_{14}H_{17}F \ [M]^+: 204.1314$, Found: 204.1326.

(Z)-4-(2-Fluoro-2-phenylvinyl)-1-tosylpiperidine (33)

Prepared following the general procedure (**condition A**): 2,6-dichloropyridinium tetrafluoroborate (0.2 mmol, 47 mg, 1.0 equiv), LiBF₄ (0.25 mmol, 4.7 mg, 0.25 equiv), dry CHCl₃ (1.0 mL), 4-(phenylethynyl)-1-tosylpiperidine (0.2 mmol, 68 mg, 1.0 equiv) at 70 °C. The reaction mixture was quenched after 6 h, and the crude residue was purified by flash column chromatography (hexanes/EtOAc = 10 : 1) to provide the title compound **33**. Pale yellow oil (43 mg, 60% yield, Z/E = 33 : 1).

¹**H NMR** (500 MHz, CDCl₃) δ 7.69 – 7.64 (m, 2H), 7.48 – 7.43 (m, 2H), 7.36 – 7.29 (m, 5H), 5.21 (dd, *J* = 37.2, 9.0 Hz, 1H), 3.79 (d, *J* = 11.7 Hz, 2H), 2.59 – 2.51 (m, 1H), 2.45 (s, 3H), 2.35 (td, *J* = 11.9, 2.4 Hz, 2H), 1.85 – 1.78 (m, 2H), 1.61 – 1.52 (m, 2H).

¹³**C** NMR (126 MHz, CDCl₃) δ 156.68 (d, $J_{C-F} = 247.7$ Hz), 143.5, 133.0, 132.1 (d, $J_{C-F} = 28.9$ Hz), 129.6, 128.8, 128.4 (d, $J_{C-F} = 1.8$ Hz), 127.7, 124.0 (d, $J_{C-F} = 7.0$ Hz), 109.0 (d, $J_{C-F} = 16.7$ Hz), 46.1, 31.4 (d, $J_{C-F} = 1.0$ Hz), 31.3 (d, $J_{C-F} = 4.4$ Hz), 21.5.

¹⁹**F NMR** (376 MHz, CDCl₃) δ (*E*): -99.1 (d, *J* = 21.6 Hz), (*Z*): -119.3 (d, *J* = 37.2 Hz). **HRMS** (ASAP) calcd for C₂₀H₂₃FNO₂S [M+H]⁺: 360.1434, Found: 360.1423.

(Z)-4-(2-Fluoro-2-phenylvinyl)tetrahydro-2H-pyran (34)

Prepared following the general procedure (condition A): 2,6-dichloropyridinium tetrafluoroborate (0.4

mmol, 94 mg, 1.0 equiv), dry CHCl₃ (1.0 mL), 4-(phenylethynyl)tetrahydro-2H-pyran (0.2 mmol, 37 mg, 1.0 equiv) and Et₂O•BF₃ (0.2 mmol, 25 μ L, 1.0 equiv) at 90 °C. The reaction mixture was quenched after 6 h, and the crude residue was purified by flash column chromatography (hexanes) to provide the title compound **34**. Pale yellow oil (26 mg, 64% yield, *Z/E* = 3.6 : 1).

¹**H NMR** (500 MHz, CDCl₃) δ 7.45 – 7.31 (m, 3H), 7.30 – 7.21 (m, 2H), 5.30 – 5.07 (m, 1H), 3.94 – 3.84 (m, 2H), 3.43 (td, *J* = 11.7, 1.7 Hz, 1.6H), 3.31 (td, *J* = 11.6, 1.9 Hz, 0.4H), 2.91 – 2.70 (m, 0.8H), 2.48 – 2.39 (m, 0.2H), 1.66 – 1.55 (m, 2H), 1.53 – 1.42 (m, 2H).

¹³**C** NMR (126 MHz, CDCl₃) δ 156.6 (d, *J*_{C-F} = 242.8 Hz), 156.2 (d, *J*_{C-F} = 247.0 Hz), 132.5 (d, *J*_{C-F} = 29.1 Hz), 132.0 (d, *J*_{C-F} = 29.9 Hz), 129.2 (d, *J*_{C-F} = 1.2 Hz), 128.6, 128.41 (d, *J*_{C-F} = 2.0 Hz), 128.36, 127.5 (d, *J*_{C-F} = 4.7 Hz), 123.9 (d, *J*_{C-F} = 7.1 Hz), 112.7 (d, *J*_{C-F} = 23.4 Hz), 110.0 (d, *J*_{C-F} = 16.7 Hz), 67.6, 67.3, 33.3 (d, *J*_{C-F} = 2.3 Hz), 32.7 (d, *J*_{C-F} = 1.3 Hz), 32.6 (d, *J*_{C-F} = 8.1 Hz), 31.2 (d, *J*_{C-F} = 4.3 Hz).

¹⁹**F NMR** (471 MHz, CDCl₃) δ (*E*): -100.9 (dd, *J* = 22.2, 1.7 Hz, 0.22F), (*Z*): -120.2 (d, *J* = 37.5 Hz, 0.79F).

HRMS (ESI) calcd for C13H16FO [M+H]+: 207.1180, Found: 207.1174.

(Z)-(1-Fluoroprop-1-ene-1,3-diyl)dibenzene (35)

Prepared following the general procedure (condition A): 2,6-dichloropyridinium tetrafluoroborate (0.2 mmol, 47 mg, 1.0 equiv), LiBF₄ (0.25 mmol, 4.7 mg, 0.25 equiv), dry CHCl₃ (1.0 mL), prop-1-yne-1,3-diyldibenzene (0.2 mmol, 39 mg, 1.0 equiv) at 70 °C. The reaction mixture was quenched after 6 h, and the crude residue was purified by flash column chromatography (hexanes) to provide the title compound **35**. Pale yellow oil (32 mg, 76% yield, Z/E > 50 : 1).

¹**H** NMR (500 MHz, CDCl₃) δ 7.54 (d, *J* = 7.1 Hz, 2H), 7.39 – 7.26 (m, 7H), 7.25 – 7.20 (m, 1H), 5.60 (dt, *J* = 36.3, 7.7 Hz, 1H), 3.65 (dd, *J* = 7.7, 1.1 Hz, 2H).

¹³C NMR (126 MHz, CDCl₃) δ 157.0 (d, $J_{C-F} = 247.5$ Hz), 140.2, 132.4 (d, $J_{C-F} = 29.0$ Hz), 128.6, 128.5, 128.43, 128.42, 126.2, 124.0 (d, $J_{C-F} = 7.0$ Hz), 104.9 (d, $J_{C-F} = 17.3$ Hz), 30.4 (d, $J_{C-F} = 5.8$ Hz). ¹⁹F NMR (471 MHz, CDCl₃) δ -121.0 (d, J = 36.3 Hz).

HRMS (ASAP) calcd for C15H13F [M]⁺: 212.1001, Found: 212.1008.

(3r,5r,7r)-1-((Z)-3-Fluoro-3-phenylallyl)adamantane (36)

Prepared following the general procedure (**condition A**): 2,6-dichloropyridinium tetrafluoroborate (0.2 mmol, 47 mg, 1.0 equiv), LiBF₄ (0.25 mmol, 4.7 mg, 0.25 equiv), dry CHCl₃ (1.0 mL), (3r,5r,7r)-1-(3-phenylprop-2-yn-1-yl)adamantane (0.2 mmol, 50 mg, 1.0 equiv) at 70 °C. The reaction mixture was quenched after 6 h, and the crude residue was purified by flash column chromatography (hexanes) to provide the title compound **36**. Pale yellow oil (36 mg, 67% yield, Z/E > 50 : 1).

¹**H** NMR (500 MHz, CDCl₃) δ 7.58 – 7.50 (m, 2H), 7.37 (t, *J* = 7.7 Hz, 2H), 7.34 – 7.29 (m, 1H), 5.48 (dt, *J* = 37.3, 8.2 Hz, 1H), 2.06 (dd, *J* = 8.2, 1.8 Hz, 2H), 1.98 (s, 3H), 1.72 (d, *J* = 12.1 Hz, 3H), 1.68 – 1.62 (m, 3H), 1.58 (d, *J* = 2.5 Hz, 6H).

¹³**C** NMR (126 MHz, CDCl₃) δ 157.3 (d, $J_{C-F} = 245.9$ Hz), 132.9 (d, $J_{C-F} = 29.6$ Hz), 128.4 (d, $J_{C-F} = 2.0$ Hz), 128.2, 123.9 (d, $J_{C-F} = 6.9$ Hz), 102.1 (d, $J_{C-F} = 17.4$ Hz), 42.3, 38.6 (d, $J_{C-F} = 3.3$ Hz), 37.1, 33.6 (d, $J_{C-F} = 1.6$ Hz), 28.7.

¹⁹**F NMR** (471 MHz, CDCl₃) δ -120.4 (d, *J* = 37.3 Hz).

HRMS (ASAP) calcd for $C_{19}H_{23}F$ [M]⁺: 270.1784, Found: 270.1774.

(Z)-(1-Fluoro-3-methyldec-1-en-1-yl)benzene (37)

Prepared following the general procedure (**condition A**): 2,6-dichloropyridinium tetrafluoroborate (0.2 mmol, 47 mg, 1.0 equiv), LiBF₄ (0.25 mmol, 4.7 mg, 0.25 equiv), dry CHCl₃ (1.0 mL), (3-methyldec-1-yn-1-yl)benzene (0.2 mmol, 46 mg, 1.0 equiv) at 70 °C. The reaction mixture was quenched after 6 h, and the crude residue was purified by flash column chromatography (hexanes) to provide the title compound **37**. Pale yellow oil (36 mg, 73% yield, Z/E > 50 : 1).

¹**H NMR** (500 MHz, CDCl₃) δ 7.54 – 7.48 (m, 2H), 7.36 (dd, J = 11.0, 4.4 Hz, 2H), 7.33 – 7.28 (m, 1H), 5.21 (dd, J = 37.8, 9.7 Hz, 1H), 2.88 – 2.74 (m, 1H), 1.44 – 1.22 (m, 12H), 1.08 (d, J = 6.8 Hz, 3H), 0.88 (t, J = 7.0 Hz, 3H).

¹³**C** NMR (126 MHz, CDCl₃) δ 155.8 (d, J_{CF} = 244.9 Hz), 132.9 (d, J_{CF} = 29.5 Hz), 128.3 (d, J_{CF} = 2.0 Hz), 128.2, 123.8 (d, J_{CF} = 7.0 Hz), 112.5 (d, J_{CF} = 17.4 Hz), 37.6 (d, J_{CF} = 1.4 Hz), 31.9, 29.7, 29.5 (d, J_{CF} = 3.9 Hz), 29.3, 27.5, 22.7, 21.1 (d, J_{CF} = 1.3 Hz), 14.1.

¹⁹**F NMR** (471 MHz, CDCl₃) δ -121.9 (d, J = 37.8 Hz).

HRMS (ASAP) calcd for C17H25F [M]+: 248.1940, Found: 248.1946.

(Z)-(1-Fluorohex-1-en-1-yl)benzene (38)

Prepared following the general procedure (**condition A**): 2,6-dichloropyridinium tetrafluoroborate (0.2 mmol, 47 mg, 1.0 equiv), LiBF₄ (0.25 mmol, 4.7 mg, 0.25 equiv), dry CHCl₃ (1.0 mL), hex-1-yn-1-ylbenzene (0.2 mmol, 32 mg, 1.0 equiv) at 70 °C. The reaction mixture was quenched after 6 h, and the crude residue was purified by flash column chromatography (hexanes) to provide the title compound **38**. Pale yellow oil (24 mg, 66% yield, Z/E > 50 : 1).

¹**H NMR** (500 MHz, CDCl₃) δ 7.52 – 7.47 (m, 2H), 7.35 (t, *J* = 7.7 Hz, 2H), 7.32 – 7.27 (m, 1H), 5.40 (dt, *J* = 37.6, 7.6 Hz, 1H), 2.33 – 2.25 (m, 2H), 1.49 – 1.34 (m, 4H), 0.93 (t, *J* = 7.2 Hz, 3H).

¹³**C** NMR (126 MHz, CDCl₃) δ 156.6 (d, J_{CF} = 245.3 Hz), 132.9 (d, J_{CF} = 29.4 Hz), 128.4 (d, J_{C-F} = 2.0 Hz), 128.2, 123.8 (d, J_{C-F} = 7.0 Hz), 106.3 (d, J_{C-F} = 17.8 Hz), 31.6 (d, J_{C-F} = 1.5 Hz), 23.8 (d, J_{C-F} = 4.9 Hz), 22.3, 13.9.

¹⁹**F NMR** (471 MHz, CDCl₃) δ -121.4 (d, J = 37.6 Hz).

HRMS (ASAP) calcd for C₁₂H₁₅F [M]⁺: 178.1158, Found: 178.1152.

(E)-(1-Fluorohex-1-en-1-yl)benzene (39)

Prepared following the general procedure (**condition B**): hex-1-yn-1-ylbenzene (0.2 mmol, 32 mg, 1.0 equiv), dry CHCl₃ (1.0 mL), HBF₄·Et₂O (27 μ L, 0.2 mmol, 1.0 equiv) at room temperature. The reaction mixture was quenched after 6 h, and the crude residue was purified by flash column chromatography (hexanes) to provide the title compound **39**. Pale yellow oil (14 mg, 40% yield, E/Z = 6:1).

¹**H** NMR (300 MHz, CDCl₃) δ 7.53 – 7.29 (m, 5H), 5.39 (dt, *J* = 22.8, 7.9 Hz, 1H), 2.20 (q, *J* = 7.0 Hz, 2H), 1.50 – 1.27 (m, 4H), 0.89 (t, *J* = 7.1 Hz, 3H).

¹³**C** NMR (126 MHz, CDCl₃) δ 156.5 (d, *J*_{C-F} = 239.4 Hz), 132.2 (d, *J*_{C-F} = 30.1 Hz), 128.8, 128.2, 127.6 (d, *J*_{C-F} = 5.0 Hz), 108.6 (d, *J*_{C-F} = 24.2 Hz), 32.3 (d, *J*_{C-F} = 1.7 Hz), 25.7 (d, *J*_{C-F} = 7.9 Hz), 22.2, 13.8.

¹⁹**F NMR** (282 MHz, CDCl₃) δ (*E*): -102.6 (d, *J* = 22.8 Hz), (*Z*): -121.4 (d, *J* = 37.5 Hz). **HRMS** (ASAP) calcd for C₁₂H₁₅**F** [M]⁺: 178.1163, Found: 178.1167.

(Z)-1-Bromo-4-(6-chloro-1-fluorohex-1-en-1-yl)benzene (40)

Prepared following the general procedure (condition A): 2,6-dichloropyridinium tetrafluoroborate (0.2 mmol, 47 mg, 1.0 equiv), LiBF₄ (0.25 mmol, 4.7 mg, 0.25 equiv), dry DCE (1.0 mL), 1-bromo-4-(6-chlorohex-1-yn-1-yl)benzene (0.2 mmol, 54 mg, 1.0 equiv) at 70 °C. The reaction mixture was quenched after 6 h, and the crude residue was purified by flash column chromatography (hexanes) to provide the title compound **40**. Pale yellow oil (39 mg, 67% yield, Z/E > 50 : 1).

¹**H** NMR (300 MHz, CDCl₃) δ 7.48 (d, *J* = 8.3 Hz, 2H), 7.35 (d, *J* = 8.6 Hz, 2H), 5.39 (dt, *J* = 36.9, 7.6 Hz, 1H), 3.57 (t, *J* = 6.6 Hz, 2H), 2.31 (qd, *J* = 7.5, 1.8 Hz, 2H), 1.93 – 1.76 (m, 2H), 1.70 – 1.55 (m, 2H).

¹³**C** NMR (126 MHz, CDCl₃) δ 156.3 (d, $J_{C-F} = 246.1$ Hz), 131.6 (d, $J_{C-F} = 2.0$ Hz), 131.4 (d, $J_{C-F} = 3.2$ Hz), 125.4 (d, $J_{C-F} = 6.9$ Hz), 122.5, 106.1 (d, $J_{C-F} = 17.6$ Hz), 44.8, 32.0, 26.5 (d, $J_{C-F} = 1.7$ Hz), 23.4 (d, $J_{C-F} = 4.9$ Hz).

¹⁹**F NMR** (471 MHz, CDCl₃) δ -120.6 (d, J = 36.9 Hz).

HRMS (ASAP) calcd for C12H13BrClF [M]⁺: 289.9873, Found: 289.9860.

Methyl (Z)-6-fluoro-6-phenylhex-5-enoate (41)

Prepared following the general procedure (**condition A**): 2,6-dichloropyridinium tetrafluoroborate (0.2 mmol, 47 mg, 1.0 equiv), LiBF₄ (0.25 mmol, 4.7 mg, 0.25 equiv), dry CHCl₃ (1.0 mL), methyl 6-phenylhex-5-ynoate (0.2 mmol, 40 mg, 1.0 equiv) at 70 °C. The reaction mixture was quenched after 12 h, and the crude residue was purified by flash column chromatography (hexanes/EtOAc = 10 : 1) to provide the title compound **41**. Pale yellow oil (23 mg, 52% yield, Z/E = 33 : 1).

¹**H** NMR (300 MHz, CDCl₃) δ 7.55 – 7.42 (m, 2H), 7.41 – 7.27 (m, 3H), 5.37 (dt, *J* = 37.0, 7.7 Hz, 1H), 3.67 (s, 3H), 2.47 – 2.25 (m, 4H), 1.88 – 1.75 (m, 2H).

¹³**C** NMR (101 MHz, CDCl₃) δ 173.9, 157.3 (d, *J* = 246.8 Hz), 132.5 (d, *J* = 29.1 Hz), 128.5, 128.4 (d, *J* = 2.0 Hz), 123.9 (d, *J* = 7.0 Hz), 104.8 (d, *J* = 17.6 Hz), 51.5, 33.4, 24.6 (d, *J* = 1.8 Hz), 23.5 (d, *J* = 5.1 Hz).

¹⁹**F NMR** (282 MHz, CDCl₃) δ (*E*): -100.6 (d, J = 22.1 Hz), (*Z*): -120.1 (d, J = 37.0 Hz). **HRMS** (ASAP) calcd for C₁₃H₁₆FO₂ [M+H]⁺: 223.1134, Found: 223.1122.

(Z)-5-Fluoro-5-phenylpent-4-enenitrile (42)

Prepared following the general procedure (**condition A**): 2,6-dichloropyridinium tetrafluoroborate (0.2 mmol, 47 mg, 1.0 equiv), LiBF₄ (0.25 mmol, 4.7 mg, 0.25 equiv), dry CHCl₃ (1.0 mL), 5-phenylpent-4-ynenitrile (0.2 mmol, 31 mg, 1.0 equiv) at 70 °C. The reaction mixture was quenched after 6 h, and the crude residue was purified by flash column chromatography (hexanes/EtOAc = 10 : 1) to provide the title compound **42**. Pale yellow oil (18 mg, 50% yield, Z/E > 50 : 1).

¹**H** NMR (400 MHz, CDCl₃) δ 7.60 – 7.46 (m, 2H), 7.45 – 7.30 (m, 3H), 5.47 (dt, *J* = 35.7, 7.5 Hz, 1H), 2.72 – 2.59 (m, 2H), 2.58 – 2.47 (m, 2H).

¹³**C NMR** (126 MHz, CDCl₃) δ 158.8 (d, $J_{C-F} = 250.7$ Hz), 131.6 (d, $J_{C-F} = 28.5$ Hz), 129.2, 128.5 (d, $J_{C-F} = 1.9$ Hz), 124.2 (d, $J_{C-F} = 7.1$ Hz), 119.1, 101.3 (d, $J_{C-F} = 16.9$ Hz), 20.5 (d, $J_{C-F} = 6.1$ Hz), 17.5 (d, $J_{C-F} = 2.2$ Hz).

¹⁹F NMR (376 MHz, CDCl₃) δ -116.4 (d, *J* = 35.7 Hz).

HRMS (APCI) calcd for C₁₁H₁₁FN [M+H]⁺: 176.0870, Found: 176.0865.

(Z)-5-Fluoro-5-phenylpent-4-en-1-yl nicotinate (43)

Prepared following the general procedure (condition A): 2,6-dichloropyridinium tetrafluoroborate (0.2 mmol, 47 mg, 1.0 equiv), Et₂O · BF₃ (0.2 mmol, 25 μ L, 1.0 equiv), dry CHCl₃ (1.0 mL), 5-phenylpent-4-yn-1-yl nicotinate (0.2 mmol, 53 mg, 1.0 equiv) at 70 °C. The reaction mixture was quenched after 6 h, and the crude residue was purified by flash column chromatography (hexanes/EtOAc = 5 : 1) to provide the title compound **43**. Pale yellow oil (19 mg, 33% yield, Z/E > 50 : 1).

¹**H** NMR (500 MHz, CDCl₃) δ 9.25 (d, J = 1.1 Hz, 1H), 8.77 (dd, J = 4.7, 1.3 Hz, 1H), 8.30 (dt, J = 7.9, 1.9 Hz, 1H), 7.49 (dd, J = 8.1, 1.1 Hz, 2H), 7.40 – 7.29 (m, 4H), 5.44 (dt, J = 36.8, 7.7 Hz, 1H), 4.43 (t, J = 6.5 Hz, 2H), 2.47 (qd, J = 7.6, 1.6 Hz, 2H), 2.02 – 1.92 (m, 2H).

¹³**C** NMR (126 MHz, CDCl₃) δ 165.3, 157.5 (d, J_{CF} = 247.3 Hz), 153.4, 150.9, 137.0, 132.4 (d, J_{CF} = 29.0 Hz), 128.6, 128.4 (d, J_{CF} = 1.9 Hz), 126.2, 123.9 (d, J_{CF} = 7.0 Hz), 123.2, 104.4 (d, J_{CF} = 17.6 Hz), 64.8, 28.4, 20.8 (d, J_{CF} = 5.5 Hz). ¹⁹**F** NMR (471 MHz, CDCl₃) δ -119.7 (d, J = 36.8 Hz). HRMS (ESI) calcd for C₁₇H₁₇FNO₂ [M+H]⁺: 286.1238 Found: 286.1229.

(Z)-2-(6-Fluoro-6-phenylhex-5-en-1-yl)isoindoline-1,3-dione (44)

Prepared following the general procedure (**condition A**): 2,6-dichloropyridinium tetrafluoroborate (0.2 mmol, 47 mg, 1.0 equiv), LiBF₄ (0.25 mmol, 4.7 mg, 0.25 equiv), dry CHCl₃ (1.0 mL), 2-(6-phenylhex-5-yn-1-yl)isoindoline-1,3-dione (0.2 mmol, 61 mg, 1.0 equiv) at 70 °C. The reaction mixture was quenched after 6 h, and the crude residue was purified by flash column chromatography (hexanes/EtOAc = 10 : 1) to provide the title compound **44**. Yellow solid (47 mg, 72% yield, Z/E > 50 : 1).

Gram scale: 2,6-dichloropyridinium tetrafluoroborate (16 mmol, 3.76 g, 2.0 equiv), dry CHCl₃ (80 mL), 2-(6-phenylhex-5-yn-1-yl)isoindoline-1,3-dione (8.0 mmol, 2.42 g, 1.0 equiv) at 80 °C. The reaction mixture was quenched after 12 h, and the crude residue was purified by flash column chromatography (hexanes/EtOAc = 10 : 1) to provide the title compound 44. Yellow solid (1.65g, 64% yield, Z/E > 20 : 1).

¹**H** NMR (500 MHz, CDCl₃) δ 7.84 (dd, *J* = 5.4, 3.0 Hz, 2H), 7.71 (dd, *J* = 5.4, 3.0 Hz, 2H), 7.54 – 7.41 (m, 2H), 7.39 – 7.26 (m, 3H), 5.37 (dt, *J* = 37.2, 7.6 Hz, 1H), 3.72 (t, *J* = 7.2 Hz, 2H), 2.33 (qd, *J* = 7.5, 1.7 Hz, 2H), 1.81 – 1.66 (m, 2H), 1.56 – 1.46 (m, 2H).

¹³**C** NMR (126 MHz, CDCl₃) δ 168.4, 157.0 (d, $J_{C-F} = 246.3$ Hz), 133.8, 132.62 (d, $J_{C-F} = 29.2$ Hz), 132.2, 128.37 (d, $J_{C-F} = 1.7$ Hz), 128.35 (d, $J_{C-F} = 2.0$ Hz), 123.9 (d, $J_{C-F} = 6.9$ Hz), 123.2, 105.4 (d, $J_{C-F} = 1.7$ Hz), 37.8, 28.2, 26.6, 23.7 (d, $J_{C-F} = 5.1$ Hz).

¹⁹**F NMR** (471 MHz, CDCl₃) δ -120.6 (d, J = 37.2 Hz).

HRMS (ESI) calcd for C₂₀H₁₉FNO₂ [M+H]⁺: 324.1394, Found: 324.1382.

(Z)-1-Chloro-3-(2-cyclopentyl-1-fluorovinyl)benzene (45)

Prepared following the general procedure (condition A): 2,6-dichloropyridinium tetrafluoroborate (0.2 mmol, 47 mg, 1.0 equiv), LiBF₄ (0.25 mmol, 4.7 mg, 0.25 equiv), dry CHCl₃ (1.0 mL), 1-chloro-3-(cyclopentylethynyl)benzene (0.2 mmol, 41 mg, 1.0 equiv) at 70 °C. The reaction mixture was quenched after 6 h, and the crude residue was purified by flash column chromatography (hexanes) to provide the title compound **45**. Pale yellow oil (35 mg, 79% yield, Z/E > 50 : 1).

¹**H** NMR (500 MHz, CDCl₃) δ 7.47 (s, 1H), 7.38 – 7.34 (m, 1H), 7.29 – 7.22 (m, 2H), 5.37 (dd, *J* = 37.4, 9.3 Hz, 1H), 3.08 – 2.94 (m, 1H), 1.98 – 1.87 (m, 2H), 1.76 – 1.68 (m, 2H), 1.67 – 1.57 (m, 2H), 1.38 – 1.28 (m, 2H).

¹³C NMR (126 MHz, CDCl₃) δ 154.6 (d, $J_{C-F} = 245.3$ Hz), 134.8, 134.5 (d, $J_{C-F} = 2.4$ Hz), 129.6 (d, $J_{C-F} = 2.0$ Hz), 128.2, 124.0 (d, $J_{C-F} = 7.4$ Hz), 121.9 (d, $J_{C-F} = 6.9$ Hz), 112.9 (d, $J_{C-F} = 16.8$ Hz), 35.5 (d, $J_{C-F} = 3.7$ Hz), 33.6 (d, $J_{C-F} = 1.3$ Hz), 25.2. ¹⁹F NMR (471 MHz, CDCl₃) δ -122.2 (d, J = 37.4 Hz). HRMS (ASAP) calcd for C₁₃H₁₄ClF [M]⁺: 224.0768, Found: 224.0757.

(Z)-1-(6-Chloro-1-fluorohex-1-en-1-yl)-2-methoxy-4-nitrobenzene (46)

Prepared following the general procedure (**condition D**): 2,6-dichloropyridinium tetrafluoroborate (0.4 mmol, 94 mg, 2.0 equiv), dry DCE (2.0 mL), 1-(6-chlorohex-1-yn-1-yl)-2-methoxy-4-nitrobenzene (0.2 mmol, 53 mg, 1.0 equiv) at 70 °C. The reaction mixture was quenched after 12 h, and the crude residue was purified by flash column chromatography (hexanes/EtOAc = 10 : 1) to provide the title compound **46**. Pale yellow oil (28 mg, 49% yield, Z/E = 13 : 1)

¹**H NMR** (500 MHz, CDCl₃) δ 7.86 (dd, *J* = 8.6, 2.1 Hz, 1H), 7.80 – 7.76 (m, 1H), 7.65 (d, *J* = 8.6 Hz, 1H), 6.04 (dt, *J* = 39.7, 7.7 Hz, 1H), 4.00 (s, 3H), 3.58 (t, *J* = 6.6 Hz, 2H), 2.38 (qd, *J* = 7.5, 1.7 Hz, 2H), 1.89 – 1.82 (m, 2H), 1.70 – 1.61 (m, 2H).

¹³**C NMR** (126 MHz, CDCl₃) δ 156.5 (d, $J_{C-F} = 5.6$ Hz), 152.0 (d, $J_{C-F} = 242.9$ Hz), 147.8, 127.2 (d, $J_{C-F} = 28.7$ Hz), 127.0 (d, $J_{C-F} = 11.2$ Hz), 115.7 (d, $J_{C-F} = 1.6$ Hz), 115.2 (d, $J_{C-F} = 15.6$ Hz), 106.0 (d, $J_{C-F} = 2.5$ Hz), 56.1, 44.8, 32.1, 26.4 (d, $J_{C-F} = 1.5$ Hz), 23.9 (d, $J_{C-F} = 6.4$ Hz).

¹⁹**F NMR** (471 MHz, CDCl₃) δ (*E*): -98.15 (d, *J* = 19.6 Hz), (*Z*): -114.11 (d, *J* = 39.8 Hz). **HRMS** (APCI) calcd for C1₃H₁₅CIFNO₃ [M]⁺: 287.0719, Found: 287.0715.

(Z)-1,3-Di-tert-butyl-5-(1-fluoroprop-1-en-1-yl)benzene (47)

Prepared following the general procedure (**condition A**): 2,6-dichloropyridinium tetrafluoroborate (0.2 mmol, 47 mg, 1.0 equiv), LiBF₄ (0.25 mmol, 4.7 mg, 0.25 equiv), dry CHCl₃ (1.0 mL), 1,3-di-*tert*-butyl-5-(prop-1-yn-1-yl)benzene (0.2 mmol, 46 mg, 1.0 equiv) at 70 °C. The reaction mixture was quenched after 6 h, and the crude residue was purified by flash column chromatography (hexanes) to provide the title compound **47**. Pale yellow oil (26 mg, 52% yield, Z/E > 50 : 1).

¹**H NMR** (500 MHz, CDCl₃) δ 7.39 (t, *J* = 1.8 Hz, 1H), 7.34 (d, *J* = 1.7 Hz, 2H), 5.41 (dq, *J* = 37.3, 7.0 Hz, 1H), 1.82 (dd, *J* = 7.0, 2.4 Hz, 3H), 1.34 (s, 18H).

¹³**C** NMR (126 MHz, CDCl₃) δ 158.3 (d, $J_{C-F} = 246.1$ Hz), 150.8 (d, $J_{C-F} = 1.6$ Hz), 132.2 (d, $J_{C-F} = 28.0$ Hz), 122.6, 118.2 (d, $J_{C-F} = 6.6$ Hz), 100.1 (d, $J_{C-F} = 18.6$ Hz), 34.9, 31.4, 9.4 (d, $J_{C-F} = 6.8$ Hz). ¹⁹**F** NMR (471 MHz, CDCl₃) δ -120.0 (dd, J = 37.3, 2.2 Hz).

HRMS (ASAP) calcd for C17H26F [M+H]+: 249.2019, Found: 249.2025.

(Z)-1-(1-Fluoroprop-1-en-1-yl)naphthalene (48)

Prepared following the general procedure (**condition A**): 2,6-dichloropyridinium tetrafluoroborate (0.2 mmol, 47 mg, 1.0 equiv), LiBF₄ (0.25 mmol, 4.7 mg, 0.25 equiv), dry CHCl₃ (1.0 mL), 1-(prop-1-yn-1-yl)naphthalene (0.2 mmol, 33 mg, 1.0 equiv) at 70 °C. The reaction mixture was quenched after 6 h, and the crude residue was purified by flash column chromatography (hexanes) to provide the title compound **48**. Pale yellow oil (18 mg, 47% yield, Z/E > 50 : 1).

¹**H NMR** (500 MHz, CDCl₃) δ 8.10 (m, 1H), 7.86 – 7.74 (m, 2H), 7.49 – 7.40 (m, 3H), 7.40 – 7.34 (m, 1H), 5.15 (dq, *J* = 36.0, 7.0 Hz, 1H), 1.83 (dd, *J* = 7.0, 2.5 Hz, 3H).

¹³**C NMR** (126 MHz, CDCl₃) δ 158.1 (d, $J_{C-F} = 249.7$ Hz), 133.6, 131.5 (d, $J_{C-F} = 26.1$ Hz), 131.0, 129.6, 128.3, 127.0 (d, $J_{C-F} = 4.5$ Hz), 126.5, 126.0, 125.7 (d, $J_{C-F} = 4.3$ Hz), 125.0, 105.6 (d, $J_{C-F} = 18.4$ Hz), 9.7 (d, $J_{C-F} = 5.4$ Hz).

¹⁹F NMR (471 MHz, CDCl₃) δ -102.4 (d, J = 36.2 Hz).

HRMS (ASAP) calcd for $C_{13}H_{12}F$ [M+H]⁺: 187.0923, Found: 187.0934.

(Z)-(2-Fluoro-2-phenylvinyl)cyclododecane (49)

Prepared following the general procedure (**condition A**): 2,6-dichloropyridinium tetrafluoroborate (0.2 mmol, 47 mg, 1.0 equiv), LiBF₄ (0.25 mmol, 4.7 mg, 0.25 equiv), dry CHCl₃ (1.0 mL), (phenylethynyl)cyclododecane (0.2 mmol, 54 mg, 1.0 equiv) at 70 °C. The reaction mixture was quenched after 6 h, and the crude residue was purified by flash column chromatography (hexanes) to provide the title compound **49**. Pale yellow oil (36 mg, 62% yield, Z/E > 50 : 1).

¹**H** NMR (500 MHz, CDCl₃) δ 7.54 – 7.49 (m, 2H), 7.36 (t, *J* = 7.7 Hz, 2H), 7.33 – 7.28 (m, 1H), 5.26 (dd, *J* = 37.8, 9.8 Hz, 1H), 2.97 – 2.85 (m, 1H), 1.62 (td, *J* = 13.1, 6.4 Hz, 2H), 1.54 – 1.49 (m, 2H), 1.47 – 1.25 (m, 18H).

¹³**C** NMR (126 MHz, CDCl₃) δ 155.8 (d, $J_{C-F} = 244.6$ Hz), 132.9 (d, $J_{C-F} = 29.6$ Hz), 128.3 (d, $J_{C-F} = 2.0$ Hz), 128.2, 123.8 (d, $J_{C-F} = 7.0$ Hz), 112.0 (d, $J_{C-F} = 17.5$ Hz), 30.6 (d, $J_{C-F} = 1.0$ Hz), 29.6 (d, $J_{C-F} = 3.1$ Hz), 23.9, 23.8, 23.5, 23.3, 22.6.

¹⁹**F NMR** (471 MHz, CDCl₃) δ -121.7 (d, J = 37.8 Hz).

HRMS (ASAP) calcd for C₂₀H₂₉F [M]⁺: 288.2253, Found: 288.2251.

(Z)-6-Fluorododec-6-ene (50)

Prepared following the general procedure (**condition A**): 2,6-dichloropyridinium tetrafluoroborate (0.2 mmol, 47 mg, 1.0 equiv), LiBF₄ (0.25 mmol, 4.7 mg, 0.25 equiv), dry CHCl₃ (1.0 mL), dodec-6-yne (0.2 mmol, 33 mg, 1.0 equiv) at 70 °C. The reaction mixture was quenched after 6 h, and the crude residue was purified by flash column chromatography (hexanes) to provide the title compound **50** with spectral properties identical to the reported in the literature^[2]. Pale yellow oil (26 mg, 70% yield, Z/E/ gem-difluoroalkane = 4 : 1 : 3).

¹**H** NMR (400 MHz, CDCl₃) δ 4.99 (dt, *J* = 22.4, 7.9 Hz, 0.2H), 4.45 (dt, *J* = 38.3, 7.4 Hz, 0.8H), 2.26 – 2.18 (m, 0.4H), 2.16 – 2.08 (m, 1.6H), 2.07 – 2.00 (m, 1.6H), 1.93 – 1.88 (m, 0.4H), 1.52 – 1.44 (m, 2H), 1.35 – 1.28 (m, 10H), 0.91 – 0.87 (m, 6H).

¹⁹**F NMR** (376 MHz, CDCl₃) δ (*gem*-difluoroalkane): -97.6 (p, *J* = 16.7 Hz), (*E*): -105.3 (qd, *J* = 23.1, 5.7 Hz), (*Z*): -110.1 - -110.4 (m).

(E)-(2-Chloro-1-fluorovinyl)benzene (51)

Prepared following the general procedure (**condition C**): 2,6-dichloropyridinium tetrafluoroborate (0.6 mmol, 141 mg, 3.0 equiv), dry CHCl₃ (3.0 mL), (chloroethynyl)benzene (0.2 mmol, 27 mg, 1.0 equiv) at 100 °C. The reaction mixture was quenched after 12 h, and the crude residue was purified by flash column chromatography (hexanes) to provide the title compound **51** with spectral properties identical to the reported in the literature^[3]. Pale yellow oil (5 mg, 16% yield, E/Z > 50 : 1).

¹**H** NMR (400 MHz, CDCl₃) δ 7.85 – 7.78 (m, 2H), 7.45 – 7.40 (m, 3H), 6.26 (d, J = 13.4 Hz, 1H). ¹⁹**F** NMR (376 MHz, CDCl₃) δ -110.48 (d, J = 13.3 Hz).

(E)-(2-Bromo-1-fluorovinyl)benzene (52)

Prepared following the general procedure (**condition C**): 2,6-dichloropyridinium tetrafluoroborate (0.6 mmol, 141 mg, 3.0 equiv), dry CHCl₃ (3.0 mL), (bromoethynyl)benzene (0.2 mmol, 36 mg, 1.0 equiv) at 100 °C. The reaction mixture was quenched after 12 h, and the crude residue was purified by flash column chromatography (hexanes) to provide the title compound **52** with spectral properties identical to the reported in the literature^[4]. Pale yellow oil (16 mg, 41% yield, E/Z > 50 : 1).

¹H NMR (400 MHz, CDCl₃) δ 7.87 – 7.78 (m, 2H), 7.45 – 7.41 (m, 3H), 6.24 (d, J = 15.8 Hz, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -96.20 (d, J = 15.7 Hz).

(E)-(1-Fluoro-2-iodovinyl)benzene (53)

Prepared following the general procedure (condition C): 2,6-dichloropyridinium tetrafluoroborate (0.6

mmol, 141 mg, 3.0 equiv), dry CHCl₃ (3.0 mL), (iodoethynyl)benzene (0.2 mmol, 46 mg, 1.0 equiv) at 100 °C. The reaction mixture was quenched after 12 h, and the crude residue was purified by flash column chromatography (hexanes) to provide the title compound **53** with spectral properties identical to the reported in the literature^[5]. Pale yellow oil (36 mg, 73% yield, E/Z > 50 : 1).

¹**H** NMR (400 MHz, CDCl₃) δ 7.84 – 7.77 (m, 2H), 7.46 – 7.39 (m, 3H), 6.14 (d, J = 19.5 Hz, 1H). ¹³**C** NMR (101 MHz, CDCl₃) δ 158.9 (d, $J_{CF} = 256.1$ Hz), 131.1 (d, $J_{CF} = 28.6$ Hz), 130.2 (d, $J_{C-F} = 1.2$ Hz), 128.6 (d, $J_{C-F} = 5.2$ Hz), 128.2, 53.8 (d, $J_{C-F} = 44.7$ Hz). ¹⁹**F** NMR (376 MHz, CDCl₃) δ -75.9 (d, J = 19.5 Hz).

(E)-(3-Fluoro-4-iodobut-3-en-1-yl)benzene (54)

Prepared following the general procedure (**condition C**): 2,6-dichloropyridinium tetrafluoroborate (0.6 mmol, 141 mg, 3.0 equiv), dry CHCl₃ (3.0 mL), (4-iodobut-3-yn-1-yl)benzene (0.2 mmol, 51 mg, 1.0 equiv) at 100 °C. The reaction mixture was quenched after 12 h, and the crude residue was purified by flash column chromatography (hexanes) to provide the title compound **54** with spectral properties identical to the reported in the literature^[5]. Pale yellow oil (18 mg, 32% yield, E/Z > 50 : 1).

¹**H NMR** (500 MHz, CDCl₃) δ 7.34 – 7.28 (m, 2H), 7.25 – 7.20 (m, 3H), 5.71 (d, *J* = 17.6 Hz, 1H), 2.89 – 2.76 (m, 4H).

¹⁹F NMR (471 MHz, CDCl₃) δ -82.4 (td, J = 21.3, 17.8 Hz).

Ethyl (E)-3-fluoro-3-phenylacrylate (55)

Prepared following the general procedure (**condition C**): 2,6-dichloropyridinium tetrafluoroborate (0.6 mmol, 141 mg, 3.0 equiv), dry CHCl₃ (3.0 mL), ethyl 3-phenylpropiolate (0.2 mmol, 35 mg, 1.0 equiv) at 100 °C. The reaction mixture was quenched after 12 h, and the crude residue was purified by flash column chromatography (hexanes/EtOAc = 10 : 1) to provide the title compound **55** with spectral properties identical to the reported in the literature^[6]. Pale yellow oil (14 mg, 36% yield, E/Z > 50 : 1). ¹**H NMR** (300 MHz, CDCl₃) δ 7.73 – 7.66 (m, 2H), 7.50 – 7.43 (m, 3H), 5.86 (d, *J* = 20.6 Hz, 1H), 4.13 (q, *J* = 7.1 Hz, 2H), 1.21 (t, *J* = 7.1 Hz, 3H). ¹⁹**F NMR** (282 MHz, CDCl₃) δ -7.6.3 (d, *J* = 20.6 Hz).

(5,5-Difluorohexyl)benzene (56)

Prepared following the general procedure (condition C): 2,6-dichloropyridinium tetrafluoroborate (0.6 mmol, 141 mg, 3.0 equiv), dry CHCl₃ (3.0 mL), hex-5-yn-1-ylbenzene (0.2 mmol, 32 mg, 1.0 equiv) at

80 °C. The reaction mixture was quenched after 12 h, and the crude residue was purified by flash column chromatography (hexanes) to provide the title compound **56** with spectral properties identical to the reported in the literature^[7]. Pale yellow oil (20 mg, 51% yield).

¹**H** NMR (500 MHz, CDCl₃) δ 7.31 – 7.26 (m, 2H), 7.22 – 7.16 (m, 3H), 2.64 (t, *J* = 7.5 Hz, 2H), 1.93 – 1.80 (m, 2H), 1.73 – 1.63 (m, 2H), 1.63 – 1.44 (m, 5H).

¹³**C** NMR (126 MHz, CDCl₃) δ 142.1, 128.35, 128.32, 125.8, 124.3 (t, $J_{C-F} = 237.6$ Hz), 37.8 (t, $J_{C-F} = 25.4$ Hz), 35.7, 31.1, 23.2 (t, $J_{C-F} = 28.1$ Hz), 22.4 (t, $J_{C-F} = 4.7$ Hz).

¹⁹**F NMR** (471 MHz, CDCl₃) δ -90.2 - -90.5 (m, 2F).

2-(5,5-Difluorohexyl)isoindoline-1,3-dione (57)

Prepared following the general procedure (**condition C**): 2,6-dichloropyridinium tetrafluoroborate (0.6 mmol, 141 mg, 3.0 equiv), dry CHCl₃ (3.0 mL), 2-(hex-5-yn-1-yl)isoindoline-1,3-dione (0.2 mmol, 45 mg, 1.0 equiv) at 80 °C. The reaction mixture was quenched after 12 h, and the crude residue was purified by flash column chromatography (hexanes/EtOAc = 10 : 1) to provide the title compound 57. Pale yellow oil (36 mg, 67% yield).

¹**H** NMR (500 MHz, CDCl₃) δ 7.87 – 7.81 (m, 2H), 7.74 – 7.69 (m, 2H), 3.70 (t, *J* = 7.2 Hz, 2H), 1.96 – 1.83 (m, 2H), 1.78 – 1.68 (m, 2H), 1.61 – 1.48 (m, 5H).

¹³C NMR (126 MHz, CDCl₃) δ 168.4, 133.9, 132.1, 124.0 (t, $J_{C-F} = 237.8$ Hz), 123.2, 37.5, 37.4 (t, $J_{C-F} = 25.6$ Hz), 28.2, 23.2 (t, $J_{C-F} = 28.0$ Hz), 20.0 (t, $J_{C-F} = 4.8$ Hz).

 ^{19}F NMR (471 MHz, CDCl₃) δ -90.6 – -90.9 (m, 2F).

HRMS (ESI) calcd for C14H16F2NO2 [M+H]+: 268.1144, Found: 268.1142.

4,4-Difluoropentyl thiophene-2-carboxylate (58)

O,

Prepared following the general procedure (**condition C**): 2,6-dichloropyridinium tetrafluoroborate (0.6 mmol, 141 mg, 3.0 equiv), dry CHCl₃ (3.0 mL), pent-4-yn-1-yl thiophene-2-carboxylate (0.2 mmol, 39 mg, 1.0 equiv) at 80 °C. The reaction mixture was quenched after 12 h, and the crude residue was purified by flash column chromatography (hexanes/EtOAc = 10 : 1) to provide the title compound **58** with spectral properties identical to the reported in the literature^[7]. Pale yellow oil (29 mg, 62% yield). ¹**H NMR** (500 MHz, CDCl₃) δ 7.81 (dd, *J* = 3.7, 1.2 Hz, 1H), 7.56 (dd, *J* = 5.0, 1.1 Hz, 1H), 7.11 (dd, *J* = 4.9, 3.8 Hz, 1H), 4.34 (t, *J* = 6.0 Hz, 2H), 2.05 – 1.92 (m, 4H), 1.63 (t, *J* = 18.4 Hz, 3H). ¹³**C NMR** (126 MHz, CDCl₃) δ 162.1, 133.7, 133.5, 132.4, 127.8, 123.8 (t, *J*_{C-F} = 238.0 Hz), 64.3, 34.6 (t, *J*_{C-F} = 26.1 Hz), 23.4 (t, *J*_{C-F} = 27.9 Hz), 22.2 (t, *J*_{C-F} = 4.7 Hz).

¹⁹F NMR (471 MHz, CDCl₃) δ -91.2 - -91.4 (m, 2F).

1-(1-(4,4-Difluoropentyl)-1H-indol-3-yl)ethan-1-one (59)

Prepared following the general procedure (**condition C**): 2,6-dichloropyridinium tetrafluoroborate (0.6 mmol, 141 mg, 3.0 equiv), dry CHCl₃ (3.0 mL), 1-(1-(pent-4-yn-1-yl)-1H-indol-3-yl)ethan-1-one (0.2 mmol, 45 mg, 1.0 equiv) at 80 °C. The reaction mixture was quenched after 12 h, and the crude residue was purified by flash column chromatography (hexanes/EtOAc = 10 : 1) to provide the title compound **59** with spectral properties identical to the reported in the literature^[7]. Pale yellow oil (39 mg, 73% yield).

¹**H NMR** (500 MHz, CDCl₃) δ 8.45 – 8.33 (m, 1H), 7.73 (s, 1H), 7.39 – 7.26 (m, 3H), 4.23 (t, *J* = 7.1 Hz, 2H), 2.53 (s, 3H), 2.18 – 2.06 (m, 2H), 1.94 – 1.79 (m, 2H), 1.59 (t, *J* = 18.4 Hz, 3H).

¹³**C** NMR (126 MHz, CDCl₃) δ 192.9, 136.6, 134.44, 126.4, 123.6 (t, $J_{C-F} = 238.4$ Hz), 123.4, 122.7, 122.6, 117.3, 109.6, 46.3, 34.8 (t, $J_{C-F} = 25.9$ Hz), 27.6, 23.6 (t, $J_{C-F} = 27.8$ Hz), 23.1 (t, $J_{C-F} = 4.1$ Hz). ¹⁹**F** NMR (471 MHz, CDCl₃) δ -91.2 - -91.4 (m, 2F).

(4,4-Difluoropentyloxy)carbonyl ferrocene (60)

Prepared following the general procedure (**condition C**): 2,6-dichloropyridinium tetrafluoroborate (0.6 mmol, 141 mg, 3.0 equiv), dry CHCl₃ (3.0 mL), (pent-4-yn-1-yloxy)carbonyl ferrocene (0.2 mmol, 59 mg, 1.0 equiv) at 80 °C. The reaction mixture was quenched after 12 h, and the crude residue was purified by flash column chromatography (hexanes/EtOAc = 10 : 1) to provide the title compound **60**. Pale yellow oil (32 mg, 48% yield).

¹**H NMR** (500 MHz, CDCl₃) δ 4.81 (s, 2H), 4.40 (s, 2H), 4.26 (t, *J* = 6.2 Hz, 2H), 4.20 (s, 5H), 2.08 – 1.97 (m, 2H), 1.97 – 1.90 (m, 2H), 1.65 (t, *J* = 18.3 Hz, 3H).

¹³**C NMR** (126 MHz, CDCl₃) δ 171.6, 123.9 (t, *J*_{C-F} = 237.9 Hz), 71.3, 71.1, 70.1, 69.7, 63.3, 34.7 (t, *J*_{C-F} = 26.0 Hz), 23.5 (t, *J*_{C-F} = 28.0 Hz), 22.4 (t, *J*_{C-F} = 4.7 Hz).

¹⁹F NMR (471 MHz, CDCl₃) δ -91.0 – -91.3 (m, 2F).

HRMS (APCI) calcd for C₁₆H₁₉F₂FeO₂ [M+H]⁺: 337.0697, Found: 337.0681.

(1-Fluorovinyl)benzene (61)

Prepared following the general procedure (condition A): 2,6-dichloropyridinium tetrafluoroborate (0.2 mmol, 47 mg, 1.0 equiv), LiBF₄ (0.25 mmol, 4.7 mg, 0.25 equiv), dry CHCl₃ (1.0 mL), phenylacetylene (0.2 mmol, 21 mg, 1.0 equiv) at 70 °C. The reaction mixture was quenched after 6 h,

and the crude residue was purified by flash column chromatography (hexanes) to provide the title compound **61** with spectral properties identical to the reported in the literature^[12]. Pale yellow oil (9 mg, 35% yield).

¹**H NMR** (300 MHz, CDCl₃) δ 7.60 – 7.52 (m, 2H), 7.40 – 7.31 (m, 3H), 5.03 (dd, *J* = 49.8, 3.5 Hz, 1H), 4.84 (dd, *J* = 17.9, 3.5 Hz, 1H).

¹⁹F NMR (282 MHz, CDCl₃) δ -107.9 (dd, *J* = 49.7, 17.9 Hz).

1-(1-Fluorovinyl)-4-methylbenzene (62)

Prepared following the general procedure (**condition A**): 2,6-dichloropyridinium tetrafluoroborate (0.2 mmol, 47 mg, 1.0 equiv), LiBF₄ (0.25 mmol, 4.7 mg, 0.25 equiv), dry CHCl₃ (1.0 mL), 4-ethynyltoluene (0.2 mmol, 23 mg, 1.0 equiv) at 40 °C. The reaction mixture was quenched after 1 h, and the crude residue was purified by flash column chromatography (hexanes) to provide the title compound **62** with spectral properties identical to the reported in the literature^[8]. Pale yellow oil (7 mg, 27% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.43 (d, J = 8.1 Hz, 2H), 7.16 (d, J = 8.0 Hz, 2H), 4.96 (dd, J = 50.0, 3.4 Hz, 1H), 4.77 (dd, J = 18.0, 3.4 Hz, 1H), 2.35 (s, 3H).
¹⁹F NMR (376 MHz, CDCl₃) δ -107.7 (dd, J = 50.1, 18.0 Hz).

1-Fluoro-2-(1-fluorovinyl)benzene (63)

Prepared following the general procedure (**condition A**): 2,6-dichloropyridinium tetrafluoroborate (0.2 mmol, 47 mg, 1.0 equiv), LiBF₄ (0.25 mmol, 4.7 mg, 0.25 equiv), dry CHCl₃ (1.0 mL), 2-fluorophenylacetylene (0.2 mmol, 24 mg, 1.0 equiv) at 70 °C. The reaction mixture was quenched after 6 h, and the crude residue was purified by flash column chromatography (hexanes) to provide the title compound **63** with spectral properties identical to the reported in the literature^[9]. Pale yellow oil (15 mg, 52% yield).

¹**H NMR** (500 MHz, CDCl₃) δ 7.57 (td, *J* = 7.8, 1.5 Hz, 1H), 7.38 – 7.29 (m, 1H), 7.18 (t, *J* = 7.6 Hz, 1H), 7.11 (dd, *J* = 11.5, 8.3 Hz, 1H), 5.26 (dd, *J* = 52.1, 3.3 Hz, 1H), 5.11 (dt, *J* = 19.9, 3.0 Hz, 1H).

¹³**C NMR** (126 MHz, CDCl₃) δ 159.8 (dd, $J_{C-F} = 252.9$, 5.9 Hz), 157.3 (dd, $J_{C-F} = 247.1$, 4.6 Hz), 130.6 (d, $J_{C-F} = 8.7$ Hz), 127.2 (dd, $J_{C-F} = 8.4$, 2.0 Hz), 124.1 (dd, $J_{C-F} = 3.7$, 1.1 Hz), 120.1 (dd, $J_{C-F} = 31.2$, 11.0 Hz), 116.1 (dd, $J_{C-F} = 22.5$, 2.8 Hz), 95.6 (dd, $J_{C-F} = 21.0$, 13.0 Hz).

¹⁹**F NMR** (471 MHz, CDCl₃) δ -103.6 (ddd, J = 52.3, 19.9, 6.7 Hz, 1F), -112.0 - -112.1 (m, 1F).

1-Chloro-2-(1-fluorovinyl)benzene (64)

Prepared following the general procedure (**condition A**): 2,6-dichloropyridinium tetrafluoroborate (0.2 mmol, 47 mg, 1.0 equiv), LiBF₄ (0.25 mmol, 4.7 mg, 0.25 equiv), dry CHCl₃ (1.0 mL), 2-chlorophenylacetylene (0.2 mmol, 27 mg, 1.0 equiv) at 70 °C. The reaction mixture was quenched after 6 h, and the crude residue was purified by flash column chromatography (hexanes) to provide the title compound **64** with spectral properties identical to the reported in the literature^[10]. Pale yellow oil (18 mg, 58% yield).

¹**H** NMR (500 MHz, CDCl₃) δ 7.52 (dd, *J* = 7.1, 2.4 Hz, 1H), 7.43 (dd, *J* = 7.0, 1.5 Hz, 1H), 7.34 – 7.27 (m, 2H), 5.14 (q, 3.3 Hz, 1H), 5.07 (dd, *J* = 37.6, 3.3 Hz, 1H).

¹³C NMR (126 MHz, CDCl₃) δ 160.5 (d, J = 252.0 Hz), 132.2 (d, J = 2.1 Hz), 131.4 (d, J = 28.3 Hz), 130.5, 130.4 (d, J = 0.7 Hz), 129.8 (d, J = 5.6 Hz), 126.7, 95.9 (d, J = 21.8 Hz). ¹⁹F NMR (471 MHz, CDCl₃) δ -93.6 (dd, J = 49.1, 17.9 Hz).

1-Bromo-2-(1-fluorovinyl)benzene (65)

Prepared following the general procedure (**condition A**): 2,6-dichloropyridinium tetrafluoroborate (0.2 mmol, 47 mg, 1.0 equiv), LiBF₄ (0.25 mmol, 4.7 mg, 0.25 equiv), dry CHCl₃ (1.0 mL), 1-bromo-2-ethynylbenzene (0.2 mmol, 36 mg, 1.0 equiv) at 70 °C. The reaction mixture was quenched after 6 h, and the crude residue was purified by flash column chromatography (hexanes) to provide the title compound **65** with spectral properties identical to the reported in the literature^[11]. Pale yellow oil (22 mg, 54% yield).

¹**H NMR** (500 MHz, CDCl₃) δ 7.63 (d, *J* = 8.0 Hz, 1H), 7.48 (dd, *J* = 7.7, 1.4 Hz, 1H), 7.33 (tt, *J* = 7.7, 1.0 Hz, 1H), 7.26 – 7.21 (m, 1H), 5.09 (dd, *J* = 16.4, 3.3 Hz, 1H), 4.97 (dd, *J* = 48.4, 3.3 Hz, 1H).

¹³**C** NMR (126 MHz, CDCl₃) δ 161.8 (d, $J_{C-F} = 253.6$ Hz), 133.7 (d, $J_{C-F} = 29$ Hz, partially superimposed with resonance at 133.6), 133.6, 130.7 (d, $J_{C-F} = 1.1$ Hz), 130.5 (d, $J_{C-F} = 4.4$ Hz), 127.2, 121.5, 95.6 (d, $J_{C-F} = 21.6$ Hz).

¹⁹F NMR (471 MHz, CDCl₃) δ -91.48 (dd, *J* = 48.4, 16.4 Hz).
 ¹³C NMR (126 MHz, CDCl₃) δ 133.74.

1-Fluoro-4-(1-fluorovinyl)benzene (66)

Prepared following the general procedure (condition A): 2,6-dichloropyridinium tetrafluoroborate (0.2 mmol, 47 mg, 1.0 equiv), LiBF₄ (0.25 mmol, 4.7 mg, 0.25 equiv), dry CHCl₃ (1.0 mL), 4-fluorophenylacetylene (0.2 mmol, 24 mg, 1.0 equiv) at 70 °C. The reaction mixture was quenched after 6 h, and the crude residue was purified by flash column chromatography (hexanes) to provide the

title compound **66** with spectral properties identical to the reported in the literature^[8]. Pale yellow oil (12 mg, 42% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.53 (dd, J = 8.8, 5.2 Hz, 2H), 7.06 (t, J = 8.8 Hz, 2H), 4.96 (dd, J = 49.7, 3.6 Hz, 1H), 4.83 (dd, J = 17.9, 3.6 Hz, 1H).

¹⁹**F NMR** (376 MHz, CDCl₃) δ -107.0 (dd, J = 49.7, 17.9 Hz, 1F), -111.5 - -111.6 (m, 1F).

1-Chloro-4-(1-fluorovinyl)benzene (67)

Prepared following the general procedure (**condition A**): 2,6-dichloropyridinium tetrafluoroborate (0.2 mmol, 47 mg, 1.0 equiv), LiBF₄ (0.25 mmol, 4.7 mg, 0.25 equiv), dry CHCl₃ (1.0 mL), 4-chlorophenylacetylene (0.2 mmol, 28 mg, 1.0 equiv) at 70 °C. The reaction mixture was quenched after 6 h, and the crude residue was purified by flash column chromatography (hexanes) to provide the title compound **67** with spectral properties identical to the reported in the literature^[8]. Pale yellow oil (17 mg, 55% yield).

¹**H NMR** (500 MHz, CDCl₃) δ 7.48 (d, *J* = 8.6 Hz, 2H), 7.35 (d, *J* = 8.3 Hz, 2H), 5.02 (dd, *J* = 49.4, 3.7 Hz, 1H), 4.87 (dd, *J* = 17.7, 3.6 Hz, 1H).

¹³C NMR (126 MHz, CDCl₃) δ 162.0 (d, $J_{C-F} = 249.9$ Hz), 135.3, 130.5 (d, $J_{C-F} = 29.9$ Hz), 128.7 (d, $J_{C-F} = 2.0$ Hz), 125.9 (d, $J_{C-F} = 6.9$ Hz), 90.1 (d, $J_{C-F} = 22.4$ Hz). ¹⁹F NMR (471 MHz, CDCl₃) δ -107.9 (dd, J = 49.4, 17.7 Hz).

1-Bromo-4-(1-fluorovinyl)benzene (68)

Prepared following the general procedure (**condition A**): 2,6-dichloropyridinium tetrafluoroborate (0.2 mmol, 47 mg, 1.0 equiv), LiBF₄ (0.25 mmol, 4.7 mg, 0.25 equiv), dry CHCl₃ (1.0 mL), 4-bromophenylacetylene (0.2 mmol, 36 mg, 1.0 equiv) at 70 °C. The reaction mixture was quenched after 6 h, and the crude residue was purified by flash column chromatography (hexanes) to provide the title compound **68** with spectral properties identical to the reported in the literature^[12]. Pale yellow oil (24 mg, 59% yield).

¹**H** NMR (500 MHz, CDCl₃) δ 7.51 (t, *J* = 5.7 Hz, 2H), 7.44 – 7.39 (m, 2H), 5.04 (dd, *J* = 49.4, 3.7 Hz, 1H), 4.88 (dd, *J* = 17.7, 3.7 Hz, 1H).

¹³**C** NMR (126 MHz, CDCl₃) δ 162.0 (d, *J*_{C-F} = 250.2 Hz), 131.7 (d, *J*_{C-F} = 1.9 Hz), 130.9 (d, *J*_{C-F} = 29.8 Hz), 126.2 (d, *J*_{C-F} = 6.9 Hz), 123.6, 90.2 (d, *J*_{C-F} = 22.4 Hz).

¹⁹**F NMR** (471 MHz, CDCl₃) δ -108.0 (dd, J = 49.4, 17.7 Hz).

1-(1-Fluorovinyl)-4-(trifluoromethyl)benzene (69)

Prepared following the general procedure (**condition A**): 2,6-dichloropyridinium tetrafluoroborate (0.2 mmol, 47 mg, 1.0 equiv), LiBF₄ (0.25 mmol, 4.7 mg, 0.25 equiv), dry CHCl₃ (1.0 mL), 1-ethynyl-4-(trifluoromethyl)benzene (0.2 mmol, 34 mg, 1.0 equiv) at 70 °C. The reaction mixture was quenched after 6 h, and the crude residue was purified by flash column chromatography (hexanes) to provide the title compound **69** with spectral properties identical to the reported in the literature^[13]. Pale yellow oil (14 mg, 38% yield).

¹**H** NMR (400 MHz, CDCl₃) δ 7.71 – 7.60 (m, 4H), 5.15 (dd, *J* = 49.1, 3.8 Hz, 1H), 4.98 (dd, *J* = 17.5, 3.8 Hz, 1H).

¹⁹**F NMR** (376 MHz, CDCl₃) δ -63.2 (s, 3F), -108.4 (dd, *J* = 49.1, 17.6 Hz, 1F).

Methyl 4-(1-fluorovinyl)benzoate (70)

Prepared following the general procedure (**condition A**): 2,6-dichloropyridinium tetrafluoroborate (0.2 mmol, 47 mg, 1.0 equiv), LiBF₄ (0.25 mmol, 4.7 mg, 0.25 equiv), dry CHCl₃ (1.0 mL), methyl 4-ethynylbenzoate (0.2 mmol, 32 mg, 1.0 equiv) at 70 °C. The reaction mixture was quenched after 6 h, and the crude residue was purified by flash column chromatography (hexanes/EtOAc = 10 : 1) to provide the title compound **70** with spectral properties identical to the reported in the literature^[14]. Pale yellow oil (12 mg, 34% yield).

¹**H NMR** (300 MHz, CDCl₃) δ 8.04 (d, J = 8.7 Hz, 2H), 7.61 (d, J = 8.5 Hz, 2H), 5.16 (dd, J = 49.1, 3.7 Hz, 1H), 4.97 (dd, J = 17.6, 3.7 Hz, 1H), 3.93 (s, 3H).

¹⁹F NMR (282 MHz, CDCl₃) δ -108.3 (dd, J = 49.1, 17.6 Hz).

(Z)-(1-Fluoroethene-1,2-diyl)dibenzene (71)

Prepared following the general procedure (**condition D**): 2,6-dichloropyridinium tetrafluoroborate (0.4 mmol, 94 mg, 2.0 equiv) dry DCE (2.0 mL), 1,2-diphenylethyne (0.2 mmol, 36 mg, 1.0 equiv) at 100 °C. The reaction mixture was quenched after 6 h, and the crude residue was purified by flash column chromatography (hexanes) to provide the title compound **71** with spectral properties identical to the reported in the literature^[2]. Pale yellow oil (23 mg, 59% yield, Z/E > 50 : 1).

¹**H** NMR (500 MHz, CDCl₃) δ 7.73 – 7.58 (m, 4H), 7.50 – 7.32 (m, 5H), 7.28 (t, *J* = 7.4 Hz, 1H), 6.33 (d, *J* = 39.5 Hz, 1H).

¹³**C** NMR (126 MHz, CDCl₃) δ 157.2 (d, $J_{C-F} = 258.6$ Hz), 133.7 (d, $J_{C-F} = 3.0$ Hz), 132.9 (d, $J_{C-F} = 27.9$ Hz), 129.0 (d, $J_{C-F} = 2.3$ Hz), 128.9, 128.6, 128.6, 127.3 (d, $J_{C-F} = 2.5$ Hz), 124.3 (d, $J_{C-F} = 7.4$ Hz), 105.8 (d, $J_{C-F} = 10.5$ Hz).

¹⁹**F** NMR (471 MHz, CDCl₃) δ -114.2 (d, *J* = 39.6 Hz).

(Z)-4,4'-(1-Fluoroethene-1,2-diyl)bis(chlorobenzene) (72)

Prepared following the general procedure (**condition D**): 2,6-dichloropyridinium tetrafluoroborate (0.4 mmol, 94 mg, 2.0 equiv) dry DCE (2.0 mL), 1,2-bis(4-chlorophenyl)ethyne (0.2 mmol, 49 mg, 1.0 equiv) at 100 °C. The reaction mixture was quenched after 12 h, and the crude residue was purified by flash column chromatography (hexanes) to provide the title compound **72** with spectral properties identical to the reported in the literature^[2]. Pale yellow oil (34 mg, 64% yield, Z/E > 50 : 1).

¹**H** NMR (500 MHz, CDCl₃) δ 7.55 (dd, *J* = 8.6, 2.7 Hz, 4H), 7.38 (d, *J* = 8.5 Hz, 2H), 7.34 (d, *J* = 8.5 Hz, 2H), 6.24 (d, *J* = 38.9 Hz, 1H).

¹³**C** NMR (126 MHz, CDCl₃) δ 156.6 (d, *J_{CF}* = 258.8 Hz), 135.2, 133.2 (d, *J_{CF}* = 3.6 Hz), 131.8 (d, *J_{C-F}* = 3.1 Hz), 131.0 (d, *J_{C-F}* = 28.4 Hz), 130.1 (d, *J_{C-F}* = 8.3 Hz), 128.9 (d, *J_{C-F}* = 2.0 Hz), 128.8, 125.6 (d, *J_{C-F}* = 7.4 Hz), 105.2 (d, *J_{C-F}* = 10.4 Hz).

¹⁹F NMR (471 MHz, CDCl₃) δ -113.7 (d, J = 38.9 Hz).

(Z)-4,4'-(1-Fluoroethene-1,2-diyl)bis(bromobenzene) (73)

Prepared following the general procedure (**condition D**): 2,6-dichloropyridinium tetrafluoroborate (0.4 mmol, 94 mg, 2.0 equiv) dry DCE (2.0 mL), 1,2-bis(4-bromophenyl)ethyne (0.2 mmol, 67 mg, 1.0 equiv) at 100 °C. The reaction mixture was quenched after 12 h, and the crude residue was purified by flash column chromatography (hexanes) to provide the title compound **73**. Pale yellow oil (48 mg, 68% yield, Z/E > 50 : 1).

¹**H** NMR (500 MHz, CDCl₃) δ 7.59 – 7.52 (m, 2H), 7.51 – 7.41 (m, 6H), 6.24 (d, *J* = 38.8 Hz, 1H). ¹³**C** NMR (126 MHz, CDCl₃) δ 156.7 (d, *J*_{C-F} = 259.0 Hz), 132.2 (d, *J*_{C-F} = 3.0 Hz), 131.9 (d, *J*_{C-F} = 2.0 Hz), 131.8, 131.4 (d, *J*_{C-F} = 28.4 Hz), 130.4 (d, *J*_{C-F} = 8.3 Hz), 125.8 (d, *J*_{C-F} = 7.4 Hz), 123.42, 121.4 (d, *J*_{C-F} = 3.7 Hz), 105.4 (d, *J*_{C-F} = 10.3 Hz).

¹⁹**F NMR** (471 MHz, CDCl₃) δ -113.5 (d, *J* = 38.8 Hz).

HRMS (ESI) calcd for C14H9Br2F [M]+: 353.9050, Found: 353.9046.

(Z)-4,4'-(1-Fluoroethene-1,2-diyl)bis(methylbenzene) (74)

Prepared following the general procedure (condition D): 2,6-dichloropyridinium tetrafluoroborate (0.4 mmol, 94 mg, 2.0 equiv) dry CHCl₃ (2.0 mL), 1,2-di-p-tolylethyne (0.2 mmol, 41 mg, 1.0 equiv) at 90

°C. The reaction mixture was quenched after 6 h, and the crude residue was purified by flash column chromatography (hexanes) to provide the title compound **74** with spectral properties identical to the reported in the literature^[15]. Pale yellow oil (21 mg, 47% yield, Z/E > 50 : 1).

¹**H** NMR (500 MHz, CDCl₃) δ 7.53 (d, *J* = 8.1 Hz, 4H), 7.20 (dd, *J* = 14.3, 8.0 Hz, 4H), 6.24 (d, *J* = 39.9 Hz, 1H), 2.39 (s, 3H), 2.37 (s, 3H).

¹³**C** NMR (126 MHz, CDCl₃) δ 156.9 (d, $J_{C-F} = 257.1$ Hz), 138.9, 137.0 (d, $J_{C-F} = 2.5$ Hz), 131.0 (d, $J_{C-F} = 2.9$ Hz), 130.3 (d, $J_{C-F} = 28.1$ Hz), 129.3, 128.7 (d, $J_{C-F} = 7.9$ Hz), 124.1 (d, $J_{C-F} = 7.4$ Hz), 104.9 (d, $J_{C-F} = 10.8$ Hz), 21.28, 21.26.

¹⁹F NMR (471 MHz, CDCl₃) δ -114.9 (d, J = 39.9 Hz).

(Z)-1-(2-Fluoro-2-phenylvinyl)-4-(trifluoromethyl)benzene (75)

Prepared following the general procedure (**condition D**): 2,6-dichloropyridinium tetrafluoroborate (0.4 mmol, 94 mg, 2.0 equiv) dry DCE (2.0 mL), 1-(phenylethynyl)-4-(trifluoromethyl)benzene (0.2 mmol, 49 mg, 1.0 equiv) at 100 °C. The reaction mixture was quenched after 12 h, and the crude residue was purified by flash column chromatography (hexanes) to provide the title compound **75** with spectral properties identical to the reported in the literature^[1]. Pale yellow oil (29 mg, 55% yield, r.r. > 50 : 1, Z/E > 50 : 1).

¹**H** NMR (500 MHz, CDCl₃) δ 7.74 (d, *J* = 8.2 Hz, 2H), 7.68 (d, *J* = 6.9 Hz, 2H), 7.63 (d, *J* = 8.1 Hz, 2H), 7.48 – 7.37 (m, 3H), 6.35 (d, *J* = 38.7 Hz, 1H).

¹³**C** NMR (126 MHz, CDCl₃) δ 158.7 (d, *J*_{C-F} = 261.6 Hz), 137.2, 132.2 (d, *J*_{C-F} = 27.6 Hz), 131.8 (d, *J*_{C-F} = 6.9 Hz), 129.6, 129.0 (d, *J*_{C-F} = 8.3 Hz), 128.7 (d, *J*_{C-F} = 2.0 Hz), 125.4 (q, *J*_{C-F} = 3.7 Hz), 124.6 (d, *J*_{C-F} = 7.6 Hz), 124.2 (q, *J*_{C-F} = 271.7 Hz), 104.6 (d, *J*_{C-F} = 10.2 Hz).

¹⁹F NMR (471 MHz, CDCl₃) δ -62.6 (s, 3F), -111.0 (d, *J* = 38.6 Hz, 1F).

Methyl (Z)-4-(2-fluoro-2-phenylvinyl)benzoate (76)

Prepared following the general procedure (**condition D**): 2,6-dichloropyridinium tetrafluoroborate (0.4 mmol, 94 mg, 2.0 equiv) dry DCE (2.0 mL), methyl 4-(phenylethynyl)benzoate (0.2 mmol, 47 mg, 1.0 equiv) at 100 °C. The reaction mixture was quenched after 12 h, and the crude residue was purified by flash column chromatography (hexanes/EtOAc = 10 : 1) to provide the title compound **76** with spectral properties identical to the reported in the literature^[16]. Pale yellow oil (22 mg, 43% yield, r.r. = 17 : 1, Z/E > 50 : 1).

¹**H** NMR (500 MHz, CDCl₃) δ 8.04 (d, *J* = 8.4 Hz, 2H), 7.73 – 7.63 (m, 4H), 7.46 – 7.36 (m, 3H), 6.35 (d, *J* = 38.9 Hz, 1H), 3.93 (s, 3H).

¹³**C NMR** (126 MHz, CDCl₃) δ 166.8, 158.7 (d, $J_{CF} = 262.1$ Hz), 138.2 (d, $J_{CF} = 3.1$ Hz), 132.3 (d, $J_{CF} = 27.6$ Hz), 129.8, 129.6, 128.73, 128.68, 128.67, 124.5 (d, $J_{CF} = 7.6$ Hz), 105.1 (d, $J_{CF} = 10.1$ Hz), 52.0.

¹⁹F NMR (471 MHz, CDCl₃) δ (a): -110.5 (d, J = 38.9 Hz), (b): -115.1 (d, J = 39.2 Hz).

(Z)-1-(4-(2-Fluoro-2-phenylvinyl)phenyl)ethan-1-one (77)

Prepared following the general procedure (**condition D**): 2,6-dichloropyridinium tetrafluoroborate (0.4 mmol, 94 mg, 2.0 equiv) dry DCE (2.0 mL), 1-(4-(phenylethynyl)phenyl)ethan-1-one (0.2 mmol, 44 mg, 1.0 equiv) at 100 °C. The reaction mixture was quenched after 12 h, and the crude residue was purified by flash column chromatography (hexanes/EtOAc = 10 : 1) to provide the title compound 77 with spectral properties identical to the reported in the literature^[2]. Pale yellow oil (15 mg, 32% yield, r.r. = 15 : 1, Z/E = 17 : 1).

¹**H** NMR (500 MHz, CDCl₃) δ 7.97 (d, *J* = 8.4 Hz, 2H), 7.72 (d, *J* = 8.3 Hz, 2H), 7.68 (d, *J* = 6.9 Hz, 2H), 7.46 – 7.39 (m, 3H), 6.37 (d, *J* = 38.9 Hz, 1H), 2.62 (s, 3H).

¹⁹**F NMR** (471 MHz, CDCl₃) δ (a-*E*): -91.0 (d, *J* = 20.7 Hz), (a-*Z*): -110.2 (d, *J* = 38.9 Hz), (b): -115.2 (d, *J* = 39.1 Hz).

(Z)-4-(2-Fluoro-2-phenylvinyl)benzonitrile (78)

Prepared following the general procedure (**condition D**): 2,6-dichloropyridinium tetrafluoroborate (0.4 mmol, 94 mg, 2.0 equiv) dry DCE (2.0 mL), 4-(phenylethynyl)benzonitrile (0.2 mmol, 41 mg, 1.0 equiv) at 100 °C. The reaction mixture was quenched after 12 h, and the crude residue was purified by flash column chromatography (hexanes/EtOAc = 10 : 1) to provide the title compound **78** with spectral properties identical to the reported in the literature^[1]. Pale yellow oil (24 mg, 54% yield, r.r. > 50 : 1, Z/E > 50 : 1).

¹**H NMR** (500 MHz, CDCl₃) δ 7.71 (d, *J* = 8.4 Hz, 2H), 7.69 – 7.60 (m, 4H), 7.51 – 7.37 (m, 3H), 6.33 (d, *J* = 38.3 Hz, 1H).

¹³C NMR (126 MHz, CDCl₃) δ 159.5 (d, $J_{C-F} = 263.6$ Hz), 138.3 (d, $J_{C-F} = 3.1$ Hz), 132.3, 131.9 (d, $J_{C-F} = 27.4$ Hz), 130.0, 129.2 (d, $J_{C-F} = 8.6$ Hz), 128.8 (d, $J_{C-F} = 2.1$ Hz), 124.7 (d, $J_{C-F} = 7.7$ Hz), 119.0, 110.3 (d, $J_{C-F} = 3.1$ Hz), 104.4 (d, $J_{C-F} = 9.9$ Hz). ¹⁹F NMR (471 MHz, CDCl₃) δ -108.9 (d, J = 38.4 Hz).

(Z)-1-(2-Fluoro-2-phenylvinyl)-4-nitrobenzene (79)

Prepared following the general procedure (**condition D**): 2,6-dichloropyridinium tetrafluoroborate (0.4 mmol, 94 mg, 2.0 equiv) dry DCE (2.0 mL), 1-nitro-4-(phenylethynyl)benzene (0.2 mmol, 45 mg, 1.0 equiv) at 100 °C. The reaction mixture was quenched after 12 h, and the crude residue was purified by flash column chromatography (hexanes/EtOAc = 10 : 1) to provide the title compound **79** with spectral properties identical to the reported in the literature^[2]. Pale yellow oil (19 mg, 38% yield, r.r. > 50 : 1, Z/E > 50 : 1).

¹**H** NMR (500 MHz, CDCl₃) δ 8.23 (d, *J* = 8.9 Hz, 2H), 7.77 (d, *J* = 8.8 Hz, 2H), 7.73 – 7.64 (m, 2H), 7.51 – 7.38 (m, 3H), 6.39 (d, *J* = 38.2 Hz, 1H).

¹³**C NMR** (126 MHz, CDCl₃) δ 159.9 (d, $J_{C-F} = 264.7$ Hz), 146.3, 140.4 (d, $J_{C-F} = 3.1$ Hz), 131.8 (d, $J_{C-F} = 27.3$ Hz), 130.2, 129.3 (d, $J_{C-F} = 8.8$ Hz), 128.8 (d, $J_{C-F} = 2.0$ Hz), 124.8 (d, $J_{C-F} = 7.7$ Hz), 123.9, 104.1 (d, $J_{C-F} = 9.9$ Hz).

¹⁹F NMR (471 MHz, CDCl₃) δ -108.2 (d, *J* = 38.2 Hz).

(Z)-1-Chloro-2-(2-fluoro-2-phenylvinyl)benzene (80)

Prepared following the general procedure (**condition D**): 2,6-dichloropyridinium tetrafluoroborate (0.4 mmol, 94 mg, 2.0 equiv) dry DCE (2.0 mL), 1-chloro-2-(phenylethynyl)benzene (0.2 mmol, 42 mg, 1.0 equiv) at 100 °C. The reaction mixture was quenched after 12 h, and the crude residue was purified by flash column chromatography (hexanes) to provide the title compound **80** with spectral properties identical to the reported in the literature^[1]. Pale yellow oil (24 mg, 51% yield, r.r. > 20 : 1, Z/E > 20 : 1).

¹**H NMR** (500 MHz, CDCl₃) δ 7.98 (dd, *J* = 7.9, 1.4 Hz, 1H), 7.75 – 7.64 (m, 2H), 7.50 – 7.34 (m, 4H), 7.30 (t, *J* = 7.5 Hz, 1H), 7.20 (td, *J* = 7.8, 1.5 Hz, 1H), 6.76 (d, *J* = 38.6 Hz, 1H).

¹³**C NMR** (126 MHz, CDCl₃) δ 158.2 (d, $J_{C-F} = 260.9$ Hz), 133.2(d, $J_{C-F} = 0.6$ Hz), 132.6 (d, $J_{C-F} = 27.9$ Hz), 131.5 (d, $J_{C-F} = 3.4$ Hz), 130.5 (d, $J_{C-F} = 13.4$ Hz), 129.5, 129.4, 128.6 (d, $J_{C-F} = 2.1$ Hz), 128.3 (d, $J_{C-F} = 1.6$ Hz), 126.8, 124.6 (d, $J_{C-F} = 7.4$ Hz), 101.7 (d, $J_{C-F} = 8.9$ Hz).

¹⁹**F NMR** (471 MHz, CDCl₃) δ -113.8 (d, *J* = 38.6 Hz).

(E)-(1-Fluoroethene-1,2-diyl)dibenzene (81)

Prepared following the general procedure (condition C): 2,6-dichloropyridinium tetrafluoroborate (0.6 mmol, 141 mg, 3.0 equiv), dry CHCl₃ (3.0 mL), 1,2-diphenylethyne (0.2 mmol, 36 mg, 1.0 equiv) at 80

°C. The reaction mixture was quenched after 12 h, and the crude residue was purified by flash column chromatography (hexanes) to provide the title compound **81** with spectral properties identical to the reported in the literature^[15]. Pale yellow oil (24 mg, 60% yield, E/Z = 10 : 1).

¹**H NMR** (500 MHz, CDCl₃) δ 7.43 (d, *J* = 7.0 Hz, 2H), 7.34 – 7.27 (m, 3H), 7.24 – 7.13 (m, 5H), 6.46 (d, *J* = 21.6 Hz, 1H).

¹⁹**F NMR** (471 MHz, CDCl₃) δ -96.0 (d, J = 21.6 Hz).

(E)-4,4'-(1-Fluoroethene-1,2-diyl)bis(chlorobenzene) (82)

Prepared following the general procedure (**condition C**): 2,6-dichloropyridinium tetrafluoroborate (0.6 mmol, 141 mg, 3.0 equiv), dry CHCl₃ (3.0 mL), 1,2-bis(4-chlorophenyl)ethyne (0.2 mmol, 49 mg, 1.0 equiv) at 100 °C. The reaction mixture was quenched after 12 h, and the crude residue was purified by flash column chromatography (hexanes) to provide the title compound **82** with spectral properties identical to the reported in the literature^[17]. Pale yellow oil (22 mg, 41% yield, E/Z = 10 : 1).

¹H NMR (500 MHz, CDCl₃) δ 7.33 (d, *J* = 8.5 Hz, 2H), 7.28 (d, *J* = 8.4 Hz, 2H), 7.21 (d, *J* = 8.5 Hz, 2H), 7.08 (d, *J* = 8.3 Hz, 2H), 6.41 (d, *J* = 20.8 Hz, 1H).
¹⁹F NMR (471 MHz, CDCl₃) δ -95.9 (d, *J* = 20.8 Hz).

(E)-1-Chloro-2-(2-fluoro-2-phenylvinyl)benzene (83)

Prepared following the general procedure (**condition C**): 2,6-dichloropyridinium tetrafluoroborate (0.6 mmol, 141 mg, 3.0 equiv), dry CHCl₃ (3.0 mL), 1-chloro-2-(phenylethynyl)benzene (0.2 mmol, 42 mg, 1.0 equiv) at 100 °C. The reaction mixture was quenched after 12 h, and the crude residue was purified by flash column chromatography (hexanes) to provide the title compound **83** with spectral properties identical to the reported in the literature^[1]. Pale yellow oil (19 mg, 40% yield, r.r. = 9 : 1, E/Z = 4 : 1). ¹H NMR (500 MHz, CDCl₃) δ 7.98 (dd, J = 7.9, 1.6 Hz, 0.2H), 7.73 – 7.66 (m, 0.8H), 7.48 – 7.23 (m, 6H), 7.23 – 7.12 (m, 1H), 7.11 – 7.01 (m, 1H), 6.75 (d, J = 38.6 Hz, 0.2H), 6.54 (d, J = 20.5 Hz, 0.8H). ¹⁹F NMR (471 MHz, CDCl₃) δ (*E*): -96.4 (d, J = 20.5 Hz, 0.8F), (*Z*): -113.9 (d, J = 38.5 Hz, 0.2F).

(E)-1-(2-Fluoro-2-phenylvinyl)-4-(trifluoromethyl)benzene (84)

Prepared following the general procedure (**condition C**): 2,6-dichloropyridinium tetrafluoroborate (0.6 mmol, 141 mg, 3.0 equiv), dry CHCl₃ (3.0 mL), 1-(phenylethynyl)-4-(trifluoromethyl)benzene (0.2 mmol, 49 mg, 1.0 equiv) at 100 °C. The reaction mixture was quenched after 12 h, and the crude residue was purified by flash column chromatography (hexanes) to provide the title compound **84** with spectral properties identical to the reported in the literature^[1]. Pale yellow oil (12 mg, 23% yield, r.r. > 20: 1, E/Z > 20: 1).

¹**H NMR** (500 MHz, CDCl₃) δ 7.47 (d, *J* = 8.2 Hz, 2H), 7.42 (d, *J* = 7.6 Hz, 2H), 7.37 – 7.30 (m, 3H), 7.26 (d, *J* = 7.9 Hz, 2H), 6.46 (d, *J* = 20.6 Hz, 1H).

¹⁹**F NMR** (471 MHz, CDCl₃) δ -62.6 (s, 3F), -91.6 (d, J = 20.7 Hz, 1F).

(1S,2R,4R)-2-((Z)-2-Fluoro-2-phenylvinyl)bicyclo[2.2.1]heptane (85)

Prepared following the general procedure (**condition A**): 2,6-dichloropyridinium tetrafluoroborate (0.2 mmol, 47 mg, 1.0 equiv), LiBF4 (0.25 mmol, 4.7 mg, 0.25 equiv), dry CHCl₃ (1.0 mL), (1*S*,2*R*,4*R*)-2-(phenylethynyl)bicyclo[2.2.1]heptane (0.2 mmol, 39 mg, 1.0 equiv) at 70 °C. The reaction mixture was quenched after 6 h, and the crude residue was purified by flash column chromatography (hexanes) to provide the title compound **85**. Pale yellow oil (33 mg, 77% yield, Z/E > 50 : 1).

¹**H NMR** (500 MHz, CDCl₃) δ 7.53 – 7.45 (m, 2H), 7.38 – 7.31 (m, 2H), 7.31 – 7.26 (m, 1H), 5.29 (dd, J = 37.6, 9.4 Hz, 1H), 2.75 – 2.66 (m, 1H), 2.33 – 2.26 (m, 1H), 2.15 – 2.08 (m, 1H), 1.73 – 1.64 (m, 1H), 1.60 – 1.48 (m, 2H), 1.46 – 1.41 (m, 1H), 1.37 – 1.26 (m, 2H), 1.25 – 1.18 (m, 2H).

¹³**C** NMR (126 MHz, CDCl₃) δ 154.7 (d, J_{CF} = 245.3 Hz), 132.9 (d, J_{CF} = 29.2 Hz), 128.3 (d, J_{CF} = 2.0 Hz), 128.2, 123.8 (d, J_{CF} = 7.0 Hz), 112.7 (d, J_{CF} = 16.9 Hz), 42.9 (d, J_{CF} = 1.0 Hz), 39.2 (d, J_{CF} = 1.3 Hz), 37.2 (d, J_{CF} = 3.7 Hz), 36.5, 36.1, 29.6, 28.8.

¹⁹**F NMR** (471 MHz, CDCl₃) δ -121.2 (d, *J* = 37.6 Hz).

HRMS (ASAP) calcd for C15H17F [M]+: 216.1314, Found: 216.1326.

((Z)-5-Fluoro-5-phenylpent-4-en-1-yloxy)carbonyl ferrocene (86)

Prepared following the general procedure (condition A): 2,6-dichloropyridinium tetrafluoroborate (0.4

mmol, 94 mg, 2.0 equiv), Et₂O • BF₃ (0.2 mmol, 25 μ L, 1.0 equiv), dry CHCl₃ (2.0 mL), (5-phenylpent-4-yn-1-yloxy)carbonyl ferrocene (0.2 mmol, 74 mg, 1.0 equiv) at 70 °C. The reaction mixture was quenched after 6 h, and the crude residue was purified by flash column chromatography (hexanes/EtOAc = 10 : 1) to provide the title compound **86**. Pale yellow oil (with Et₂O•BF₃: 48 mg, 61% yield, Z/E = 9 : 1; without Et₂O•BF₃: 53 mg, 68% yield, Z/E = 3 : 1).

¹**H NMR** (500 MHz, CDCl₃) δ 7.55 – 7.47 (m, 2H), 7.43 – 7.29 (m, 3H), 5.46 (dt, *J* = 36.9, 7.6 Hz, 1H), 4.83 (t, *J* = 1.9 Hz, 2H), 4.43 – 4.35 (m, 2H), 4.28 (t, *J* = 6.4 Hz, 2H), 4.21 (s, 4H), 4.15 (s, 1H), 2.52 – 2.33 (m, 2H), 1.98 – 1.83 (m, 2H).

¹³**C** NMR (126 MHz, CDCl₃) δ 171.7, 157.4 (d, *J*_{C-F} = 247.0 Hz), 132.5 (d, *J*_{C-F} = 29.1 Hz), 128.5, 128.4 (d, *J*_{C-F} = 1.9 Hz), 123.9 (d, *J*_{C-F} = 6.9 Hz), 104.7 (d, *J*_{C-F} = 17.6 Hz), 71.2, 70.1, 69.7, 63.5, 28.7 (d, *J*_{C-F} = 1.5 Hz), 20.8 (d, *J*_{C-F} = 5.4 Hz).

¹⁹**F NMR** (471 MHz, CDCl₃) δ (*E*): -100.5 (d, *J* = 22.1 Hz), (*Z*): -119.8 (d, *J* = 36.9 Hz). **HRMS** (APCI) calcd for C₂₂H₂₁FFeO₂ [M]⁺: 392.0875, Found: 392.0891.

(Z)-5-Fluoro-5-phenylpent-4-en-1-yl

((1S, 4R) - 7, 7 - dimethyl - 2 - oxobicyclo [2.2.1] heptan - 1 - yl) methanesul fonate (87)

Prepared following the general procedure (**condition A**): 2,6-dichloropyridinium tetrafluoroborate (0.4 mmol, 94 mg, 2.0 equiv), Et₂O • BF₃ (0.2 mmol, 25 μ L, 1.0 equiv), dry CHCl₃ (2.0 mL), 5-phenylpent-4-yn-1-yl ((1*S*,4*R*)-7,7-dimethyl-2-oxobicyclo[2.2.1]heptan-1-yl)methanesulfonate (0.2 mmol, 75 mg, 1.0 equiv) at 70 °C. The reaction mixture was quenched after 6 h, and the crude residue was purified by flash column chromatography (hexanes/EtOAc = 5 : 1) to provide the title compound **87**. Pale yellow oil (with Et₂O•BF₃: 50 mg, 64% yield, *Z*/*E* = 9 : 1; without Et₂O•BF₃: 55 mg, 70% yield, *Z*/*E* = 2.8 : 1).

¹**H** NMR (500 MHz, CDCl₃) δ 7.49 (d, *J* = 7.3 Hz, 2H), 7.38 – 7.27 (m, 3H), 5.40 (dt, *J* = 36.8, 7.6 Hz, 1H), 4.41 – 4.26 (m, 2H), 3.61 (d, *J* = 15.1 Hz, 1H), 2.99 (d, *J* = 15.1 Hz, 1H), 2.52 – 2.35 (m, 4H), 2.11 (t, *J* = 4.3 Hz, 1H), 2.07 – 2.01 (m, 1H), 1.96 – 1.89 (m, 3H), 1.71 – 1.62 (m, 1H), 1.47 – 1.38 (m, 1H), 1.10 (s, 3H), 0.86 (s, 3H).

¹³**C** NMR (126 MHz, CDCl₃) δ 214.4, 157.6 (d, $J_{C-F} = 247.6$ Hz), 132.2 (d, $J_{C-F} = 29.0$ Hz), 128.6, 128.4 (d, $J_{C-F} = 1.9$ Hz), 123.9 (d, $J_{C-F} = 6.9$ Hz), 103.9 (d, $J_{C-F} = 17.5$ Hz), 69.8, 57.8, 47.9, 46.6, 42.7, 42.4, 28.9 (d, $J_{C-F} = 1.6$ Hz), 26.8, 24.8, 20.2 (d, $J_{C-F} = 5.5$ Hz), 19.7, 19.6.

¹⁹F NMR (282 MHz, CDCl₃) δ (*E*): -99.9 (d, *J* = 21.7 Hz), (*Z*): -119.2 (d, *J* = 36.8 Hz).

HRMS (ESI) calcd for C₂₁H₂₈FO₄S [M+H]⁺: 395.1689, Found: 395.1674.

(8*R*,9*S*,13*S*,14*S*)-3-((*Z*)-2-Cyclohexyl-1-fluorovinyl)-13-methyl-6,7,8,9,11,12,13,14,15,16-decahydr o-17H-cyclopenta[a]phenanthren-17-one (88)

Prepared following the general procedure (**condition A**): 2,6-dichloropyridinium tetrafluoroborate (0.2 mmol, 47 mg, 1.0 equiv), LiBF4 (0.25 mmol, 4.7 mg, 0.25 equiv), dry CHCl3 (1.0 mL), (8*R*,9*S*,13*S*,14*S*)-3-(cyclohexylethynyl)-13-methyl-6,7,8,9,11,12,13,14,15,16-decahydro-17H-cyclopen ta[a]phenanthren-17-one (0.2 mmol, 72 mg, 1.0 equiv) at 70 °C. The reaction mixture was quenched after 6 h, and the crude residue was purified by flash column chromatography (hexanes/EtOAc = 10 : 1) to provide the title compound **88**. Pale yellow oil (55 mg, 72% yield, Z/E > 50 : 1).

¹**H** NMR (500 MHz, CDCl₃) δ 7.26 (m, 2H), 7.22 (s, 1H), 5.21 (dd, *J* = 38.4, 9.2 Hz, 1H), 2.98 – 2.85 (m, 2H), 2.62 (m, 1H), 2.51 (dd, *J* = 18.9, 8.6 Hz, 1H), 2.46 – 2.38 (m, 1H), 2.30 (td, *J* = 10.8, 4.2 Hz, 1H), 2.20 – 2.10 (m, 1H), 2.10 – 2.00 (m, 2H), 1.99 – 1.93 (m, 1H), 1.81 – 1.69 (m, 4H), 1.68 – 1.57 (m, 3H), 1.55 – 1.42 (m, 4H), 1.40 – 1.30 (m, 2H), 1.23 – 1.11 (m, 3H), 0.91 (s, 3H).

¹³**C** NMR (126 MHz, CDCl₃) δ 220.7, 155.4 (d, *J*_{C-F} = 245.2 Hz), 140.0, 136.5, 130.5 (d, *J*_{C-F} = 29.5 Hz), 125.4 (d, *J*_{C-F} = 1.8 Hz), 124.3 (d, *J*_{C-F} = 6.6 Hz), 121.4 (d, *J*_{C-F} = 6.8 Hz), 111.4 (d, *J*_{C-F} = 17.1 Hz), 50.5, 47.9, 44.4, 38.1, 35.8, 33.8 (d, *J*_{C-F} = 3.8 Hz), 33.2, 31.6, 29.4, 26.4, 26.0, 25.8, 25.7, 21.6, 13.8.

¹⁹**F NMR** (471 MHz, CDCl₃) δ -121.8 (d, *J* = 38.3 Hz).

HRMS (ASAP) calcd for C₂₆H₃₄FO [M+H]⁺: 381.2588, Found: 381.2578.

(8*R*,9*S*,13*S*,14*S*)-3-((*E*)-2-Cyclohexyl-1-fluorovinyl)-13-methyl-6,7,8,9,11,12,13,14,15,16-decahydr o-17H-cyclopenta[a]phenanthren-17-one (89)

Preparedfollowingthegeneralprocedure(conditionB):(8R,9S,13S,14S)-3-(cyclohexylethynyl)-13-methyl-6,7,8,9,11,12,13,14,15,16-decahydro-17H-cyclopenta[a]phenanthren-17-one (0.2 mmol, 72 mg, 1.0 equiv), dry CHCl₃ (1.0 mL), HBF₄·Et₂O (27 µL, 0.2 mmol, 1.0 equiv) at room temperature. The reaction mixture was quenched after 6 h, and the cruderesidue was purified by flash column chromatography (hexanes/EtOAc = 10 : 1) to provide the titlecompound89. Pale yellow oil (37 mg, 49% yield, E/Z = 13:1).

¹**H** NMR (500 MHz, CDCl₃) δ 7.32 (d, *J* = 8.1 Hz, 1H), 7.23 (d, *J* = 7.8 Hz, 1H), 7.19 (s, 1H), 5.21 (dd, *J* = 23.0, 10.7 Hz, 1H), 2.94 (dd, *J* = 8.7, 3.9 Hz, 2H), 2.52 (dd, *J* = 19.0, 8.7 Hz, 1H), 2.47 – 2.42 (m, 1H), 2.37 – 2.24 (m, 2H), 2.18 – 2.11 (m, 1H), 2.09 – 2.02 (m, 2H), 2.01 – 1.96 (m, 1H), 1.78 – 1.69 (m, 4H), 1.67 – 1.61 (m, 3H), 1.57 – 1.46 (m, 4H), 1.27 – 1.16 (m, 5H), 0.92 (s, 3H).

¹³**C** NMR (126 MHz, CDCl₃) δ 220.6, 155.8 (d, $J_{CF} = 239.9$ Hz), 140.6, 136.4, 123.0 (d, $J_{CF} = 30.3$ Hz), 127.9 (d, $J_{CF} = 4.7$ Hz), 125.2, 124.9 (d, $J_{CF} = 5.2$ Hz), 114.0 (d, $J_{CF} = 22.2$ Hz), 50.5, 47.9, 44.5, 38.0, 35.8, 35.2 (d, $J_{CF} = 7.6$ Hz), 33.8 (d, $J_{CF} = 0.8$ Hz), 31.6, 29.4, 26.4, 25.9, 25.7, 25.6, 21.6, 13.8.

¹⁹**F NMR** (471 MHz, CDCl₃) δ (*E*): -103.5 (d, J = 23.0 Hz), (*Z*): -121.7 (d, J = 38.3 Hz). **HRMS** (ESI) calcd for C₂₆H₃₄FO [M+H]⁺: 381.2594, Found: 381.2577.

(Z)-5-Fluoro-5-phenylpent-4-en-1-yl 4-(N,N-dipropylsulfamoyl)benzoate (90)

Prepared following the general procedure (**condition A**): 2,6-dichloropyridinium tetrafluoroborate (0.4 mmol, 94 mg, 2.0 equiv), dry CHCl₃ (2.0 mL), 5-phenylpent-4-yn-1-yl 4-(*N*,*N*-dipropylsulfamoyl)benzoate (0.2 mmol, 85 mg, 1.0 equiv) at 80 °C. The reaction mixture was quenched after 12 h, and the crude residue was purified by flash column chromatography (hexanes/EtOAc = 5:1) to provide the title compound **90**. Pale yellow oil (63 mg, 70% yield, *Z*/*E* = 33:1).

¹**H** NMR (500 MHz, CDCl₃) δ 8.15 (d, J = 8.5 Hz, 2H), 7.85 (d, J = 8.5 Hz, 2H), 7.53 – 7.44 (m, 2H), 7.39 – 7.29 (m, 3H), 5.44 (dt, J = 36.8, 7.7 Hz, 1H), 4.42 (t, J = 6.4 Hz, 2H), 3.14 – 3.05 (m, 4H), 2.47 (qd, J = 7.5, 1.5 Hz, 2H), 2.03 – 1.92 (m, 2H), 1.58 – 1.52 (m, 4H), 0.87 (t, J = 7.4 Hz, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 165.3, 157.5 (d, J_{CF} = 247.3 Hz), 144.2, 133.6, 132.4 (d, J_{CF} = 29.0 Hz), 130.2, 128.6, 128.4 (d, J_{CF} = 2.0 Hz), 127.0, 123.9 (d, J_{CF} = 7.0 Hz), 104.5 (d, J_{CF} = 17.6 Hz), 65.0, 49.9, 28.4 (d, J_{CF} = 1.4 Hz), 21.9, 20.9 (d, J_{CF} = 5.5 Hz), 11.1. ¹⁹F NMR (376 MHz, CDCl₃) δ -119.8 (d, J = 36.9 Hz).

F NMI**R** (570 MHz, CDCB) 0 - 119.8 (0, <math>J = 50.9 Hz).

HRMS (ESI) calcd for $C_{24}H_{31}FNO_4S$ [M+H]⁺: 448.1952, Found: 448.1934.

4,4-Difluoropentyl 4-(N,N-dipropylsulfamoyl)benzoate (91)

Prepared following the general procedure (**condition C**): 2,6-dichloropyridinium tetrafluoroborate (0.6 mmol, 141 mg, 3.0 equiv), dry CHCl₃ (3.0 mL), pent-4-yn-1-yl 4-(*N*,*N*-dipropylsulfamoyl)benzoate (0.2 mmol, 70 mg, 1.0 equiv) at 80 °C. The reaction mixture was quenched after 12 h, and the crude residue was purified by flash column chromatography (hexanes/EtOAc = 5 : 1) to provide the title compound **91** with spectral properties identical to the reported in the literature^[7]. Pale yellow oil (44 mg, 56% yield).

¹**H** NMR (500 MHz, CDCl₃) δ 8.15 (d, *J* = 8.5 Hz, 2H), 7.88 (d, *J* = 8.5 Hz, 2H), 4.40 (t, *J* = 6.0 Hz, 2H), 3.15 – 3.05 (m, 4H), 2.09 – 1.92 (m, 4H), 1.64 (t, *J* = 18.4 Hz, 3H), 1.58 – 1.51 (m, 4H), 0.87 (t, *J* = 7.4 Hz, 6H).

¹³C NMR (126 MHz, CDCl₃) δ 165.1, 144.4, 133.4, 130.2, 127.0, 123.7 (t, *J_{CF}* = 238.1 Hz), 64.8, 49.9, 34.6 (t, *J_{CF}* = 26.1 Hz), 23.5 (t, *J_{CF}* = 27.9 Hz), 22.2 (t, *J_{CF}* = 4.7 Hz), 21.9, 11.1.
¹⁹F NMR (471 MHz, CDCl₃) δ -91.2 - -91.6 (m, 2F).

(Z)-5-Fluoro-5-phenylpent-4-en-1-yl 2-(3-cyano-4-isobutoxyphenyl)-4-methylthiazole-5-carboxylate (92)

Prepared following the general procedure (condition A): 2,6-dichloropyridinium tetrafluoroborate (0.4 mmol, 94 mg, 2.0 equiv), dry CHCl₃ (2.0 mL), 5-phenylpent-4-yn-1-yl 2-(3-cyano-4-isobutoxyphenyl)-4-methylthiazole-5-carboxylate (0.2 mmol, 92 mg, 1.0 equiv) at 80 °C. The reaction mixture was quenched after 12 h, and the crude residue was purified by flash column chromatography (hexanes/EtOAc = 5:1) to provide the title compound 92. Pale yellow oil (50 mg, 52% yield, Z/E > 20:1).

¹**H** NMR (500 MHz, CDCl₃) δ 8.13 (d, J = 2.2 Hz, 1H), 8.06 (dd, J = 8.8, 2.3 Hz, 1H), 7.50 (d, J = 7.0 Hz, 2H), 7.40 – 7.27 (m, 3H), 7.00 (d, J = 8.9 Hz, 1H), 5.44 (dt, J = 36.8, 7.7 Hz, 1H), 4.37 (t, J = 6.3 Hz, 2H), 3.90 (d, J = 6.5 Hz, 2H), 2.77 (s, 3H), 2.46 (dd, J = 13.4, 7.1 Hz, 2H), 2.28 – 2.14 (m, 1H), 2.01 – 1.86 (m, 2H), 1.09 (d, J = 6.7 Hz, 6H).

¹³**C** NMR (126 MHz, CDCl₃) δ 167.2, 162.5, 162.0, 161.2, 157.4 (d, $J_{C-F} = 247.2$ Hz), 132.5, 132.4 (d, $J_{C-F} = 28.7$ Hz), 132.1, 128.6, 128.4 (d, $J_{C-F} = 1.9$ Hz), 126.0, 123.9 (d, $J_{C-F} = 7.0$ Hz), 121.8, 115.4, 112.6, 104.5 (d, $J_{C-F} = 17.6$ Hz), 103.0, 75.7, 64.8, 28.4, 28.2, 21.0 (d, $J_{C-F} = 5.5$ Hz), 19.0, 17.5. ¹⁹**F** NMR (471 MHz, CDCl₃) δ -119.8 (d, J = 36.9 Hz).

HRMS (ESI) calcd for C₂₇H₂₈FN₂O₃S [M+H]⁺: 479.1799, Found: 479.1784.

4,4-Difluoropentyl 2-(3-cyano-4-isobutoxyphenyl)-4-methylthiazole-5-carboxylate (93)

Prepared following the general procedure (**condition C**): 2,6-dichloropyridinium tetrafluoroborate (0.6 mmol, 141 mg, 3.0 equiv), dry CHCl₃ (3.0 mL), pent-4-yn-1-yl 2-(3-cyano-4-isobutoxyphenyl)-4-methylthiazole-5-carboxylate (0.2 mmol, 76 mg, 1.0 equiv) at 80 °C. The reaction mixture was quenched after 12 h, and the crude residue was purified by flash column chromatography (hexanes/EtOAc = 5:1) to provide the title compound **93** with spectral properties identical to the reported in the literature^[7]. Pale yellow oil (36 mg, 43% yield).

¹**H** NMR (500 MHz, CDCl₃) δ 8.18 (d, *J* = 2.3 Hz, 1H), 8.10 (dd, *J* = 8.8, 2.3 Hz, 1H), 7.01 (d, *J* = 8.9 Hz, 1H), 4.34 (t, *J* = 6.0 Hz, 2H), 3.90 (d, *J* = 6.5 Hz, 2H), 2.77 (s, 3H), 2.26 – 2.14 (m, 1H), 2.06 – 1.90 (m, 4H), 1.65 (t, *J* = 18.4 Hz, 3H), 1.09 (d, *J* = 6.7 Hz, 6H).

¹³**C** NMR (126 MHz, CDCl₃) δ 167.4, 162.5, 161.9, 161.4, 132.6, 132.1, 126.0, 123.7 (t, $J_{C-F} = 238.1$ Hz), 121.5, 115.4, 112.6, 103.0, 75.7, 64.5, 34.6 (t, $J_{C-F} = 26.0$ Hz), 28.2, 23.5 (t, $J_{C-F} = 27.9$ Hz), 22.2 (t, $J_{C-F} = 4.6$ Hz), 19.0, 17.5.

 ^{19}F NMR (471 MHz, CDCl3) δ -91.3 – -91.6 (m, 2F).

(Z)-5-Fluoro-5-phenylpent-4-en-1-yl

4'-((1,7'-dimethyl-2'-propyl-1H,3'H-[2,5'-bibenzo[d]imidazol]-3'-yl)methyl)-[1,1'-biphenyl]-2-car boxylate (94)

Prepared following the general procedure (**condition A**): 2,6-dichloropyridinium tetrafluoroborate (0.4 mmol, 94 mg, 2.0 equiv), Et₂O • BF₃ (0.2 mmol, 25 μ L, 1.0 equiv), dry CHCl₃ (2.0 mL), 5-phenylpent-4-yn-1-yl4'-((1,7'-dimethyl-2'-propyl-1H,3'H-[2,5'-bibenzo[d]imidazol]-3'-yl)methyl)-[1, 1'-biphenyl]-2-carboxylate (0.2 mmol, 131 mg, 1.0 equiv) at 70 °C. The reaction mixture was quenched after 6 h, and the crude residue was purified by flash column chromatography (EtOAc) to provide the title compound **94**. Pale yellow oil (43 mg, 32% yield, Z/E > 20 : 1).

¹**H** NMR (500 MHz, CDCl₃) δ 7.83 (dd, *J* = 7.7, 1.0 Hz, 1H), 7.80 (dd, *J* = 5.9, 3.1 Hz, 1H), 7.50 (td, *J* = 7.6, 1.2 Hz, 1H), 7.47 – 7.40 (m, 4H), 7.38 (td, *J* = 7.6, 1.0 Hz, 1H), 7.35 – 7.25 (m, 9H), 7.09 (d, *J* = 8.1 Hz, 2H), 5.41 (s, 2H), 5.22 (dt, *J* = 37.2, 7.6 Hz, 1H), 4.06 (t, *J* = 6.3 Hz, 2H), 3.76 (s, 3H), 2.94 – 2.89 (m, 2H), 2.76 (s, 3H), 2.10 – 2.03 (m, 2H), 1.90 – 1.82 (m, 2H), 1.60 – 1.49 (m, 2H), 1.04 (t, *J* = 7.3 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 168.3, 157.1 (d, J_{CF} = 246.9 Hz), 156.4, 154.7, 143.2, 142.9, 141.7, 141.3, 136.6, 135.0, 134.8, 132.3 (d, J_{CF} = 29.0 Hz), 131.3, 130.8, 130.7, 129.9, 129.4, 129.0, 128.6, 128.4 (d, J_{CF} = 1.9 Hz), 127.4, 125.9, 123.9, 123.8, 123.8, 122.4, 122.2, 119.6, 109.5, 108.9, 104.6 (d, J_{CF} = 17.5 Hz), 64.4, 47.0, 31.7, 29.8, 28.0, 21.8, 20.6 (d, J_{CF} = 5.3 Hz), 16.8, 14.0. ¹⁹F NMR (471 MHz, CDCl₃) δ -119.8 (d, J = 37.2 Hz).

HRMS (ESI) calcd for C₄₄H₄₂FN₄O₂ [M+H]⁺: 677.3286 Found: 677.3261.

(Z)-(1-Fluoroprop-1-en-1-yl)benzene (95)

Prepared following the general procedure (condition A): 2,6-dichloropyridinium tetrafluoroborate (5.0 mmol, 1.18 g, 1.0 equiv), LiBF₄ (1.25 mmol, 117 mg, 0.25 equiv), dry CHCl₃ (25 mL), 1-phenyl-1-propyne (5.0 mmol, 580 mg, 1.0 equiv) at 70 °C. The reaction mixture was quenched after

12 h, and the crude residue was purified by flash column chromatography (hexanes) to provide the title compound **95** with spectral properties identical to the reported in the literature^[18]. Pale yellow oil (394 mg, 58% yield, Z/E > 50: 1).

¹**H** NMR (500 MHz, CDCl₃) δ 7.49 (d, *J* = 7.4 Hz, 2H), 7.35 (t, *J* = 7.7 Hz, 2H), 7.32 – 7.27 (m, 1H), 5.44 (dq, *J* = 37.2, 7.1 Hz, 1H), 1.82 (dd, *J* = 7.1, 2.5 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 157.3 (d, $J_{C-F} = 245.5$ Hz), 132.9 (d, $J_{C-F} = 29.1$ Hz), 128.4 (d, $J_{C-F} = 2.0$ Hz), 128.2, 123.7 (d, $J_{C-F} = 6.9$ Hz), 100.6 (d, $J_{C-F} = 18.2$ Hz), 9.4 (d, $J_{C-F} = 6.7$ Hz). ¹⁹F NMR (471 MHz, CDCl₃) δ -121.6 (d, J = 37.2 Hz).

(Z)-(3-Bromo-1-fluoroprop-1-en-1-yl)benzene (96)

A solution of (*Z*)-(1-fluoroprop-1-en-1-yl)benzene **95** (300 mg, 2.2 mmol, 1.0 equiv), NBS (432 mg, 2.4 mmol, 1.1 equiv) and AIBN (36 mg, 0.22 mmol, 0.1 equiv) in dry CCl₄ (10 mL) was refluxed for 12 h under a nitrogen atmosphere. After completion of the reaction monitored by TLC, the reaction mixture was then cooled to room temperature. The floated succinimide was filtered off and the filtrate was washed with H₂O and brine and dried with Na₂SO₄. The solution was filtered and concentrated. The residue was purified by column chromatography on silica gel (hexanes) to provide product **96** with spectral properties identical to the reported in the literature^[19]. Pale yellow oil (433 mg, 92% yield, *Z/E* > 50 : 1).

¹**H** NMR (500 MHz, CDCl₃) δ 7.60 – 7.50 (m, 2H), 7.46 – 7.34 (m, 3H), 5.79 (dt, *J* = 33.0, 8.6 Hz, 1H,), 4.27 (dd, *J* = 8.6, 1.7 Hz, 2H).

¹³C NMR (126 MHz, CDCl₃) δ 159.9 (d, $J_{C-F} = 256.0$ Hz), 131.3 (d, $J_{C-F} = 27.8$ Hz), 130.0, 128.5, 124.8 (d, $J_{C-F} = 7.2$ Hz), 102.7 (d, $J_{C-F} = 15.4$ Hz), 24.5 (d, $J_{C-F} = 9.1$ Hz,). ¹⁹F NMR (471 MHz, CDCl₃) δ -115.0 (d, J = 33.0 Hz)

(Z)-1-Benzhydryl-4-(3-fluoro-3-phenylallyl)piperazine (97)

A solution of the (Z)-(3-bromo-1-fluoroprop-1-en-1-yl)benzene **96** (43 mg, 0.2 mmol, 1 equiv) in THF (0.5 M) was added dropwise to a solution of 1-(diphenylmethyl)piperazine (101 mg, 0.4 mmol, 2.0 equiv) in THF (2.5 M) at room temperature. 1 M aq NaOH (0.4 ml, 0.4 mmol, 2 equiv) was then added in one portion, and the reaction was stirred at room temperature for 6 h. The reaction was diluted with Et_2O (10 ml). The organic layer was separated and the aqueous layer was extracted with Et_2O (2×10 ml). The combined organics were washed with brine, dried (MgSO₄) and concentrated in vacuo. The
residue was purified by flash column chromatography (hexane/EtOAc = 5 : 1) to afford the product **97**. Pale yellow oil (68 mg, 88% yield, Z/E > 50 : 1).

¹**H** NMR (500 MHz, CDCl₃) δ 7.47 – 7.40 (m, 2H), 7.34 (d, J = 7.2 Hz, 4H), 7.31 – 7.22 (m, 3H), 7.18 (dd, J = 8.4, 6.8 Hz, 4H), 7.09 (t, J = 7.3 Hz, 2H), 5.46 (dt, J = 36.7, 7.4 Hz, 1H), 4.16 (s, 1H), 3.22 (dd, J = 7.4, 1.8 Hz, 2H), 2.81 – 2.06 (m, 8H).

¹³**C** NMR (126 MHz, CDCl₃) δ 158.6 (d, $J_{C-F} = 249.9$ Hz), 142.7, 132.1 (d, $J_{C-F} = 28.9$ Hz), 128.9, 128.5, 128.4, 127.9, 126.9, 124.2(d, $J_{C-F} = 7.1$ Hz), 102.0 (d, $J_{C-F} = 15.1$ Hz), 76.1, 53.2, 51.9 (d, $J_{C-F} = 4.6$ Hz), 51.8.

¹⁹**F NMR** (471 MHz, CDCl₃) δ -117.7 (d, J = 36.2 Hz).

HRMS (APCI) calcd for $C_{26}H_{28}FN_2$ [M+H]⁺: 387.2231, Found: 387.2212.

(Z)-1-(Bis(4-fluorophenyl)methyl)-4-(3-fluoro-3-phenylallyl)piperazine (98)

A solution of the (*Z*)-(3-bromo-1-fluoroprop-1-en-1-yl)benzene **96** (43 mg, 0.2 mmol, 1 equiv) in THF (0.5 M) was added dropwise to a solution of 4,4'-difluorobenzhydrylpiperazine (115 mg, 0.4 mmol, 2.0 equiv) in THF (2.5 M) at room temperature. 1 M aq NaOH (0.4 ml, 0.4 mmol, 2 equiv) was then added in one portion, and the reaction was stirred at room temperature for 6 h. The reaction was diluted with Et₂O (10 ml). The organic layer was separated and the aqueous layer was extracted with Et₂O (2×10 ml). The combined organics were washed with brine, dried (MgSO₄) and concentrated in vacuo. The residue was purified by flash column chromatography (hexane/EtOAc = 1 : 1) to afford the product **98**. Pale yellow oil (73 mg, 86% yield, *Z/E* > 50 : 1).

¹**H** NMR (500 MHz, CDCl₃) δ 7.51 (d, *J* = 6.9 Hz, 2H), 7.34 (t, *J* = 6.8 Hz, 7H), 6.96 (t, *J* = 8.6 Hz, 4H), 5.53 (dt, *J* = 36.6, 7.3 Hz, 1H), 4.23 (s, 1H), 3.30 (d, *J* = 6.6 Hz, 2H), 2.87 – 2.51 (m, 4H), 2.51 – 2.13 (m, 4H).

¹³**C NMR** (126 MHz, CDCl₃) δ 161.8 (d, $J_{C-F} = 245.5$ Hz), 158.7 (d, $J_{C-F} = 250.1$ Hz), 138.2 (d, $J_{C-F} = 3.1$ Hz), 132.0 (d, $J_{C-F} = 28.9$ Hz), 129.2 (d, $J_{C-F} = 7.8$ Hz), 129.0, 128.5 (d, $J_{C-F} = 1.8$ Hz), 124.2 (d, $J_{C-F} = 7.1$ Hz), 115.4 (d, $J_{C-F} = 21.2$ Hz), 101.8 (d, $J_{C-F} = 15.2$ Hz), 74.4, 53.1, 51.8 (d, $J_{C-F} = 4.6$ Hz), 51.6.

¹⁹**F NMR** (471 MHz, CDCl₃) δ -115.7 (s, 2F), -117.5 (d, J = 35.3 Hz, 1F). **HRMS** (ESI) calcd for C₂₆H₂₆F₃N₂ [M+H]⁺: 423.2043, Found: 423.2023.

(Z)-3-Fluoro-N-methyl-N-(naphthalen-1-ylmethyl)-3-phenylprop-2-en-1-amine (99)

A solution of the (*Z*)-(3-bromo-1-fluoroprop-1-en-1-yl)benzene **96** (43 mg, 0.2 mmol, 1 equiv) in THF (0.5 M) was added dropwise to a solution of 1-methyl-aminomethyl naphthalene (68 mg, 0.4 mmol, 2.0 equiv) in THF (2.5 M) at room temperature. 1 M aq NaOH (0.4 ml, 0.4 mmol, 2 equiv) was then added in one portion, and the reaction was stirred at room temperature for 6 h. The reaction was diluted with Et₂O (10 ml). The organic layer was separated and the aqueous layer was extracted with Et₂O (2×10 ml). The combined organics were washed with brine, dried (MgSO₄) and concentrated in vacuo. The residue was purified by flash column chromatography (hexane/EtOAc = 5 : 1) to afford the product **99** with spectral properties identical to the reported in the literature^[20]. Pale yellow oil (48 mg, 79% yield, Z/E > 50 : 1).

¹**H** NMR (500 MHz, CDCl₃) δ 8.31 (d, *J* = 8.3 Hz, 1H), 7.82 (dd, *J* = 35.1, 8.0 Hz, 2H), 7.57 – 7.52 (m, 3H), 7.51 – 7.45 (m, 2H), 7.44 – 7.40 (m, 1H), 7.39 – 7.31 (m, 3H), 5.64 (dt, *J* = 37.1, 7.3 Hz, 1H), 3.99 (s, 2H), 3.43 (dd, *J* = 7.2, 1.6 Hz, 2H), 2.32 (s, 3H).

¹³**C NMR** (126 MHz, CDCl₃) δ 158.4 (d, $J_{C-F} = 249.2$ Hz), 134.7, 133.8, 132.5, 132.2 (d, $J_{C-F} = 28.9$ Hz), 128.9, 128.46, 128.45, 128.0, 127.5, 125.9, 125.6, 125.1, 124.6, 124.2 (d, $J_{C-F} = 7.1$ Hz), 103.0 (d, $J_{C-F} = 15.3$ Hz), 60.0, 51.4 (d, $J_{C-F} = 4.4$ Hz), 42.4.

¹⁹**F NMR** (471 MHz, CDCl₃) δ -117.8 (d, J = 37.0 Hz).

(Z)-4-Bromo-2-fluoro-1-(2-fluoro-2-phenylvinyl)benzene (100)

Prepared following the general procedure (**condition D**): 2,6-dichloropyridinium tetrafluoroborate (0.4 mmol, 94 mg, 2.0 equiv) dry DCE (2.0 mL), 4-bromo-2-fluoro-1-(phenylethynyl)benzene (0.2 mmol, 55 mg, 1.0 equiv) at 100 °C. The reaction mixture was quenched after 12 h, and the crude residue was purified by flash column chromatography (hexanes) to provide the title compound **100**. Pale yellow oil (28 mg, 47% yield, r.r. > 50 : 1, Z/E > 50 : 1).

¹**H NMR** (500 MHz, CDCl₃) δ 7.85 (t, *J* = 8.3 Hz, 1H), 7.70 – 7.61 (m, 2H), 7.46 – 7.36 (m, 3H), 7.32 – 7.28 (m, 1H), 7.26 (dd, *J* = 9.8, 1.8 Hz, 1H), 6.50 (d, *J* = 39.0 Hz, 1H).

¹³**C** NMR (126 MHz, CDCl₃) δ 159.4 (dd, *J*_{C-F} = 253.7, 1.0 Hz), 158.7 (dd, *J*_{C-F} = 261.1, 2.3 Hz), 132.3 (d, *J*_{C-F} = 27.5 Hz), 130.9 (dd, *J*_{C-F} = 14.9, 3.1 Hz), 129.6, 128.7 (d, *J*_{C-F} = 2.1 Hz), 127.6 (d, *J*_{C-F} = 3.6 Hz), 124.5 (d, *J*_{C-F} = 7.6 Hz), 120.9 (dd, *J*_{C-F} = 10.0, 3.2 Hz), 120.8 (dd, *J*_{C-F} = 11.9, 3.2 Hz), 118.9 (d, *J*_{C-F} = 25.6 Hz), 96.2 (dd, *J*_{C-F} = 9.4, 7.1 Hz).

$$\label{eq:stars} \begin{split} \mbox{19F NMR (471 MHz, CDCl_3) δ -111.3 (dd, J = 39.0, $3.5 Hz, $1F$), $-113.9 - -114.1 (m, $1F$).} \\ \mbox{$HRMS (APCI) calcd for C_{14}H9BrF_2 [M]^+: $293.9850, Found: $293.9864.$} \end{split}$$

9. X-ray structures of product 22

Datablock: RuiGuo2_a

Bond precision:	C-C = 0.0077	A V	laveleng	th=1.54178
Cell:	a=5.6338(4)	b=9.0435(7)	C=16.2254(14)
	alpha=74.325(6)	beta=89.1	.46(6)	gamma=82.210(5)
Temperature:	150 K			
	Calculated		Reporte	d
Volume	788.38(11)		788.38(11)
Space group	P -1		P -1	
Hall group	-P 1		-P 1	
Moiety formula	C15 H16 F4 O3	S	?	
Sum formula	C15 H16 F4 O3	S	C15 H16	F4 O3 S
Mr	352.34		352.34	
Dx,g cm-3	1.484		1.484	
Z	2		2	
Mu (mm-1)	2.342		2.342	
F000	364.0		364.0	
F000'	366.06			
h,k,lmax	6,10,19		6,10,19	
Nref	2886		2770	
Tmin, Tmax	0.932,0.988		0.650,0	.880
Tmin'	0.626			
Correction meth AbsCorr = MULTI	nod= # Reported I-SCAN	T Limits: Tm	in=0.650	0 Tmax=0.880
Data completene	ess= 0.960	Theta(ma	ax)= 68.	331
R(reflections)=	■ 0.0791(1917)	wR2(ref]	lections)= 0.2040(2770)
S = 1.223	Npai	r= 212		

10. Cartesian coordinates (Å) and energies of optimized structures

2,6-dichloropyridinium-tetrafluoroborate F

M06-2X SCF energy in solution:	-1592.51622503 a.u.	
M06-2X enthalpy in solution:	-1592.403628 a.u.	
M06-2X free energy in solution:	-1592.460383 a.u.	
M06-2X free energy in solution after	quasi-harmonic correction:	-1592.456444 a.u.

Cartesian coordinates

ATOM	Х	Y	Z
В	2.487699	0.129212	0.252608
F	1.493814	-0.045602	1.233381
F	3.334145	-0.970251	0.207487
F	1.791677	0.230042	-1.010268
F	3.190017	1.307244	0.467682
С	-1.520308	1.091930	-0.103642
С	-1.249743	-1.244879	-0.122188
С	-2.518176	-1.432283	0.395625
С	-3.289382	-0.302808	0.660825
С	-2.797156	0.977225	0.413716
Н	-2.881153	-2.435343	0.584860
Н	-4.287998	-0.421090	1.069025
Н	-3.378836	1.867929	0.618481
N	-0.787377	-0.005114	-0.361583
Н	0.194316	0.106720	-0.706423
Cl	-0.784128	2.594186	-0.443721
Cl	-0.193016	-2.532802	-0.488542

101

M06-2X SCF energy in solution: -539.37926831 a.u. S76

M06-2X enthalpy in solution: -539.173770 a.u. M06-2X free energy in solution: -539.224038 a.u.

M06-2X free energy in solution after quasi-harmonic correction: -539.221504 a.u.

ATOM	Х	Y	Z
С	-2.040586	0.000084	0.000022
С	-2.748722	1.213047	0.000020
С	-2.748722	-1.212879	-0.000006
С	-4.140432	1.208276	-0.000010
Н	-2.200056	2.150201	0.000042
С	-4.140432	-1.208108	-0.000033
Н	-2.200056	-2.150034	-0.000003
С	-4.839484	0.000084	-0.000037
Н	-4.680914	2.150316	-0.000011
Н	-4.680914	-2.150148	-0.000054
Н	-5.925634	0.000084	-0.000060
С	-0.606903	0.000083	0.000058
С	0.606903	-0.000083	0.000058
С	2.040586	-0.000084	0.000022
С	2.748722	1.212879	-0.000006
С	2.748722	-1.213047	0.000020
С	4.140432	1.208108	-0.000033
Н	2.200056	2.150034	-0.000003
С	4.140432	-1.208276	-0.000010
Н	2.200056	-2.150201	0.000042
С	4.839484	-0.000084	-0.000037
Н	4.680914	2.150148	-0.000054
Н	4.680914	-2.150316	-0.000011
Н	5.925634	-0.000084	-0.000060
			5//

TS-1

M06-2X SCF energy in solution:	-2131.87055224 a.u.	
M06-2X enthalpy in solution:	-2131.557413 a.u.	
M06-2X free energy in solution:	-2131.639127 a.u.	
M06-2X free energy in solution a	after quasi-harmonic correction:	-2131.633758 a.u.
Imaginary frequency:	-993.3685 cm-1	

ATOM	Х	Y	Ζ
С	-1.532541	-2.115855	-0.016755
С	-2.198126	-2.334267	1.210115
С	-2.196589	-2.332192	-1.244902
С	-3.512896	-2.770210	1.200245
Н	-1.673821	-2.141177	2.140707
С	-3.511150	-2.768639	-1.237640
Н	-1.670806	-2.137634	-2.174331
С	-4.165669	-2.979712	-0.019276
Н	-4.039770	-2.931906	2.134854
Н	-4.036585	-2.929231	-2.173249
Н	-5.200836	-3.308835	-0.020215
С	-0.204926	-1.680022	-0.015860
С	0.957912	-1.209016	-0.016658
В	-2.382163	1.102267	-0.009443
F	-3.659601	0.527631	-0.019374
F	-1.663934	0.684970	-1.148974
F	-2.478413	2.503368	-0.013867
F	-1.684854	0.689476	1.144483
С	0.731777	2.158340	1.172569
С	0.739209	2.192094	-1.122331
			5/8

С	0.479405	3.553432	-1.164534
С	0.334436	4.212160	0.053528
С	0.471359	3.517970	1.252549
Н	0.389206	4.068303	-2.113522
Н	0.118494	5.275760	0.068436
Н	0.375051	4.005048	2.215496
Ν	0.848776	1.514491	0.015806
Н	0.786221	0.060607	-0.006863
Cl	0.975731	1.213012	2.600293
Cl	0.993019	1.287808	-2.575244
С	2.367483	-1.613430	-0.013466
С	3.378938	-0.651787	-0.111538
С	2.705315	-2.971547	0.086929
С	4.716089	-1.044396	-0.112281
Н	3.124185	0.401394	-0.188593
С	4.041495	-3.355992	0.086555
Н	1.917564	-3.715564	0.166465
С	5.049682	-2.394089	-0.013734
Н	5.496031	-0.292929	-0.190342
Н	4.297470	-4.408527	0.164505
Н	6.092231	-2.698081	-0.014113

TS-1a

M06-2X SCF energy in solution:	-2131.86519752 a.u.	
M06-2X enthalpy in solution:	-2131.552472 a.u.	
M06-2X free energy in solution:	-2131.642231 a.u.	
M06-2X free energy in solution a	after quasi-harmonic correction:	-2131.63056 a.u.
Imaginary frequency:	-892.0643 cm-1	

ATOM	Х	Y	Z
С	1.123860	-1.560260	0.045977
С	1.345068	-2.230780	1.265563
С	1.387896	-2.193690	-1.184427
С	1.808387	-3.537909	1.246268
Н	1.165105	-1.709496	2.200726
С	1.851532	-3.501078	-1.187707
Н	1.242482	-1.643882	-2.109116
С	2.059457	-4.167366	0.023339
Н	1.989644	-4.064066	2.177860
Н	2.066592	-3.998915	-2.127633
Н	2.433145	-5.187302	0.014514
С	0.662128	-0.230700	0.057083
С	0.023221	0.839001	0.060703
В	3.911111	0.248584	-0.048835
F	4.336287	-1.086892	-0.078427
F	3.092520	0.509786	-1.168896
F	3.157382	0.480364	1.122140
F	5.018720	1.107922	-0.069252
С	-3.084184	-0.707696	1.097975
С	-3.032975	-0.605010	-1.195717
С	-4.295402	-1.168926	-1.309678
С	-4.953498	-1.505226	-0.129341
С	-4.349967	-1.275497	1.104573
Н	-4.740203	-1.333575	-2.284091
Н	-5.944008	-1.947004	-0.170588
Н	-4.838676	-1.524427	2.039191
Ν	-2.444279	-0.382901	-0.022790
Н	-1.104692	0.192035	0.028985
Cl	-2.248894	-0.377426	2.576204
			S80

Cl	-2.135129	-0.143363	-2.600023
С	-0.041385	2.291920	0.072133
С	-1.279410	2.943998	0.115850
С	1.148531	3.032436	0.038345
С	-1.328148	4.335499	0.127375
Н	-2.198516	2.363422	0.140861
С	1.088652	4.422222	0.049868
Н	2.100262	2.512141	0.002534
С	-0.145371	5.074562	0.094513
Н	-2.288167	4.841532	0.162018
Н	2.009630	4.996738	0.023781
Н	-0.184359	6.159976	0.103340

102

M06-2X SCF energy in solution:	-964.41616323 a.u.	
M06-2X enthalpy in solution:	-964.177906 a.u.	
M06-2X free energy in solution:	-964.246903 a.u.	
M06-2X free energy in solution after	er quasi-harmonic correction:	-964.2347879 a.u.

ATOM	Х	Y	Z
С	0.869874	-1.054748	0.025923
С	1.465178	-1.379205	-1.230569
С	1.432237	-1.536403	1.246857
С	2.583115	-2.185075	-1.253991
Н	1.031248	-0.973074	-2.138409
С	2.552265	-2.337260	1.198494
Н	0.972343	-1.249241	2.187185
С	3.119303	-2.654232	-0.045736
Н	3.058639	-2.440150	-2.194603
			581

Н	3.004175	-2.709047	2.111379
Н	4.008891	-3.277568	-0.072814
С	-0.212005	-0.229672	0.062640
С	-1.230384	0.565282	0.090988
В	2.282216	1.885826	-0.002658
F	3.229446	0.852947	0.084687
F	1.392770	1.795076	1.092940
F	2.918600	3.129745	0.006759
F	1.535447	1.735784	-1.190594
Н	-0.947044	1.621759	0.164594
С	-2.664780	0.219186	0.038004
С	-3.104187	-1.111077	-0.012759
С	-3.597066	1.261753	0.040525
С	-4.465363	-1.388374	-0.062783
Н	-2.384304	-1.926206	-0.010755
С	-4.960375	0.976978	-0.010135
Н	-3.251632	2.291004	0.081006
С	-5.395971	-0.345805	-0.061981
Н	-4.802844	-2.419695	-0.101754
Н	-5.679585	1.790443	-0.008579
Н	-6.458381	-0.567423	-0.100945

102a

M06-2X SCF energy in solution:	-964.40841636 a.u.	
M06-2X enthalpy in solution:	-964.170289 a.u.	
M06-2X free energy in solution:	-964.238669 a.u.	
M06-2X free energy in solution after qua	si-harmonic correction:	-964.2324213 a.u.

ATOM	Х	Y	Z
			S82

С	1.478305	-1.428117	-0.197537
С	2.035789	-1.881843	1.039504
С	2.273646	-0.687091	-1.126087
С	3.350140	-1.592611	1.330074
Н	1.405208	-2.431783	1.731124
С	3.588960	-0.417445	-0.815897
Н	1.819793	-0.336883	-2.046329
С	4.115072	-0.862307	0.405661
Н	3.792175	-1.913897	2.266738
Н	4.207586	0.154952	-1.498042
Н	5.148404	-0.629429	0.647903
С	0.158235	-1.637238	-0.443671
С	-1.095488	-1.884721	-0.645270
В	0.736519	2.048952	-0.121072
F	1.895632	2.621236	-0.666029
F	-0.158830	3.047805	0.281013
F	0.121880	1.227579	-1.091671
F	1.083953	1.254095	0.993110
Н	-1.288470	-2.810495	-1.199009
С	-2.260152	-1.084094	-0.216385
С	-3.531160	-1.473008	-0.653033
С	-2.112861	0.032329	0.617394
С	-4.651901	-0.741754	-0.265432
Н	-3.638204	-2.341599	-1.297320
С	-3.235862	0.757641	0.998194
Н	-1.125608	0.335987	0.954761
С	-4.505146	0.373672	0.558188
Н	-5.636963	-1.043582	-0.608517
Н	-3.117151	1.629271	1.634664
Н	-5.378535	0.945761	0.857355
			<u>c</u>

S83

103

M06-2X SCF energy in solution:	-1167.45474965 a.u.	
M06-2X enthalpy in solution:	-1167.377050 a.u.	
M06-2X free energy in solution:	-1167.416368 a.u.	
M06-2X free energy in solution after	quasi-harmonic correction:	-1167.416368 a.u.

Cartesian coordinates

ATOM	Х	Y	Z
С	-0.000107	0.007883	1.126557
С	-0.000107	0.007883	-1.126557
С	0.000225	1.396731	-1.204520
С	0.000384	2.093988	0.000000
С	0.000225	1.396731	1.204520
Н	0.000382	1.903073	-2.162426
Н	0.000656	3.179640	0.000000
Н	0.000382	1.903073	2.162426
N	-0.000215	-0.683646	0.000000
Cl	-0.000107	-0.929987	2.598735
Cl	-0.000107	-0.929987	-2.598735

TS-2

M06-2X SCF energy in solution:	-964.40352766 a.u.	
M06-2X enthalpy in solution:	-964.166138 a.u.	
M06-2X free energy in solution:	-964.230824 a.u.	
M06-2X free energy in solution a	after quasi-harmonic correction:	-964.226443 a.u.
Imaginary frequency:	-298.9906 cm-1	

ATOM	Х	Y	Z
			S84

С	0.781630	0.881718	-0.188517
С	1.171834	1.306299	1.102188
С	1.178676	1.599151	-1.340710
С	1.934316	2.456137	1.231802
Н	0.869345	0.725922	1.967745
С	1.949519	2.739012	-1.193105
Н	0.878038	1.241144	-2.320612
С	2.323707	3.161232	0.088637
Н	2.239940	2.799117	2.214615
Н	2.266732	3.300345	-2.065632
Н	2.931999	4.054760	0.196733
С	-0.011899	-0.261181	-0.319628
С	-1.081828	-1.004849	-0.328497
В	2.476120	-1.784826	0.126614
F	3.375219	-0.769400	-0.165824
F	1.333334	-1.638444	-0.788220
F	3.015654	-3.038585	-0.099135
F	1.972012	-1.659898	1.417697
Н	-0.960552	-2.072620	-0.497195
С	-2.456380	-0.494592	-0.129199
С	-3.505332	-1.415920	-0.230995
С	-2.739587	0.849185	0.152602
С	-4.823577	-0.999758	-0.055917
Н	-3.283831	-2.457519	-0.447364
С	-4.056871	1.258858	0.326594
Н	-1.934865	1.574421	0.239911
С	-5.101650	0.337049	0.222760
Н	-5.630472	-1.721899	-0.136566
Н	-4.269746	2.300861	0.545815
Н	-6.128495	0.662499	0.360719
			585

TS-2a

M06-2X SCF energy in solution	: -964.40227439 a.u.	
M06-2X enthalpy in solution:	-964.165129 a.u.	
M06-2X free energy in solution:	-964.228789 a.u.	
M06-2X free energy in solution	after quasi-harmonic correction:	-964.2250332 a.u.
Imaginary frequency:	-292.5851 cm-1	

ATOM	Х	Y	Z
С	1.712099	-0.998451	0.056276
С	2.392291	-0.746661	1.267958
С	2.424716	-1.214180	-1.144658
С	3.778516	-0.742189	1.275884
Н	1.820884	-0.557336	2.170830
С	3.808272	-1.197686	-1.121002
Н	1.876399	-1.379196	-2.067063
С	4.478123	-0.961887	0.085813
Н	4.317001	-0.553958	2.198682
Н	4.371522	-1.358621	-2.034142
Н	5.564321	-0.944501	0.096004
С	0.311570	-1.006421	0.046051
С	-0.879740	-1.483084	0.244170
В	0.598209	1.935971	-0.178101
F	-0.024945	0.772315	-0.815334
F	1.918346	1.994878	-0.599582
F	-0.123748	3.051378	-0.567077
F	0.515525	1.726623	1.199247
Н	-0.780189	-2.536038	0.541233
С	-2.250681	-0.950152	0.147460
			\$86

С	-2.564010	0.378318	0.458797
С	-3.267954	-1.839470	-0.221545
С	-3.884092	0.811912	0.373011
Н	-1.786159	1.060601	0.780987
С	-4.583988	-1.395279	-0.317019
Н	-3.023892	-2.875501	-0.441874
С	-4.893248	-0.067655	-0.021465
Н	-4.122542	1.842688	0.617193
Н	-5.366123	-2.086882	-0.615280
Н	-5.920118	0.279451	-0.089737

E-81

M06-2X SCF energy in solution:	-639.85885185 a.u.	
M06-2X enthalpy in solution:	-639.637084 a.u.	
M06-2X free energy in solution:	-639.689604 a.u.	
M06-2X free energy in solution after qu	uasi-harmonic correction:	-639.6874278 a.u.

ATOM	Х	Y	Z
С	-1.535580	0.403490	-0.099976
С	-1.183347	-0.686935	-0.906020
С	-2.739908	0.373415	0.614401
С	-2.013365	-1.802157	-0.973266
Н	-0.264636	-0.655223	-1.484799
С	-3.567119	-0.745736	0.544972
Н	-3.023047	1.223768	1.228000
С	-3.204045	-1.836648	-0.244682
Н	-1.735263	-2.641970	-1.603299
Н	-4.495739	-0.764446	1.107859
Н	-3.850289	-2.707986	-0.299509
			587

С	-0.671683	1.595066	-0.021181
С	0.657490	1.727658	0.002226
F	-1.402725	2.748116	0.012455
Н	1.037153	2.747046	-0.039612
С	1.658269	0.646449	0.092359
С	1.479199	-0.472682	0.919214
С	2.853893	0.762791	-0.630422
С	2.455877	-1.462294	0.992828
Н	0.574323	-0.561531	1.514459
С	3.831200	-0.228584	-0.557507
Н	3.012630	1.635788	-1.259136
С	3.633254	-1.347702	0.250822
Н	2.301360	-2.321438	1.639576
Н	4.748405	-0.124005	-1.130216
Н	4.394812	-2.119838	0.311974

Z-71

M06-2X SCF energy in solution:	-639.86258720 a.u.	
M06-2X enthalpy in solution:	-639.640351 a.u.	
M06-2X free energy in solution:	-639.694215 a.u.	
M06-2X free energy in solution after q	uasi-harmonic correction:	-639.6907399 a.u.

ATOM	Х	Y	Z
С	-1.943555	-0.076036	-0.023333
С	-2.846005	-1.113410	0.249923
С	-2.442233	1.210332	-0.281575
С	-4.216762	-0.864521	0.282062
Н	-2.474406	-2.114207	0.443527
С	-3.811003	1.453246	-0.245017 \$88

Н	-1.764488	2.021334	-0.530564
С	-4.704649	0.418062	0.038618
Н	-4.903311	-1.677669	0.499079
Н	-4.182678	2.452953	-0.450194
Н	-5.773203	0.610778	0.061982
С	-0.499371	-0.355748	-0.035126
С	0.513423	0.517344	0.041938
F	-0.231310	-1.684999	-0.112165
Н	0.222964	1.558359	0.149014
С	1.959902	0.271347	0.023037
С	2.558255	-0.984935	-0.186329
С	2.801702	1.380387	0.221841
С	3.945134	-1.114290	-0.190038
Н	1.946315	-1.862968	-0.351026
С	4.186807	1.247158	0.219377
Н	2.355459	2.359190	0.380789
С	4.766514	-0.004829	0.013650
Н	4.386793	-2.093171	-0.354760
Н	4.812392	2.121109	0.377393
Н	5.847003	-0.115349	0.010075

BF3

M06-2X SCF energy in solution:	-324.56269572 a.u.	
M06-2X enthalpy in solution:	-324.546035 a.u.	
M06-2X free energy in solution:	-324.576705 a.u.	
M06-2X free energy in solution after	quasi-harmonic correction:	-324.5767052 a.u.

ATOM	Х	Y	Z
В	-0.000001	0.000130	-0.000102 \$89

F	-1.150308	0.643185	0.000019
F	1.132233	0.674490	0.000019
F	0.018076	-1.317747	0.000019

TS-1b

M06-2X SCF energy in solution:	-2131.86614792 a.u.	
M06-2X enthalpy in solution:	-2131.552661 a.u.	
M06-2X free energy in solution:	-2131.639469 a.u.	
M06-2X free energy in solution	after quasi-harmonic correction:	-2131.630094 a.u.
Imaginary frequency:	-202.0959 cm-1	

ATOM	Х	Y	Z
С	-3.724356	0.200553	0.100745
С	-4.425915	-0.183080	-1.067397
С	-4.277210	-0.029735	1.383520
С	-5.663200	-0.792903	-0.944519
Н	-3.981950	0.005316	-2.040251
С	-5.515933	-0.640137	1.487490
Н	-3.720032	0.272979	2.264995
С	-6.201828	-1.018494	0.327537
Н	-6.212563	-1.095081	-1.829937
Н	-5.952523	-0.825406	2.463302
Н	-7.172621	-1.497603	0.416748
С	-2.474886	0.810204	-0.010714
С	-1.274679	1.179146	-0.094706
В	3.958708	-0.255703	-0.019658
F	2.925417	-0.408662	-0.968858
F	3.400730	0.201404	1.187848
F	4.588252	-1.495056	0.189270
			\$90

F	4.892890	0.678445	-0.492047
С	0.398775	-1.972067	-1.021661
С	0.860373	-1.454351	1.152568
С	1.809590	-2.458923	1.258098
С	2.025609	-3.249054	0.133247
С	1.305654	-3.019831	-1.036093
Н	2.369285	-2.596012	2.175423
Н	2.770972	-4.037239	0.163826
Н	1.458824	-3.608177	-1.932673
N	0.171238	-1.214000	0.042891
Н	-0.739550	0.079232	-0.045525
Cl	-0.516838	-1.575087	-2.444943
Cl	0.498507	-0.431193	2.505729
С	-0.378631	2.329117	-0.199312
С	1.003643	2.122671	-0.251904
С	-0.905537	3.628675	-0.238692
С	1.859798	3.217985	-0.344773
Н	1.416664	1.117697	-0.228970
С	-0.042996	4.714483	-0.331349
Н	-1.980867	3.777057	-0.196389
С	1.339170	4.510502	-0.383816
Н	2.932094	3.052384	-0.384572
Н	-0.447484	5.721866	-0.361862
Н	2.008934	5.362531	-0.454961

TS-1c

M06-2X SCF energy in solution:	-2131.86454140 a.u.
M06-2X enthalpy in solution:	-2131.551715 a.u.
M06-2X free energy in solution:	-2131.640038 a.u.

-2131.629656 a.u.

Imaginary frequency:

-636.7487 cm-1

Cartesian coordinates

ATOM Y Ζ Х С 0.873374 -1.821826 -0.650960 С 1.343452 -2.414239 0.538662 С 0.668886 -2.594885 -1.812600 С 1.593917 -3.779017 0.560073 Н 1.519424 -1.790928 1.409402 С 0.921819 -3.957854 -1.773294 Н 0.321610 -2.112206 -2.721043 С 1.383077 -4.544232 -0.590158 Н 1.965527 -4.246639 1.465991 Н 0.770239 -4.564740 -2.660059 -5.610826 -0.567502 Η 1.587973 С 0.610115 -0.438942 -0.680865 С 0.130394 0.711014 -0.644915 В 3.739834 0.081124 0.631857 F 4.330637 -1.143129 0.975408 F 3.289686 0.026962 -0.707202 F 2.635112 0.323578 1.472484 F 4.668867 1.122560 0.764131 С -2.553426 -0.012731 1.609912 С -3.326285 -0.534418 -0.485064 С -4.583973 -0.871667 -0.007291 С -4.795035 -0.758636 1.364861 С -3.770465 -0.323838 2.200875 Н -5.360383 -1.208095 -0.683957 Η -5.763398 -1.011691 1.784729 Н -3.903673 -0.226999 3.271777

S92

Ν	-2.338737	-0.115385	0.300596
Н	-0.994506	0.235859	-0.263196
Cl	-1.218676	0.536098	2.561948
Cl	-2.960512	-0.645478	-2.174600
С	0.227579	2.160182	-0.731545
С	-0.934618	2.931140	-0.856672
С	1.485223	2.776173	-0.676178
С	-0.838718	4.317668	-0.936351
Н	-1.906448	2.446038	-0.897916
С	1.568920	4.162849	-0.754768
Н	2.376392	2.166463	-0.570723
С	0.412067	4.933774	-0.884914
Н	-1.739582	4.915463	-1.036908
Н	2.542585	4.641280	-0.710662
н	0.485926	6.015731	-0.944532

104

M06-2X SCF energy in solution:	-2131.87748267 a.u.	
M06-2X enthalpy in solution:	-2131.559682 a.u.	
M06-2X free energy in solution:	-2131.649353 a.u.	
M06-2X free energy in solution after	quasi-harmonic correction:	-2131.638942 a.u.

ATOM	Х	Y	Z
С	2.744147	0.306918	-0.069280
С	3.294321	-0.057903	1.194608
С	3.437273	0.010769	-1.279548
С	4.522159	-0.684612	1.235982
Н	2.727686	0.154329	2.095690
С	4.661844	-0.619695	-1.214497 \$93

Η	2.978342	0.275228	-2.227046
С	5.194284	-0.962927	0.037133
Н	4.958940	-0.977412	2.184409
Н	5.204556	-0.863710	-2.121178
Н	6.155115	-1.468520	0.078350
С	1.515198	0.898358	-0.120489
С	0.336204	1.415802	-0.156497
В	0.765807	-2.308978	-0.080416
F	2.126852	-2.654944	-0.141328
F	0.435107	-1.510674	-1.196183
F	-0.020038	-3.466881	-0.074054
F	0.525986	-1.558019	1.089011
С	-2.373800	-0.928543	1.237836
С	-2.635012	-1.208355	-0.987526
С	-3.117878	-2.502885	-0.845609
С	-3.213774	-2.998652	0.451781
С	-2.837933	-2.204927	1.531173
Н	-3.392246	-3.094556	-1.710713
Н	-3.573064	-4.009014	0.620464
Н	-2.890676	-2.559045	2.553713
N	-2.271677	-0.429262	0.017865
Н	-0.456363	0.648390	-0.220702
Cl	-1.889228	0.134601	2.533614
Cl	-2.496351	-0.507429	-2.578590
С	-0.078254	2.830793	-0.117821
С	0.853830	3.873020	-0.023987
С	-1.445938	3.117321	-0.177175
С	0.414657	5.191533	0.008484
Н	1.917129	3.650401	0.023806
С	-1.879168	4.441713	-0.144318
			594

Η	-2.159877	2.300587	-0.246201
С	-0.951975	5.478387	-0.051946
Н	1.138071	5.998212	0.081182
Н	-2.941651	4.660985	-0.190681
Н	-1.290683	6.509908	-0.026305

104a

M06-2X SCF energy in solution:	-2131.87108908 a.u.	
M06-2X enthalpy in solution:	-2131.553028 a.u.	
M06-2X free energy in solution:	-2131.645117 a.u.	
M06-2X free energy in solution after of	quasi-harmonic correction:	-2131.632398 a.u.

ATOM	Х	Y	Z
С	1.661303	-1.458025	0.291382
С	2.131365	-1.873821	1.571205
С	2.008164	-2.187866	-0.883454
С	2.905924	-3.010705	1.664852
Н	1.872466	-1.284043	2.444720
С	2.777434	-3.326130	-0.765529
Н	1.657830	-1.830163	-1.846507
С	3.221764	-3.728074	0.501919
Н	3.278400	-3.344660	2.627031
Н	3.052495	-3.897688	-1.645191
Н	3.837093	-4.619756	0.585086
С	0.856711	-0.358851	0.183869
С	-0.041240	0.559920	0.077666
В	4.233708	0.474692	-0.107926
F	4.675977	-0.855471	-0.063914
F	3.602287	0.797284	1.114195
			\$95

F	5.314496	1.337908	-0.320805
F	3.294646	0.622177	-1.152220
С	-3.978964	-0.308873	1.022932
С	-3.567107	-1.160612	-1.030068
С	-4.881805	-1.576494	-1.205498
С	-5.767888	-1.315898	-0.163443
С	-5.321834	-0.667120	0.985013
Н	-5.191873	-2.078854	-2.114176
Н	-6.807037	-1.618659	-0.246551
Н	-5.982403	-0.447130	1.815394
N	-3.114345	-0.543593	0.049024
Н	-1.049702	0.106087	0.147984
Cl	-3.338181	0.507819	2.423199
Cl	-2.394311	-1.444930	-2.289291
С	0.003403	2.018381	-0.123595
С	1.195431	2.747747	-0.036072
С	-1.203401	2.670600	-0.404650
С	1.170791	4.124336	-0.236923
Н	2.126378	2.238928	0.190004
С	-1.217938	4.048225	-0.607331
Н	-2.123816	2.094450	-0.465410
С	-0.030825	4.775819	-0.524023
Н	2.095555	4.689420	-0.168904
Н	-2.154546	4.551563	-0.827909
Н	-0.040999	5.850644	-0.680348

TS-2b

M06-2X SCF energy in solution:	-2131.86995998 a.u.
M06-2X enthalpy in solution:	-2131.552879 a.u.
M06-2X free energy in solution:	-2131.639721 a.u. S96

M06-2X free energy in solution after quasi-harmonic correction: -2131.630141 a.u.

Imagina	ry frequency:	-286.3257 cm-1	
Cartesiai	n coordinates		
ATOM	Х	Y	Z
С	0.871012	1.932124	0.051591
С	1.166765	3.003822	-0.820408
С	0.675614	2.155349	1.433573
С	1.277529	4.284555	-0.303122
Н	1.297986	2.807879	-1.879564
С	0.786163	3.441302	1.933922
Н	0.445021	1.314119	2.080416
С	1.082392	4.498306	1.065213
Н	1.504790	5.118837	-0.958313
Н	0.640403	3.630628	2.992249
Н	1.162074	5.506276	1.462405
С	0.771497	0.631446	-0.453836
С	1.141211	-0.564590	-0.812697
В	-1.956042	1.547313	-1.327322
F	-2.118035	2.487234	-0.316934
F	-1.168479	0.438677	-0.773143
F	-3.167904	1.016792	-1.736069
F	-1.231000	2.065979	-2.394213
С	-2.485428	-2.061762	0.032986
С	-1.115083	-1.454767	1.711391
С	-2.017877	-0.528621	2.219445
С	-3.232506	-0.402302	1.549271
С	-3.489855	-1.186233	0.430311
Н	-1.781750	0.061341	3.097635
Н	-3.972988	0.312248	1.894856
			297

Н	-4.415097	-1.108330	-0.127352
Ν	-1.324057	-2.209493	0.646685
Н	0.380221	-1.260822	-1.160244
Cl	-2.723183	-3.042071	-1.391314
Cl	0.427170	-1.674613	2.508610
С	2.537382	-1.047325	-0.721926
С	3.636518	-0.180499	-0.673762
С	2.739373	-2.431989	-0.683171
С	4.923713	-0.699399	-0.573366
Н	3.488843	0.894994	-0.730918
С	4.030369	-2.944936	-0.580233
Н	1.882931	-3.100157	-0.725301
С	5.123301	-2.080579	-0.523397
Н	5.773752	-0.024311	-0.541768
Н	4.180850	-4.019821	-0.547777
Н	6.130030	-2.480894	-0.448023

TS-2c

M06-2X SCF energy in solution:	-2131.86989076 a.u.	
M06-2X enthalpy in solution:	-2131.553127 a.u.	
M06-2X free energy in solution:	-2131.640090 a.u.	
M06-2X free energy in solution a	fter quasi-harmonic correction:	-2131.630167 a.u.
Imaginary frequency:	-285.2250 cm-1	

ATOM	Х	Y	Ζ
С	-0.568602	1.175429	0.307291
С	-1.161784	1.442510	-0.945304
С	-1.064264	1.772048	1.487373
С	-2.259056	2.288716	-1.006475
			598

Н	-0.745633	0.987297	-1.839137
С	-2.158391	2.617332	1.408463
Н	-0.575841	1.564539	2.434612
С	-2.748267	2.873807	0.164817
Н	-2.728647	2.502177	-1.961379
Н	-2.551245	3.085708	2.304910
Н	-3.600776	3.545189	0.109278
С	0.535590	0.310690	0.370158
С	1.146519	-0.832698	0.374350
В	2.095035	2.701262	-0.406134
F	1.995760	1.656158	0.616367
F	1.178228	3.693105	-0.090141
F	3.397844	3.170134	-0.387311
F	1.786937	2.096210	-1.625107
С	-2.806100	-1.285213	0.887963
С	-2.254426	-1.822239	-1.233530
С	-3.398432	-1.233196	-1.762126
С	-4.271849	-0.635090	-0.858450
С	-3.980718	-0.648026	0.503248
Н	-3.588421	-1.238883	-2.829030
Н	-5.176546	-0.152467	-1.215507
Н	-4.633291	-0.188459	1.236513
Ν	-1.954401	-1.860175	0.054140
Н	0.365319	-1.609648	0.419476
Cl	-2.379946	-1.354561	2.577797
Cl	-1.092718	-2.558916	-2.305351
С	2.546537	-1.287203	0.347141
С	2.844215	-2.499579	0.982488
С	3.554950	-0.584084	-0.323118
С	4.148625	-2.986106	0.983787
			\$99

Н	2.052336	-3.052631	1.480974
С	4.854353	-1.083485	-0.327856
Н	3.322501	0.333931	-0.849586
С	5.156204	-2.276799	0.330072
Н	4.375071	-3.920557	1.488457
Н	5.633067	-0.536170	-0.850503
Н	6.173480	-2.657342	0.325014

105

M06-2X SCF energy in solution:	-542.99356576 a.u.	
M06-2X enthalpy in solution:	-542.716477 a.u.	
M06-2X free energy in solution:	-542.770712 a.u.	
M06-2X free energy in solution after c	quasi-harmonic correction:	-542.7671996 a.u.

ATOM	Х	Y	Z
С	-0.388307	-0.281549	-0.282741
С	0.815604	-0.175611	-0.179298
С	2.243893	-0.058579	-0.063999
С	2.814938	1.031509	0.611840
С	3.083277	-1.033746	-0.626065
С	4.198550	1.141001	0.721320
Н	2.166622	1.786420	1.047013
С	4.465978	-0.917591	-0.512623
Н	2.642665	-1.877586	-1.148877
С	5.027575	0.168384	0.160476
Н	4.630525	1.988303	1.246056
Н	5.106624	-1.677370	-0.951012
Н	6.106621	0.256522	0.247627
С	-1.848687	-0.384011	-0.380431
			\$100

С	-2.465194	-0.837442	0.957689
С	-2.470589	0.950015	-0.837386
Н	-2.085469	-1.146042	-1.137970
С	-3.987582	-0.943497	0.849541
Н	-2.197585	-0.103761	1.730807
Н	-2.029727	-1.797126	1.257250
С	-3.992975	0.837104	-0.938204
Н	-2.203045	1.726979	-0.107684
Н	-2.039090	1.246899	-1.799696
С	-4.606420	0.377339	0.386338
Н	-4.406513	-1.243642	1.817004
Н	-4.244241	-1.735838	0.131523
Н	-4.415681	1.802127	-1.240887
Н	-4.250020	0.115244	-1.726922
Н	-5.692960	0.272391	0.285098
Н	-4.429094	1.146522	1.151932

106

M06-2X SCF energy in solution:	-968.02975983 a.u.	
M06-2X enthalpy in solution:	-967.719948 a.u.	
M06-2X free energy in solution:	-967.791208 a.u.	
M06-2X free energy in solution after q	uasi-harmonic correction:	-967.7847027 a.u.

ATOM	Х	Y	Z
С	-1.171873	-1.109432	0.003127
С	-1.795030	-1.301123	1.269409
С	-1.753179	-1.641921	-1.183242
С	-2.964401	-2.030448	1.338988
Н	-1.343516	-0.858802	2.151309
			\$101

С	-2.926692	-2.360680	-1.092045
Н	-1.268324	-1.457801	-2.136913
С	-3.523707	-2.549437	0.163219
Н	-3.459823	-2.185420	2.291148
Н	-3.393752	-2.767427	-1.982254
Н	-4.452755	-3.109421	0.224580
С	-0.031335	-0.357966	-0.080295
С	1.058878	0.317199	-0.142442
В	-2.323901	1.965338	-0.077933
F	-3.376354	1.042369	-0.182710
F	-1.411448	1.748703	-1.136950
F	-2.815908	3.272225	-0.138915
F	-1.643435	1.765535	1.141298
С	2.451458	-0.279877	-0.000541
С	3.243787	-0.032310	-1.292267
С	3.152294	0.351534	1.211165
Н	2.360075	-1.361400	0.162351
С	4.676136	-0.555501	-1.153739
Н	3.263011	1.048462	-1.492664
Н	2.736847	-0.510080	-2.138171
С	4.584962	-0.173846	1.337878
Н	3.168946	1.442827	1.080079
Н	2.580790	0.143318	2.122610
С	5.380538	0.067527	0.053352
Н	5.232176	-0.344667	-2.074140
Н	4.652978	-1.648376	-1.037551
Н	5.076206	0.308010	2.190632
Н	4.557873	-1.251764	1.552073
Н	6.392793	-0.340548	0.152951
Н	5.485876	1.149757	-0.108605
			5102

Н 0.963409 1.394842 -0.307685

106a

M06-2X SCF energy in solution:	-968.03079736 a.u.	
M06-2X enthalpy in solution:	-967.720899 a.u.	
M06-2X free energy in solution:	-967.793033 a.u.	
M06-2X free energy in solution after	er quasi-harmonic correction:	-967.785393 a.u.

ATOM	Х	Y	Z
С	1.800695	-1.186699	0.001977
С	2.490618	-1.054081	1.240664
С	2.494912	-1.061099	-1.235039
С	3.850570	-0.822923	1.231078
Н	1.930123	-1.128526	2.166992
С	3.854763	-0.829614	-1.222038
Н	1.937600	-1.140809	-2.162846
С	4.522136	-0.710353	0.005363
Н	4.396022	-0.713003	2.161925
Н	4.403409	-0.724764	-2.151594
Н	5.591354	-0.517208	0.006657
С	0.451049	-1.413499	0.000348
С	-0.803941	-1.685638	-0.000226
В	0.798636	1.898808	-0.007144
F	2.200922	1.892130	0.000482
F	0.317717	3.211897	-0.013933
F	0.333750	1.215828	-1.154121
F	0.321384	1.223015	1.138957
Н	-1.061603	-2.751243	0.003936
С	-1.952958	-0.687460	-0.003996
			5103

С	-2.803731	-0.896524	-1.263693
С	-2.786288	-0.868856	1.271658
Н	-1.530259	0.319569	-0.017630
С	-3.997993	0.062185	-1.259717
Н	-3.164183	-1.935699	-1.289630
Н	-2.187727	-0.738765	-2.156256
С	-3.980717	0.089593	1.263042
Н	-3.145667	-1.907349	1.325468
Н	-2.157799	-0.691080	2.151637
С	-4.837394	-0.101222	0.009402
Н	-4.611059	-0.112340	-2.151322
Н	-3.627696	1.094691	-1.321594
Н	-4.581444	-0.065204	2.166600
Н	-3.609462	1.123040	1.297343
Н	-5.668182	0.613649	0.007314
Н	-5.280885	-1.107691	0.023334

TS-3

M06-2X SCF energy in solution:	-2135.48898352 a.u.	
M06-2X enthalpy in solution:	-2135.104668 a.u.	
M06-2X free energy in solution:	-2135.191873 a.u.	
M06-2X free energy in solution a	fter quasi-harmonic correction:	-2135.184517 a.u.
Imaginary frequency:	-634.7545 cm-1	

ATOM	Х	Y	Z
С	1.010856	-2.386669	-0.027562
С	1.863932	-2.551474	-1.139204
С	1.360140	-2.917915	1.233179
С	3.056530	-3.240422	-0.981670
			S104

Н	1.586884	-2.115306	-2.092690
С	2.554806	-3.605622	1.374118
Н	0.688525	-2.778975	2.074929
С	3.399264	-3.760732	0.269625
Н	3.729553	-3.358319	-1.824498
Н	2.838116	-4.014427	2.338539
Н	4.340071	-4.290764	0.388052
С	-0.185118	-1.668425	-0.164901
С	-1.174035	-0.909672	-0.242352
В	2.613959	0.729450	-0.972443
F	3.713717	0.199605	-1.664600
F	2.577629	0.210714	0.334003
F	2.713728	2.130491	-0.911099
F	1.424264	0.380859	-1.644574
С	-0.309457	2.580566	-0.464181
С	0.421852	1.812976	1.562510
С	0.994101	3.033746	1.889152
С	0.882837	4.059432	0.954756
С	0.211656	3.846907	-0.245509
Н	1.504383	3.167737	2.835500
Н	1.320176	5.030440	1.164629
Н	0.104658	4.624192	-0.992652
N	-0.204079	1.589757	0.413491
Н	-0.612731	0.190094	0.033202
Cl	-1.181695	2.225880	-1.917906
Cl	0.456088	0.494939	2.687700
С	-2.653032	-0.810768	-0.467059
С	-3.284383	-2.202482	-0.610499
С	-3.321261	-0.008434	0.660706
Н	-2.789805	-0.259505	-1.408347
			2102

С	-4.792728	-2.088544	-0.841689
Н	-3.091435	-2.770260	0.310723
Н	-2.803584	-2.741564	-1.434658
С	-4.830339	0.093050	0.425936
Н	-3.124957	-0.513890	1.617146
Н	-2.877196	0.992251	0.725628
С	-5.466758	-1.290807	0.277010
Н	-5.230041	-3.090717	-0.915684
Н	-4.974058	-1.589717	-1.804394
Н	-5.295255	0.641938	1.252499
Н	-5.012057	0.676938	-0.487870
Н	-6.540335	-1.193534	0.079087
Н	-5.364058	-1.839371	1.224394

TS-3a

M06-2X SCF energy in solution	: -2135.48335228 a.u.	
M06-2X enthalpy in solution:	-2135.098994 a.u.	
M06-2X free energy in solution:	-2135.189850 a.u.	
M06-2X free energy in solution	after quasi-harmonic correction:	-2135.179334 a.u.
Imaginary frequency:	-851.6812 cm-1	

ATOM	Х	Y	Z
С	-1.723587	-1.322367	0.000005
С	-2.147255	-1.873810	-1.223691
С	-2.147242	-1.873947	1.223644
С	-2.979135	-2.984716	-1.216234
Н	-1.834064	-1.410891	-2.154447
С	-2.979122	-2.984852	1.216071
Н	-1.834037	-1.411138	2.154450
			\$106

С	-3.390480	-3.536982	-0.000110
Н	-3.319529	-3.414000	-2.152978
Н	-3.319506	-3.414242	2.152770
Н	-4.049716	-4.400404	-0.000155
С	-0.903487	-0.171844	0.000061
С	-0.025162	0.701907	0.000113
В	-3.793834	1.371053	0.000078
F	-4.634865	0.247127	-0.000049
F	-2.973523	1.344960	1.147796
F	-2.973413	1.345142	-1.147568
F	-4.561624	2.545073	0.000134
С	2.642926	-1.445468	-1.147765
С	2.642972	-1.445500	1.147740
С	3.834100	-2.154288	1.207914
С	4.432535	-2.502953	-0.000063
С	3.834052	-2.154256	-1.208006
Н	4.267969	-2.421998	2.164036
Н	5.365973	-3.056602	-0.000088
Н	4.267880	-2.421941	-2.164154
Ν	2.068698	-1.091457	0.000003
Н	0.887143	-0.242251	0.000055
Cl	1.810762	-0.992703	-2.595508
Cl	1.810861	-0.992777	2.595525
С	0.458652	2.110255	0.000111
С	1.279173	2.411602	1.263777
С	1.278776	2.411689	-1.263793
Н	-0.442996	2.737522	0.000274
С	1.743025	3.869820	1.262127
Н	2.156274	1.747105	1.283234
Н	0.682797	2.192402	2.156196 \$107
			5107

С	1.742629	3.869906	-1.262196
Н	2.155870	1.747191	-1.283558
Н	0.682122	2.192538	-2.156039
С	2.544558	4.196930	-0.000149
Н	2.341634	4.066993	2.158645
Н	0.862805	4.525487	1.314846
Н	2.340957	4.067136	-2.158888
Н	0.862393	4.525577	-1.314596
Н	2.835916	5.253459	-0.000158
Н	3.474078	3.608691	-0.000315

TS-4

M06-2X SCF energy in solution	n: -968.02286715 a.u.	
M06-2X enthalpy in solution:	-967.713853 a.u.	
M06-2X free energy in solution	-967.781386 a.u.	
M06-2X free energy in solution	after quasi-harmonic correction:	-967.7764615 a.u.
Imaginary frequency:	-299.5191 cm-1	

ATOM	Х	Y	Z
С	-1.068905	-0.946393	-0.154582
С	-1.444630	-1.273913	1.165141
С	-1.574170	-1.672938	-1.253573
С	-2.302622	-2.342786	1.378389
Н	-1.060550	-0.683016	1.990556
С	-2.440322	-2.729360	-1.024974
Н	-1.284901	-1.387847	-2.260570
С	-2.800065	-3.059774	0.286873
Н	-2.597586	-2.610613	2.387540
Н	-2.841961	-3.295602	-1.858788
			3108
Н	-3.482749	-3.887004	0.459211
---	-----------	-----------	-----------
С	-0.184942	0.126682	-0.365456
С	0.946383	0.754619	-0.400975
В	-2.510044	1.880705	0.023646
F	-3.513844	0.942982	-0.168758
F	-1.417989	1.558270	-0.908982
F	-2.931253	3.163326	-0.279380
F	-1.976397	1.797381	1.306278
Н	0.989751	1.819902	-0.617121
С	2.240770	0.009335	-0.125934
С	3.179797	0.149313	-1.333233
С	2.889187	0.570154	1.149209
Н	2.019023	-1.054927	0.029946
С	4.523130	-0.530757	-1.055053
Н	3.342860	1.218468	-1.531922
Н	2.706603	-0.278168	-2.224651
С	4.233800	-0.112189	1.415972
Н	3.043311	1.651477	1.023011
Н	2.210573	0.436932	1.999618
С	5.172810	0.022481	0.215290
Н	5.187366	-0.395642	-1.916065
Н	4.363908	-1.612403	-0.940684
Н	4.692257	0.320262	2.312392
Н	4.062837	-1.177493	1.626478
Н	6.117569	-0.496323	0.413834
Н	5.415921	1.083992	0.063997

TS-4a

M06-2X SCF energy in solution:	-968.02320645 a.u.
M06-2X enthalpy in solution:	-967.714204 a.u. \$109

M06-2X free energy in solution: -967.781631 a.u.

M06-2X free energy in solution after quasi-harmonic correction: -967.7766189 a.u.

Imaginary frequency: -302.9303 cm-1

ATOM	Х	Y	Z
С	2.119698	-0.843507	0.123053
С	2.805227	-0.197033	1.172490
С	2.825886	-1.523163	-0.891646
С	4.190624	-0.253181	1.210346
Н	2.239508	0.335447	1.929753
С	4.210517	-1.567146	-0.841669
Н	2.275729	-2.002200	-1.695772
С	4.886417	-0.933270	0.206221
Н	4.732162	0.235953	2.013252
Н	4.767161	-2.087928	-1.613862
Н	5.971687	-0.968106	0.238993
С	0.711254	-0.825760	0.092547
С	-0.490703	-1.235083	0.339284
В	0.269785	2.086445	-0.392599
F	0.435856	0.774918	-1.036467
F	1.209320	2.937772	-0.947577
F	-1.027994	2.506672	-0.646310
F	0.484862	1.900891	0.970588
Н	-0.457609	-2.146097	0.952379
С	-1.850998	-0.697702	-0.018329
С	-2.714101	-1.815698	-0.622293
С	-2.515400	-0.109189	1.238162
Н	-1.726513	0.099702	-0.755869
С	-4.117027	-1.295664	-0.945239
			5110

Н	-2.786392	-2.642747	0.099665
Н	-2.233898	-2.211881	-1.524588
С	-3.919465	0.403591	0.908500
Н	-2.578828	-0.889886	2.010668
Н	-1.894308	0.699949	1.637012
С	-4.786020	-0.698214	0.294658
Н	-4.725617	-2.109535	-1.355790
Н	-4.044190	-0.525027	-1.725324
Н	-4.387671	0.799062	1.817050
Н	-3.835879	1.240323	0.201218
Н	-5.775138	-0.302631	0.036771
Н	-4.942994	-1.492794	1.038833

E-1

M06-2X SCF energy in solution:	-643.47375760 a.u.	
M06-2X enthalpy in solution:	-643.180238 a.u.	
M06-2X free energy in solution:	-643.234627 a.u.	
M06-2X free energy in solution after	quasi-harmonic correction:	-643.2329134 a.u.

ATOM	Х	Y	Z
С	0.431752	1.469311	-0.315552
С	-0.899881	1.431676	-0.342161
С	-1.846309	0.322825	-0.120693
С	-1.581734	-0.968203	-0.595605
С	-3.046807	0.568647	0.560661
С	-2.488715	-2.001120	-0.366135
Н	-0.678651	-1.159146	-1.167971
С	-3.951613	-0.465322	0.785853
Н	-3.265152	1.570868	0.917531 \$111

С	-3.673072	-1.753973	0.327726
Н	-2.275216	-2.997065	-0.743301
Н	-4.875853	-0.264479	1.319929
Н	-4.380739	-2.559344	0.501912
С	1.367592	0.344153	0.021668
С	2.121787	-0.145851	-1.227364
С	2.370707	0.798769	1.096156
Н	0.796459	-0.499312	0.433135
С	3.116185	-1.257260	-0.883134
Н	2.661380	0.705786	-1.668510
Н	1.405575	-0.490390	-1.983625
С	3.366431	-0.311091	1.441485
Н	2.917986	1.676234	0.719516
Н	1.828418	1.120812	1.993319
С	4.103778	-0.803073	0.194024
Н	3.652910	-1.571670	-1.785980
Н	2.562737	-2.135403	-0.519156
Н	4.081308	0.048827	2.190767
Н	2.824715	-1.152643	1.896934
Н	4.786492	-1.620897	0.453175
Н	4.721390	0.014468	-0.205658
F	-1.554896	2.611281	-0.586646
Н	0.889701	2.434903	-0.533782

Z-2

M06-2X SCF energy in solution:	-643.47617263 a.u.	
M06-2X enthalpy in solution:	-643.182459 a.u.	
M06-2X free energy in solution:	-643.238851 a.u.	
M06-2X free energy in solution after qu	asi-harmonic correction:	-643.2351597 a.u.

ATOM	Х	Y	Z
С	-0.340134	-0.303439	0.067806
С	0.735753	0.460501	-0.121442
С	2.163855	0.104346	-0.038108
С	2.573209	-1.232284	0.086914
С	3.138257	1.109643	-0.083425
С	3.923828	-1.550092	0.175573
Н	1.837039	-2.030200	0.104631
С	4.491982	0.785551	0.003650
Н	2.838012	2.147112	-0.184477
С	4.890789	-0.542570	0.135093
Н	4.223835	-2.589804	0.269799
Н	5.234583	1.577530	-0.031860
Н	5.945213	-0.794273	0.201534
С	-1.766667	0.147186	-0.044626
С	-2.503118	-0.660260	-1.128503
С	-2.488202	-0.000032	1.307042
Н	-1.788456	1.206752	-0.331455
С	-3.975993	-0.256066	-1.228178
Н	-2.434823	-1.730256	-0.879089
Н	-2.001024	-0.524312	-2.093800
С	-3.961098	0.403671	1.205451
Н	-2.418722	-1.049448	1.632021
Н	-1.975424	0.603753	2.065216
С	-4.683273	-0.399230	0.121241
Н	-4.478889	-0.863441	-1.990004
Н	-4.040801	0.789879	-1.561170
Н	-4.453692	0.266198	2.175289
Н	-4.025056	1.474696	0.964792 \$113

Η	-5.727505	-0.075064	0.039692
Н	-4.699729	-1.460688	0.409023
Н	-0.173201	-1.345638	0.332765
F	0.549281	1.777296	-0.430425

107

M06-2X SCF energy in solution:	-347.66381256 a.u.	
M06-2X enthalpy in solution:	-347.515112 a.u.	
M06-2X free energy in solution:	-347.557987 a.u.	
M06-2X free energy in solution after	quasi-harmonic correction:	-347.5572986 a.u.

ATOM	Х	Y	Z
С	0.042875	-0.000006	0.000164
С	0.752427	1.211413	0.000032
С	0.752407	-1.211428	0.000067
С	2.144780	1.207463	-0.000003
Н	0.204739	2.149250	0.000103
С	2.144778	-1.207476	-0.000006
Н	0.204712	-2.149260	0.000129
С	2.844598	-0.000015	-0.000049
Н	2.684738	2.149932	0.000000
Н	2.684731	-2.149947	-0.000054
Н	3.930834	-0.000019	-0.000056
С	-1.395057	0.000039	-0.000023
С	-2.606953	0.000059	-0.000370
С	-4.069785	-0.000001	-0.000012
Н	-4.457182	-0.154210	1.012081
Н	-4.456272	0.953647	-0.371995
Н	-4.456722	-0.799682	-0.639004 \$114

108

M06-2X SCF energy in solution:	-772.69740850 a.u.	
M06-2X enthalpy in solution:	-772.515862 a.u.	
M06-2X free energy in solution:	-772.575496 a.u.	
M06-2X free energy in solution after q	uasi-harmonic correction:	-772.5723547 a.u.

ATOM	Х	Y	Ζ
С	-0.650503	-1.008706	-0.002891
С	-1.230239	-0.625626	1.241608
С	-1.376631	-0.863572	-1.220977
С	-2.517041	-0.128731	1.257967
Н	-0.642703	-0.721380	2.148683
С	-2.658930	-0.358801	-1.181970
Н	-0.898622	-1.139624	-2.155647
С	-3.219238	0.004790	0.051980
Н	-2.977895	0.174274	2.191660
Н	-3.227768	-0.229581	-2.096148
Н	-4.227118	0.410074	0.072192
С	0.634224	-1.472414	-0.032704
С	1.837721	-1.925352	-0.046632
С	2.234034	-3.373470	0.104642
Н	2.792211	-3.681885	-0.783472
Н	2.890580	-3.469972	0.973583
Н	1.364576	-4.019522	0.231360
В	1.072323	1.777976	-0.033451
F	-0.298023	2.023745	-0.213167
F	1.521971	0.900938	-1.049093
F	1.791799	2.974583	-0.091838
			5115

F	1.276576	1.152381	1.214052
Н	2.613815	-1.165783	-0.180686

108a

M06-2X SCF energy in solution:	-772.69800641 a.u.	
M06-2X enthalpy in solution:	-772.516367 a.u.	
M06-2X free energy in solution:	-772.574832 a.u.	
M06-2X free energy in solution after qua	si-harmonic correction:	-772.5725091 a.u.

ATOM	Х	Y	Z
С	-0.833727	-1.076037	-0.000017
С	-1.444101	-0.724569	-1.238564
С	-1.443810	-0.724236	1.238588
С	-2.651738	-0.058636	-1.227125
Н	-0.940383	-0.980046	-2.165367
С	-2.651486	-0.058369	1.227268
Н	-0.939841	-0.979437	2.165330
С	-3.245343	0.270250	0.000099
Н	-3.133862	0.223209	-2.156751
Н	-3.133425	0.223665	2.156934
Н	-4.191678	0.804002	0.000142
С	0.370171	-1.723349	-0.000016
С	1.460736	-2.405402	0.000119
С	2.878259	-1.891547	0.000050
Н	2.900837	-0.804163	-0.000330
Н	3.389150	-2.276820	0.886962
Н	3.389241	-2.277313	-0.886604
В	1.139687	1.474394	-0.000066
F	-0.194090	1.907245	-0.000002 \$116

F	2.005689	2.571286	-0.000216
F	1.373522	0.679510	1.145195
F	1.373311	0.679329	-1.145266
Н	1.301871	-3.490023	0.000212

TS-5

M06-2X SCF energy in solution	: -1940.15662007 a.u.	
M06-2X enthalpy in solution:	-1939.900421 a.u.	
M06-2X free energy in solution:	-1939.977209 a.u.	
M06-2X free energy in solution	after quasi-harmonic correction:	-1939.972733 a.u.
Imaginary frequency:	-751.0513 cm-1	

ATOM	Х	Y	Z
С	-2.478431	0.920583	-0.008104
С	-3.061967	0.528361	-1.231232
С	-3.066251	0.553163	1.220639
С	-4.232264	-0.213820	-1.218041
Н	-2.577929	0.802390	-2.163337
С	-4.236735	-0.188896	1.218063
Н	-2.585715	0.846057	2.148744
С	-4.814062	-0.569536	0.002743
Н	-4.687627	-0.528955	-2.151132
Н	-4.695882	-0.484705	2.155606
Н	-5.726338	-1.159278	0.006990
С	-1.304293	1.686982	-0.014409
С	-0.212672	2.290890	-0.020838
С	0.493570	3.603082	-0.031773
Н	-0.220696	4.428148	-0.048668
Н	1.124106	3.683820	0.858459 \$117

Н	1.140365	3.661228	-0.912011
В	-0.462885	-1.721315	0.031851
F	-1.703739	-2.371366	0.036661
F	-0.353456	-0.895664	1.169839
F	0.580819	-2.661087	0.044024
F	-0.350948	-0.922090	-1.124414
С	2.330988	0.036403	-1.153809
С	2.344145	0.068944	1.136417
С	3.261395	-0.968610	1.208688
С	3.702803	-1.512785	0.005846
С	3.247439	-1.003036	-1.206930
Н	3.606179	-1.334406	2.168306
Н	4.410763	-2.335575	0.013574
Н	3.581285	-1.396003	-2.159610
N	1.882321	0.548251	-0.013064
Н	0.629903	1.347980	-0.015548
Cl	1.741625	0.771363	-2.606379
Cl	1.772710	0.846262	2.574160

TS-5a

M06-2X SCF energy in solution:	-1940.15080370 a.u.	
M06-2X enthalpy in solution:	-1939.894878 a.u.	
M06-2X free energy in solution:	-1939.976304 a.u.	
M06-2X free energy in solution a	fter quasi-harmonic correction:	-1939.967893 a.u.
Imaginary frequency:	-638.9062 cm-1	

ATOM	Х	Y	Z
С	1.091725	0.922057	0.008436
С	1.290358	1.663609	-1.171380
			3110

С	1.350358	1.489863	1.270127
С	1.731179	2.976501	-1.081117
Н	1.113419	1.193634	-2.134057
С	1.791649	2.803430	1.344939
Н	1.220772	0.887285	2.163763
С	1.979994	3.541217	0.173008
Н	1.896223	3.556886	-1.983076
Н	2.003222	3.250740	2.310760
Н	2.335679	4.565592	0.237173
С	0.665947	-0.422614	-0.075032
С	0.086361	-1.515412	-0.133106
С	-0.004450	-2.987042	-0.230545
Н	1.003617	-3.404494	-0.285702
Н	-0.518529	-3.388993	0.646782
Н	-0.565640	-3.268781	-1.125757
В	3.881720	-1.018462	-0.032069
F	4.309250	0.317775	-0.050444
F	3.120272	-1.254659	1.131547
F	3.072943	-1.268681	-1.161394
F	4.991102	-1.875866	-0.050240
С	-3.084039	-0.074006	-1.130371
С	-3.055445	-0.225493	1.157222
С	-4.356829	0.243121	1.266356
С	-5.022567	0.558043	0.084514
С	-4.387511	0.401086	-1.144858
Н	-4.824564	0.355044	2.237342
Н	-6.042468	0.927219	0.121708
Н	-4.879643	0.636788	-2.081140
Ν	-2.435430	-0.377717	-0.009570
Н	-1.033220	-0.870460	-0.063430
			5119

Cl	-2.207194	-0.303526	-2.605669
Cl	-2.144096	-0.650441	2.566175

TS-6

M06-2X SCF energy in solution:	-772.69054680 a.u.	
M06-2X enthalpy in solution:	-772.509873 a.u.	
M06-2X free energy in solution:	-772.566737 a.u.	
M06-2X free energy in solution	after quasi-harmonic correction:	-772.5638336 a.u.
Imaginary frequency:	-306.1641 cm-1	

ATOM	Х	Y	Z
С	0.912982	0.500825	-0.085483
С	1.281097	-0.014209	1.176200
С	1.652516	0.177342	-1.244347
С	2.400104	-0.827075	1.273951
Н	0.682143	0.230547	2.047316
С	2.760028	-0.645967	-1.131705
Н	1.336062	0.570770	-2.205498
С	3.128245	-1.144173	0.123712
Н	2.699449	-1.227865	2.236602
Н	3.336532	-0.908721	-2.012469
Н	3.995468	-1.793376	0.204370
С	-0.213197	1.332422	-0.186487
С	-0.919174	2.417885	-0.123390
С	-0.277638	3.732783	0.246372
Н	-0.429659	4.444989	-0.569846
Н	-0.768921	4.126038	1.141046
Н	0.791520	3.628146	0.439595
В	-1.814499	-1.135940	-0.003119 \$120

F	-0.805487	-2.040152	-0.301667
F	-1.588878	0.064820	-0.821783
F	-3.065086	-1.623737	-0.339141
F	-1.755600	-0.729036	1.326668
Н	-1.984424	2.383123	-0.335146

TS-6a

M06-2X SCF energy in solution	-772.69137669 a.u.	
M06-2X enthalpy in solution:	-772.510914 a.u.	
M06-2X free energy in solution:	-772.569025 a.u.	
M06-2X free energy in solution	after quasi-harmonic correction:	-772.5652408 a.u.
Imaginary frequency:	-297.7995 cm-1	

ATOM	Х	Y	Z
С	-1.095505	0.719225	0.052795
С	-1.516660	-0.024255	1.175663
С	-1.921519	0.843856	-1.084905
С	-2.771566	-0.614777	1.163724
Н	-0.852324	-0.125648	2.028158
С	-3.170117	0.243836	-1.083301
Н	-1.565514	1.404649	-1.943701
С	-3.589624	-0.480832	0.038333
Н	-3.111541	-1.186827	2.020617
Н	-3.818214	0.330524	-1.949123
Н	-4.568501	-0.951722	0.032218
С	0.170260	1.330623	0.069927
С	1.062725	2.227747	0.339858
С	2.544223	2.276760	0.136921
Н	2.803948	3.190999	-0.404196
			\$121

Н	3.030885	2.315876	1.116363
Н	2.901010	1.407294	-0.411123
В	1.632673	-1.230573	-0.126838
F	1.211162	-0.059330	-0.905099
F	0.621882	-2.176276	-0.213617
F	2.818372	-1.681388	-0.682717
F	1.811008	-0.799698	1.186249
Н	0.581760	3.084858	0.827546

*E-*95

M06-2X SCF energy in solution:	-448.14319944 a.u.	
M06-2X enthalpy in solution:	-447.977904 a.u.	
M06-2X free energy in solution:	-448.021817 a.u.	
M06-2X free energy in solution after of	quasi-harmonic correction:	-448.0212987 a.u.

ATOM	Х	Y	Z
С	0.089204	0.222236	-0.079377
С	0.538236	-1.039535	-0.490367
С	1.019299	1.163123	0.385067
С	1.891223	-1.363976	-0.409470
Н	-0.166952	-1.757693	-0.898036
С	2.370150	0.835499	0.462537
Н	0.679652	2.148609	0.689810
С	2.809260	-0.430251	0.070652
Н	2.229207	-2.343555	-0.734994
Н	3.081553	1.569461	0.829855
Н	3.863756	-0.683832	0.130308
С	-1.337961	0.580897	-0.147834
С	-2.431043	-0.148001	0.073197
			5122

С	-2.472743	-1.575522	0.531567
Н	-3.285179	-1.705373	1.253566
Н	-2.671712	-2.260389	-0.302051
Н	-1.539709	-1.884748	1.010129
Н	-3.381798	0.361537	-0.070600
F	-1.518063	1.898796	-0.475979

*Z-*95

M06-2X SCF energy in solution:	-448.14595773 a.u.	
M06-2X enthalpy in solution:	-447.980767 a.u.	
M06-2X free energy in solution:	-448.025667 a.u.	
M06-2X free energy in solution after q	uasi-harmonic correction:	-448.0249025 a.u.

ATOM	Х	Y	Z
С	0.253328	0.035832	-0.021565
С	1.065817	1.169671	0.108504
С	0.858347	-1.224942	-0.133791
С	2.453887	1.042570	0.142388
Н	0.611309	2.151715	0.187921
С	2.243338	-1.347020	-0.094878
Н	0.248421	-2.113434	-0.267772
С	3.047998	-0.214060	0.044954
Н	3.070109	1.931019	0.246254
Н	2.696997	-2.329753	-0.185566
Н	4.129332	-0.312139	0.070254
С	-1.213055	0.182029	-0.035730
С	-2.155007	-0.741849	0.151333
С	-3.629578	-0.487412	0.107650
Н	-4.093537	-0.747826	1.065985
			5123

Н	-3.855909	0.557902	-0.112263
Н	-4.103653	-1.112667	-0.657825
F	-1.603497	1.471212	-0.257649
Н	-1.822052	-1.754642	0.358660

TS-7

M06-2X SCF energy in solution:	-2232.35208945 a.u.	
M06-2X enthalpy in solution:	-2232.021755 a.u.	
M06-2X free energy in solution:	-2232.107110 a.u.	
M06-2X free energy in solution at	fter quasi-harmonic correction:	-2232.100588 a.u.
Imaginary frequency:	-1319.4377 cm-1	

Cartesian coordinates

ATOM	Х	Y	Z
С	-1.935099	1.515827	-0.393332
С	-2.771342	0.964956	0.597934
С	-1.912878	2.910412	-0.590884
С	-3.573727	1.799516	1.364127
Н	-2.796074	-0.103486	0.774269
С	-2.718328	3.734430	0.182764
Н	-1.252594	3.341187	-1.335079
С	-3.550046	3.180761	1.157678
Н	-4.218385	1.372120	2.125492
Н	-2.692478	4.808555	0.030696
Н	-4.179970	3.827387	1.761808
С	-1.060293	0.698387	-1.209458
С	-0.736014	-0.660326	-1.166690
F	-0.426031	1.381123	-2.139330
Н	-0.175625	-0.945805	-2.062358

S124

С	-1.713564	-1.701003	-0.686420
С	-1.435403	-2.555644	0.383685
С	-2.926983	-1.846690	-1.373072
С	-2.362030	-3.524258	0.773839
Н	-0.497777	-2.470731	0.925018
С	-3.851896	-2.811575	-0.983321
Н	-3.146160	-1.191123	-2.212988
С	-3.572806	-3.651876	0.096173
Н	-2.133296	-4.178123	1.610444
Н	-4.789605	-2.908071	-1.523046
Н	-4.293290	-4.404465	0.402877
В	2.293307	1.796819	-0.888554
F	2.415470	2.964794	-1.649310
F	1.142333	1.882902	-0.071648
F	2.166186	0.681016	-1.737392
F	3.420633	1.627306	-0.068236
С	1.471486	-0.305549	1.714211
С	2.475341	-1.541993	0.058824
С	3.686460	-1.567355	0.733237
С	3.754050	-0.906208	1.955995
С	2.629551	-0.271550	2.475184
Н	4.539119	-2.084688	0.309934
Н	4.685946	-0.893955	2.512110
Н	2.643829	0.237804	3.431268
N	1.402618	-0.909640	0.530348
Н	0.300674	-0.664398	-0.309022
Cl	0.006208	0.401571	2.296186
Cl	2.280535	-2.398904	-1.429167

S125

102b

M06-2X SCF energy in solution:	-2232.36525031 a.u.	
M06-2X enthalpy in solution:	-2232.029260 a.u.	
M06-2X free energy in solution:	-2232.121761 a.u.	
M06-2X free energy in solution after quas	si-harmonic correction:	-2232.110398 a.u.

ATOM	Х	Y	Z
С	2.656846	-1.017866	0.673368
С	2.404991	-1.426273	-0.661258
С	3.791098	-1.502191	1.377389
С	3.284375	-2.300133	-1.275529
Н	1.527090	-1.072139	-1.193109
С	4.654208	-2.375262	0.747203
Н	3.973426	-1.184727	2.398654
С	4.400639	-2.769414	-0.575264
Н	3.102371	-2.622072	-2.295069
Н	5.525442	-2.754525	1.270103
Н	5.084767	-3.457355	-1.063984
С	1.771145	-0.121914	1.301461
С	0.610751	0.586970	0.749825
F	2.048904	0.196475	2.536694
Н	0.173349	0.059945	-0.099405
С	1.161144	1.948457	0.306434
С	1.278331	2.997019	1.221348
С	1.554602	2.125023	-1.021259
С	1.774332	4.229888	0.800431
Н	0.965098	2.855804	2.253099
С	2.044633	3.360595	-1.439248
Н	1.447956	1.308763	-1.731606 \$126

С	2.158892	4.411691	-0.528634
Н	1.852742	5.049130	1.509084
Н	2.327598	3.502178	-2.478012
Н	2.540170	5.374470	-0.856276
В	-1.247770	0.226617	-2.462285
F	-2.338223	-0.359396	-3.115274
F	-1.671523	0.896002	-1.302868
F	-0.330255	-0.789366	-2.080378
F	-0.597525	1.123267	-3.322456
С	-2.050139	-1.771990	0.554197
С	-3.306008	-0.055850	1.285674
С	-4.249401	-0.215972	0.277320
С	-4.021986	-1.237725	-0.638631
С	-2.895271	-2.045464	-0.512110
Н	-5.107643	0.441535	0.205741
Н	-4.712344	-1.395546	-1.460878
Н	-2.670832	-2.836052	-1.218088
N	-2.231699	-0.809001	1.440715
Н	-0.140527	0.704047	1.537088
Cl	-0.616235	-2.751938	0.786166
Cl	-3.511378	1.224649	2.458029

TS-8

M06-2X SCF energy in solution:	-2232.35818854 a.u.	
M06-2X enthalpy in solution:	-2232.027955 a.u.	
M06-2X free energy in solution:	-2232.113587 a.u.	
M06-2X free energy in solution af	ter quasi-harmonic correction:	-2232.106919 a.u.
Imaginary frequency:	-939.0572 cm-1 \$127	

Cartesian coordinates				
ATOM	Х	Y	Z	
С	1.840685	1.903294	-0.088014	
С	2.282758	2.010613	-1.420040	
С	2.771591	1.883222	0.967668	
С	3.641145	2.085249	-1.687416	
Н	1.573696	2.056386	-2.239817	
С	4.127736	1.952065	0.687016	
Н	2.427928	1.772993	1.990214	
С	4.561792	2.049197	-0.636842	
Н	3.986092	2.170467	-2.712687	
Н	4.848533	1.911228	1.497044	
Н	5.625264	2.096602	-0.852485	
С	0.438365	1.788624	0.214284	
С	-0.601869	1.413543	-0.645491	
F	0.123813	2.004121	1.471165	
Н	-0.304247	1.388729	-1.693923	
С	-2.044006	1.758931	-0.423087	
С	-2.490253	2.719033	0.491406	
С	-2.985781	1.067799	-1.196824	
С	-3.854602	2.971147	0.631700	
Н	-1.783990	3.279631	1.094438	
С	-4.347491	1.320664	-1.054186	
Н	-2.645689	0.326906	-1.917885	
С	-4.787266	2.271281	-0.132802	
Н	-4.187278	3.721088	1.343559	
Н	-5.063620	0.774951	-1.661784	
Н	-5.848632	2.469760	-0.015926	
В	2.011184	-1.399121	0.968438 \$128	

F	1.507329	-2.705489	1.079207
F	1.084838	-0.500377	1.545570
F	3.237952	-1.295917	1.637608
F	2.172744	-1.075966	-0.389540
С	-0.497914	-2.138465	-1.314700
С	-1.422041	-1.829945	0.756345
С	-1.583591	-3.193845	0.953237
С	-1.151405	-4.042554	-0.060447
С	-0.600863	-3.518681	-1.226346
Н	-2.023646	-3.568262	1.869603
Н	-1.247663	-5.117328	0.056515
Н	-0.261762	-4.149680	-2.039196
N	-0.887265	-1.316187	-0.346999
Н	-0.579772	0.145353	-0.413607
Cl	0.114403	-1.400467	-2.760274
Cl	-1.954537	-0.701551	1.954032

The following coordinates are obtained through geometry optimization in dichloroethane (DCE):

2,6-dichloropyridinium tetrafluoroborate F (optimized in DCE)

M06-2X SCF energy in DCE:	-1592.52187456 a.u.	
M06-2X enthalpy in DCE:	-1592.409256 a.u.	
M06-2X free energy in DCE:	-1592.465853 a.u.	
M06-2X free energy in DCE afte	r quasi-harmonic correction:	-1592.462163 a.u.

ATOM	Х	Y	Z
В	2.506561	0.127879	0.247439
F	1.522610	-0.044584	1.236201
F	3.356696	-0.973233	0.204039 \$129

F	1.816307	0.230873	-1.009585
F	3.219356	1.303303	0.465158
С	-1.535368	1.092640	-0.102509
С	-1.265241	-1.244577	-0.121615
С	-2.531810	-1.432048	0.398262
С	-3.302143	-0.301868	0.664686
С	-2.810399	0.978544	0.417273
Н	-2.896368	-2.434490	0.587913
Н	-4.300269	-0.420184	1.073822
Н	-3.392863	1.868490	0.623326
N	-0.802474	-0.004660	-0.361882
Н	0.169121	0.106239	-0.720170
Cl	-0.797378	2.595346	-0.443893
Cl	-0.206156	-2.532418	-0.489509

101 (optimized in DCE)

M06-2X SCF energy in DCE:	-539.37941602 a.u.	
M06-2X enthalpy in DCE:	-539.173959 a.u.	
M06-2X free energy in DCE:	-539.224576 a.u.	
M06-2X free energy in DCE after	quasi-harmonic correction:	-539.2217063 a.u.

ATOM	Х	Y	Z
С	2.040586	0.000084	-0.000022
С	2.748722	1.213047	-0.000020
С	2.748722	-1.212879	0.000006
С	4.140432	1.208276	0.000010
Н	2.200056	2.150201	-0.000042 \$130

С	4.140432	-1.208108	0.000033
Н	2.200056	-2.150034	0.000003
С	4.839484	0.000084	0.000037
Н	4.680914	2.150316	0.000011
Н	4.680914	-2.150148	0.000054
Н	5.925634	0.000084	0.000060
С	0.606903	0.000083	-0.000058
С	-0.606903	-0.000083	-0.000058
С	-2.040586	-0.000084	-0.000022
С	-2.748722	1.212879	0.000006
С	-2.748722	-1.213047	-0.000020
С	-4.140432	1.208108	0.000033
Н	-2.200056	2.150034	0.000003
С	-4.140432	-1.208276	0.000010
Н	-2.200056	-2.150201	-0.000042
С	-4.839484	-0.000084	0.000037
Н	-4.680914	2.150148	0.000054
Н	-4.680914	-2.150316	0.000011
Н	-5.925634	-0.000084	0.000060

TS-1 (optimized in DCE)		
M06-2X SCF energy in DCE	C: -2131.87485070 a.u.	
M06-2X enthalpy in DCE:	-2131.561986 a.u.	
M06-2X free energy in DCE	-2131.647965 a.u.	
M06-2X free energy in DCE	after quasi-harmonic correction:	-2131.639669 a.u.
Imaginary frequency:	-1004.9973 cm-1	

Cartesian coordinates

S131

ATOM	Х	Y	Z
С	-1.493253	-2.134346	-0.010655
С	-2.157009	-2.372219	1.214119
С	-2.147839	-2.361869	-1.242337
С	-3.461396	-2.838785	1.198435
Н	-1.637949	-2.176108	2.147187
С	-3.452270	-2.828513	-1.240498
Н	-1.621639	-2.158079	-2.169730
С	-4.103062	-3.063393	-0.024435
Н	-3.986207	-3.020972	2.130464
Н	-3.970003	-3.002812	-2.177978
Н	-5.128051	-3.423031	-0.029793
С	-0.171127	-1.684143	-0.004795
С	0.986182	-1.199161	-0.003357
В	-2.452546	1.100911	-0.006759
F	-3.720830	0.498861	-0.014103
F	-1.734678	0.708018	-1.151885
F	-2.589893	2.500304	-0.003897
F	-1.745557	0.701769	1.142947
С	0.719369	2.181291	1.163810
С	0.733511	2.189313	-1.130686
С	0.489642	3.553119	-1.189849
С	0.350472	4.227452	0.020887
С	0.474478	3.544807	1.228556
Н	0.411418	4.060126	-2.144245
Н	0.151395	5.294421	0.023322
Н	0.384199	4.045512	2.185230
N	0.832522	1.523200	0.014932
Н	0.797367	0.065249	0.004787
Cl	0.943395	1.247337	2.603501
			5132

Cl	0.976416	1.263548	-2.573086
С	2.399545	-1.590743	-0.002068
С	3.402562	-0.619596	-0.095391
С	2.747575	-2.947057	0.090433
С	4.743065	-1.001591	-0.099185
Н	3.139975	0.432359	-0.165319
С	4.087097	-3.320442	0.087194
Н	1.965564	-3.697535	0.165814
С	5.087436	-2.349456	-0.008445
Н	5.516884	-0.243452	-0.173427
Н	4.351677	-4.371273	0.159174
Н	6.132426	-2.644986	-0.011211

TS-1a (optimized in DCE)

M06-2X SCF energy in DCE:	-2131.87151209 a.u.	
M06-2X enthalpy in DCE:	-2131.558930 a.u.	
M06-2X free energy in DCE:	-2131.649741 a.u.	
M06-2X free energy in DCE aft	-2131.636975 a.u.	
Imaginary frequency:	-728.9253 cm-1	

ATOM	Х	Y	Z
С	1.126706	-1.576244	-0.001026
С	1.349981	-2.217664	1.235336
С	1.383950	-2.241332	-1.218174
С	1.815589	-3.523923	1.245821
Н	1.164327	-1.676881	2.158364
С	1.850320	-3.547025	-1.190665 \$133

Н	1.223771	-1.718380	-2.156118
С	2.064599	-4.181947	0.037004
Н	1.995347	-4.029815	2.188803
Н	2.057125	-4.070412	-2.118447
Н	2.436896	-5.202277	0.051952
С	0.660393	-0.251611	-0.020011
С	0.015532	0.817943	-0.035619
В	3.959162	0.256967	0.023593
F	4.407667	-1.072429	0.033095
F	3.185959	0.487557	-1.132194
F	3.162337	0.496170	1.161458
F	5.058778	1.130163	0.031837
С	-3.104338	-0.575178	1.163831
С	-3.100638	-0.699430	-1.124867
С	-4.377281	-1.240768	-1.160334
С	-5.016000	-1.445962	0.060288
С	-4.380030	-1.112355	1.253755
Н	-4.848275	-1.489260	-2.104184
Н	-6.016026	-1.867082	0.081233
Н	-4.852576	-1.259986	2.217774
N	-2.480830	-0.376238	0.006269
Н	-1.101699	0.199677	-0.022812
Cl	-2.229572	-0.117562	2.587850
Cl	-2.217616	-0.403937	-2.585875
С	-0.030216	2.272959	-0.052148
С	-1.262721	2.934760	-0.107392
С	1.165349	3.004396	-0.012350
С	-1.299561	4.326923	-0.123518
Н	-2.186332	2.361690	-0.137291
С	1.117541	4.394711	-0.028316
			5134

Н	2.113320	2.477844	0.031451
С	-0.111219	5.056891	-0.083928
Η	-2.255322	4.840210	-0.166797
Н	2.042632	4.962434	0.002814
Н	-0.141382	6.142530	-0.096057

102 (optimized in DCE)

M06-2X SCF energy in DCE:	-964.41617572 a.u.	
M06-2X enthalpy in DCE:	-964.178142 a.u.	
M06-2X free energy in DCE:	-964.247052 a.u.	

M06-2X free energy in DCE after quasi-harmonic correction: -964.240557 a.u.

ATOM	Х	Y	Z
С	-0.861073	-1.074337	-0.009951
С	-1.438581	-1.458425	1.238886
С	-1.425431	-1.519973	-1.244351
С	-2.545066	-2.279959	1.240485
Н	-0.997837	-1.087664	2.158792
С	-2.532809	-2.339557	-1.217137
Н	-0.974237	-1.196125	-2.176944
С	-3.084903	-2.711356	0.018839
Н	-3.005691	-2.582613	2.174367
Н	-2.983860	-2.687870	-2.139673
Н	-3.962788	-3.351513	0.029792
С	0.214324	-0.241012	-0.024670
С	1.224674	0.564588	-0.037109
В	-2.300540	1.910103	0.000692
F	-3.248879	0.874779	-0.018926 \$135

F	-1.469411	1.805626	-1.134118
F	-2.948105	3.152733	-0.001659
F	-1.501524	1.792391	1.156112
Н	0.937519	1.622143	-0.067090
С	2.662325	0.226509	-0.016157
С	3.109716	-1.102102	0.002043
С	3.588228	1.275006	-0.014452
С	4.473442	-1.371850	0.022813
Н	2.394223	-1.921048	-0.000946
С	4.954097	0.997472	0.006682
Н	3.235990	2.302631	-0.029073
С	5.398163	-0.323682	0.025393
Н	4.817199	-2.401739	0.036752
Н	5.668474	1.815252	0.008338
Н	6.462354	-0.539679	0.041673

102a (optimized in DCE)	
-------------------------	--

M06-2X SCF energy in DCE:	-964.41458078 a.u.	
M06-2X enthalpy in DCE:	-964.176562 a.u.	
M06-2X free energy in DCE:	-964.244189 a.u.	
M06-2X free energy in DCE after	quasi-harmonic correction:	-964.2387448 a.u.

ATOM	Х	Y	Ζ
С	1.497944	-1.425317	-0.203080
С	2.059290	-1.913449	1.018976
С	2.289611	-0.657725	-1.113352
С	3.374433	-1.629805	1.313921 \$136

Н	1.432689	-2.487821	1.694155
С	3.605689	-0.395918	-0.800072
Н	1.834721	-0.289195	-2.026102
С	4.136563	-0.874905	0.407267
Н	3.820804	-1.980012	2.238041
Н	4.224569	0.189410	-1.471109
Н	5.171914	-0.652323	0.650301
С	0.180413	-1.640610	-0.458396
С	-1.069966	-1.890100	-0.674489
В	0.692856	2.090231	-0.119152
F	1.836286	2.671395	-0.692078
F	-0.201388	3.092407	0.287910
F	0.066150	1.259853	-1.069814
F	1.069793	1.317562	0.997377
Н	-1.254741	-2.799438	-1.257945
С	-2.240205	-1.107774	-0.226207
С	-3.504996	-1.470930	-0.701322
С	-2.104750	-0.033435	0.663536
С	-4.630296	-0.754667	-0.297337
Н	-3.602830	-2.307880	-1.387462
С	-3.231978	0.676379	1.061678
Н	-1.122556	0.247721	1.034047
С	-4.495125	0.318911	0.582175
Н	-5.610357	-1.036837	-0.670131
Н	-3.123706	1.512716	1.745864
Н	-5.372118	0.877630	0.895757

103 (optimized in DCE)

S137

M06-2X SCF energy in DCE:	-1167.45510816 a.u.	
M06-2X enthalpy in DCE:	-1167.377451 a.u.	
M06-2X free energy in DCE:	-1167.416780 a.u.	
M06-2X free energy in DCE after	r quasi-harmonic correction:	-1167.41678 a.u.

Cartesian coordinates

ATOM	Х	Y	Ζ
С	0.000076	0.008688	1.126415
С	0.000076	0.008688	-1.126415
С	-0.000161	1.397277	-1.204782
С	-0.000275	2.094506	0.000000
С	-0.000161	1.397277	1.204782
Н	-0.000275	1.904281	-2.162393
Н	-0.000468	3.180063	0.000000
Н	-0.000275	1.904281	2.162393
Ν	0.000155	-0.683456	0.000000
Cl	0.000076	-0.930678	2.598721
Cl	0.000076	-0.930678	-2.598721

TS-2 (optimized in DCE)

M06-2X SCF energy in DCE:	-964.40696850 a.u.	
M06-2X enthalpy in DCE:	-964.169660 a.u.	
M06-2X free energy in DCE:	-964.234826 a.u.	
M06-2X free energy in DCE at	ter quasi-harmonic correction:	-964.2299108 a.u.
Imaginary frequency:	-319.0149 cm-1	

ATOM	Х	Y	Z
			S138

С	0.767894	0.877235	-0.186249
С	1.133168	1.322112	1.103843
С	1.153116	1.597368	-1.339589
С	1.863589	2.493562	1.231883
Н	0.834415	0.743744	1.972338
С	1.891632	2.759697	-1.193927
Н	0.867831	1.226974	-2.319558
С	2.243621	3.201731	0.087284
Н	2.147783	2.853368	2.215171
Н	2.197621	3.324695	-2.068171
Н	2.824384	4.113495	0.194121
С	0.003606	-0.290115	-0.316241
С	-1.066556	-1.035173	-0.323925
В	2.504831	-1.767134	0.128198
F	3.388755	-0.738420	-0.161299
F	1.346039	-1.621588	-0.769341
F	3.055644	-3.010420	-0.133042
F	2.022419	-1.675111	1.427712
Н	-0.951634	-2.104083	-0.490333
С	-2.440294	-0.521333	-0.127209
С	-3.489208	-1.444309	-0.218989
С	-2.723748	0.825579	0.140460
С	-4.807748	-1.026880	-0.047262
Н	-3.266734	-2.487665	-0.425712
С	-4.041473	1.236309	0.311186
Н	-1.919828	1.552626	0.218597
С	-5.086204	0.312932	0.217851
Н	-5.614480	-1.750063	-0.120425
Н	-4.254490	2.280600	0.519166
Н	-6.113113	0.639540	0.352861
			5139

TS-2a (optimized in DCE)

M06-2X SCF energy in DCE:	-964.40586170 a.u.	
M06-2X enthalpy in DCE:	-964.168836 a.u.	
M06-2X free energy in DCE:	-964.232826 a.u.	
M06-2X free energy in DCE at	fter quasi-harmonic correction:	-964.2287611 a.u.
Imaginary frequency:	-321.5740 cm-1	

ATOM	Х	Y	Z
С	1.719640	-0.984530	0.051822
С	2.399066	-0.747586	1.265655
С	2.431676	-1.206018	-1.147125
С	3.786084	-0.759340	1.277152
Н	1.828324	-0.561145	2.169746
С	3.816160	-1.205521	-1.120429
Н	1.884378	-1.366791	-2.071002
С	4.486751	-0.982050	0.088257
Н	4.323975	-0.585135	2.203146
Н	4.379095	-1.373641	-2.032570
Н	5.572997	-0.979495	0.101436
С	0.314707	-0.977091	0.039311
С	-0.869375	-1.469348	0.246756
В	0.589447	1.949625	-0.175351
F	-0.025390	0.766832	-0.792408
F	1.904402	2.019384	-0.609680
F	-0.150424	3.047001	-0.584760
F	0.517452	1.766835	1.202888
			5140

Н	-0.755670	-2.519408	0.548294
С	-2.245820	-0.951138	0.149661
С	-2.575240	0.372486	0.466518
С	-3.252779	-1.849520	-0.226037
С	-3.899768	0.793063	0.379489
Н	-1.806150	1.061237	0.796780
С	-4.573496	-1.418579	-0.323141
Н	-2.996342	-2.881904	-0.448713
С	-4.898436	-0.095612	-0.022412
Н	-4.150938	1.819414	0.629903
Н	-5.347328	-2.117428	-0.626178
Н	-5.928947	0.240400	-0.091314

E-81 (optimized in DCE)

M06-2X SCF energy in DCE:	-639.85890833 a.u.	
M06-2X enthalpy in DCE:	-639.637213 a.u.	
M06-2X free energy in DCE:	-639.689786 a.u.	
M06-2X free energy in DCE after quasi-harmonic correction: -639.6875768 a.u		

ATOM	Х	Y	Z
С	-1.536071	0.405861	-0.099797
С	-1.192460	-0.678741	-0.917563
С	-2.733126	0.371569	0.626792
С	-2.024134	-1.793069	-0.984927
Н	-0.279295	-0.643441	-1.505029
С	-3.562056	-0.746634	0.557174
Н	-3.009093	1.216391	1.251343 \$141

С	-3.207678	-1.832027	-0.244477
Н	-1.753074	-2.628477	-1.623824
Н	-4.484654	-0.769148	1.129732
Н	-3.855009	-2.702552	-0.299108
С	-0.669254	1.595229	-0.021376
С	0.659979	1.725827	0.001465
F	-1.398696	2.750900	0.010627
Н	1.042810	2.743993	-0.042787
С	1.658778	0.642887	0.092064
С	1.473446	-0.482609	0.909323
С	2.860332	0.765451	-0.620243
С	2.450161	-1.472558	0.983266
Н	0.564638	-0.576454	1.497840
С	3.837478	-0.226458	-0.547196
Н	3.024035	1.643954	-1.239930
С	3.633430	-1.352101	0.251013
Н	2.291078	-2.336536	1.622461
Н	4.759185	-0.117057	-1.111738
Н	4.394695	-2.124536	0.312293

Z-71 (optimized in DCE)

M06-2X SCF energy in DCE:	-639.86286416 a.u.	
M06-2X enthalpy in DCE:	-639.640694 a.u.	
M06-2X free energy in DCE:	-639.694316 a.u.	
M06-2X free energy in DCE after quasi-harmonic correction: -639.6910937 a.u		

ATOM	Х	Y	Z
			S142

С	-1.943630	-0.075727	-0.022660
С	-2.845166	-1.112782	0.256239
С	-2.443043	1.209329	-0.287516
С	-4.216476	-0.864961	0.286716
Н	-2.473715	-2.112465	0.456146
С	-3.812386	1.450900	-0.252568
Н	-1.766050	2.020270	-0.538694
С	-4.705431	0.416147	0.036113
Н	-4.902227	-1.677595	0.508135
Н	-4.184786	2.449345	-0.462497
Н	-5.774153	0.608119	0.058323
С	-0.499075	-0.353689	-0.032913
С	0.513369	0.520692	0.033650
F	-0.229478	-1.684231	-0.095115
Н	0.224068	1.563161	0.129737
С	1.959816	0.272608	0.017871
С	2.557658	-0.982044	-0.204343
С	2.801832	1.378949	0.232200
С	3.944722	-1.113049	-0.204380
Н	1.946075	-1.857689	-0.383444
С	4.187112	1.243886	0.233787
Н	2.355348	2.356087	0.400218
С	4.766486	-0.006584	0.015870
Н	4.386100	-2.090248	-0.379588
Н	4.813031	2.115280	0.404189
Н	5.846885	-0.118212	0.015108

BF3 (optimized in DCE)

S143

M06-2X SCF energy in DCE:-324.56306263 a.u.M06-2X enthalpy in DCE:-324.546476 a.u.M06-2X free energy in DCE:-324.577164 a.u.M06-2X free energy in DCE after quasi-harmonic correction:-324.5

-324.5771643 a.u.

Cartesian coordinates

ATOM	Х	Y	Z
В	0.000042	-0.000047	-0.000150
F	-0.458337	-1.236108	0.000028
F	1.299718	0.221162	0.000028
F	-0.841404	1.014973	0.000028

H2O (optimized in DCE)

M06-2X SCF energy in DCE:	-76.42887078 a.u.	
M06-2X enthalpy in DCE:	-76.404022 a.u.	
M06-2X free energy in DCE:	-76.425467 a.u.	
M06-2X free energy in DCE after q	uasi-harmonic correction:	-76.425467 a.u.

Cartesian coordinates

ATOM	Х	Y	Z
0	0.000000	0.000000	0.117933
Н	0.000000	0.770127	-0.471733
Н	0.000000	-0.770127	-0.471733

BF3-H2O (optimized in DCE)

M06-2X SCF energy in DCE:	-401.02217209 a.u.
M06-2X enthalpy in DCE:	-400.977854 a.u.
	S144
M06-2X free energy in DCE: -401.012686 a.u.

M06-2X free energy in DCE after quasi-harmonic correction:

-401.0126861 a.u.

Cartesian coordinates

ATOM	Х	Y	Z
В	-0.182457	0.000104	0.002762
F	-0.572835	-1.152027	-0.626452
F	-0.426534	-0.003286	1.354724
F	-0.570745	1.156225	-0.620464
0	1.416157	-0.000752	-0.173999
Н	1.857619	0.790692	0.204539
Н	1.856440	-0.793408	0.203371

11. References

 Zhao, Y., Jiang, F. & Hu, J. Spontaneous Resolution of Julia-Kocienski Intermediates Facilitates Phase Separation to Produce Z- and E-Monofluoroalkenes. *J. Am. Chem. Soc.* **137**, 5199–5203 (2015).
 Gauthier, R., Mamone, M. & Paquin, J.-F. Gold-Catalyzed Hydrofluorination of Internal Alkynes Using Aqueous HF. *Org. Lett.* **21**, 9024–9027 (2019).

[3] Dolenc, D. & Šket, B. Chlorofluorination of Alkenes and Alkynes Using a New Reagent N-Chlorosaccharin - HF/Pyridine System. *Synlett* **4**, 327-328 (1995).

[4] Eddartr, S., Mestdagh, H. & Rolando, C. Synthesis of fluorinated enynes and dienes via 1-bromo 2-fluoro alkenes. *Tetrahedron Letters* **32**, 69-72 (1991).

[5] Pfeifer, L. & Gouverneur, V. Controlled Single and Double Iodofluorination of Alkynes with DIHand HF-Based Reagents. *Org. Lett.* **20**, 1576–1579 (2018).

[6] Metternich, J. B. & Gilmour, R. A Bio-Inspired, Catalytic $E \rightarrow Z$ Isomerization of Activated Olefins. *J. Am. Chem. Soc.* **137**, 11254–11257 (2015).

[7] Lu, Z., Bajwa, B. S., Liu, S., Lee, S., Hammond, G. B. & Xu, B. Solventless and metal-free regioselective hydrofluorination of functionalized alkynes and allenes: an efficient protocol for the synthesis of gem-difluorides. *Green Chem.*, **21**, 1467-1471 (2019).

[8] Rosen, T. C., Yoshida, S., Frohlich, R., Kirk, K. L. & Haufe, G. Fluorinated Phenylcyclopropylamines. 2. Effects of Aromatic Ring Substitution and of Absolute Configuration on Inhibition of Microbial Tyramine Oxidase. *J. Med. Chem.* **47**, 5860-5871 (2004).

[9] Heitz, W. & Knebelkamp, A. Synthesis of fluorostyrenes via palladium-catalyzed reactions of aromatic halides with fluoroolefins. Makromol. *Chem., Rapid Commun.* **12**, 69-75 (1991).

[10] Knebelkamp, A. & Heitz, W. Synthesis and properties of $poly(\alpha-fluorostyrene)s$. Makromol. S145

Chem., Rapid Commun. 12,597-606 (1991).

[11] Mandal, S. K., Ghosh, A. K., Kumar, R. & Zajc, B. Expedient synthesis of α -substituted fluoroethenes. *Org. Biomol. Chem.*, **10**, 3164–3167 (2012).

 [12] Thomson, C. J., Zhang, Q., Al-Maharik, N., Buhl, M., Cordes, D. B., Slawin, A. M. Z. & O'Hagan,
 D. Fluorinated cyclopropanes: synthesis and chemistry of the aryl a,b,b-trifluorocyclopropane motif. *Chem. Commun.*, 54, 8415–8418 (2018).

[13] Okoromoba, O. E., Han, J., Hammond, G. B. & Xu, B. Designer HF-Based Fluorination Reagent: Highly Regioselective Synthesis of Fluoroalkenes and gem-Difluoromethylene Compounds from Alkynes. J. Am. Chem. Soc. 136, 14381–14384 (2014).

[14] Qiu, J., Gyorokos, A., Tarasow, T. M. & Guiles, J. Grignard Cross-Coupling Amenable to Large Scale Production of α-Fluorostyryl and α-Fluorovinylthiophenes. J. Org. Chem. 73, 9775–9777 (2008).
[15] Mandal, D., Gupta, R. & Young, R. D. Selective Monodefluorination and Wittig Functionalization of gemDifluoromethyl Groups to Generate Monofluoroalkenes. J. Am. Chem. Soc. 140, 10682–10686 (2018).

[16] Thornbury, R. T. & Toste, F. D. Palladium-Catalyzed Defluorinative Coupling of 1-Aryl-2,2-Difluoroalkenes and Boronic Acids: Stereoselective Synthesis of Monofluorostilbenes. *Angew. Chem. Int. Ed.* 55, 11629–11632 (2016).

[17] Shintani, S., Furukawa, Y., Yokokoji, O., Myajima, T., Ko, H., Machida, K. Jpn. Kokai Tokkyo Koho (1993), JP 05070382 A 19930323.

[18] Wong, O. A. & Shi, Y. Asymmetric Epoxidation of Fluoroolefins by Chiral Dioxirane. Fluorine Effect on Enantioselectivity. *J. Org. Chem.* **74**, 8377–8380 (2009).

[19] Kasten, K., Slawin, A. M. Z. & Smith, A. D. Enantioselective Synthesis of β-Fluoro-β-aryl-α-aminopentenamides by Organocatalytic [2,3]-Sigmatropic Rearrangement. *Org. Lett.* 19, 5182–5185 (2017).

[20] O'Connor, T. J. & Toste, F. D. Gold-Catalyzed Hydrofluorination of Electron-Deficient Alkynes: Stereoselective Synthesis of β-Fluoro Michael Acceptors. ACS Catal. 8, 5947–5951 (2018).

[21] Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A., Jr., Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, N. J., Klene, M., Knox, J. E., Cross, J. B., Bakken, V.,

Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, O., Foresman, J. B., Ortiz, J. V., Cioslowski, J., Fox, D. J. *Gaussian 16*, Revision A.03, Gaussian, Inc.: Wallingford, CT, 2016.

[22] Towns, J., Cockerill, T., Dahan, M., Foster, I., Gaither, K., Grimshaw, A., Hazlewood, V., Lathrop, S., Lifka, D., Peterson, G. D., Roskies, R., Scott, J. R., Wilkins-Diehr, N. XSEDE: Accelerating Scientific Discovery. *Computing in Science & Engineering* 16, 62-74 (2014).

[23] Marenich, A. V., Cramer, C. J., Truhlar, D. G. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. *J. Phys. Chem. B* **113**, 6378-6396 (2009).

[24] Zhao, Y., Truhlar, D. G. The M06 suite of density functionals for main group thermochemistry,

thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. *Theor. Chem. Acc.* **120**, 215-241 (2007).

[25] Ribeiro, R. F., Marenich, A. V., Cramer, C. J., Truhlar, D. G. Use of solution-phase vibrational frequencies in continuum models for the free energy of solvation, *J. Phys. Chem. B* **115**, 14556-14562 (2011).

[26] Funes-Ardoiz, I., Paton, R. S. *GoodVibes: GoodVibes* v1.0.2. http://doi.org/10.5281/zenodo.595246, 2016.

12. Copies of NMR Spectra

¹H NMR (500 MHz, CDCl₃)

^{135 125 115 105 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0}

¹H NMR (400 MHz, CDCl₃)

¹H NMR (400 MHz, CDCl₃)

¹H NMR (500 MHz, CDCl₃) (3)

 $\label{eq:states} \begin{array}{l} {}^{1}H\ NMR\ (500\ MHz,\ CDCl_{3})\ (15) \\ \\ {}^{1}H\ Sec \ (15) \ Sec \$

¹H NMR (500 MHz, CDCl₃) (21)

¹H NMR (500 MHz, CDCl₃) (29)

¹H NMR (300 MHz, CDCl₃) (41)

¹H NMR (500 MHz, CDCl₃) (43)

¹H NMR (500 MHz, CDCl₃) (45)

 $\begin{array}{c} 7.37\\ 7.737\\ 7.737\\ 7.735\\ 7.735\\ 7.735\\ 7.725\\ 7.725\\ 7.725\\ 7.725\\ 7.725\\ 7.725\\ 7.725\\ 7.725\\ 7.725\\ 7.725\\ 7.725\\ 7.725\\ 7.7725\\ 7.$

¹H NMR (500 MHz, CDCl₃) (49)

¹H NMR (500 MHz, CDCl₃) (71)

¹H NMR (500 MHz, CDCl₃) (85)

77.50 77.73 77.74 77.74 77.75

¹H NMR (500 MHz, CDCl₃) (87)

77.50 77.73

¹H NMR (500 MHz, CDCl₃) (89)

-91.32 -91.35 -91.35 -91.40 -91.40 -91.47 -91.47 -91.50

¹⁹F NMR (471 MHz, CDCl₃) (91)

