Cell Reports, Volume 35

Supplemental information

p53-intact cancers escape tumor suppression

through loss of long noncoding RNA Dino

Christina B. Marney, Erik S. Anderson, Mutayyaba Adnan, Kai-Lin Peng, Ya Hu, Nils Weinhold, and Adam M. Schmitt

Supplemental Information

This PDF file includes:

Supplemental References Figures S1- S5 Tables S1 to S4

Figure S1. Identification of differentially methylated regions at the DINO/CDKN1A locus.

Related to Figure 1. a, Selection criteria for TCGA Pan-Cancer samples in this study. b, Relative methylation at HM450 CpGs covering the DINO/CDKN1A locus in TCGA Pan-Cancer samples. Above: red lines indicate the position of differentially methylated CpGs downstream of the DINO TSS. In this scale, 0 represents average beta value at each CpG across all Pan-Cancer samples. c, Histogram of average *DINO* methylation in methylated (Cluster 1) and unmethylated (Cluster 2) clusters in the Pan-Cancer dataset. Average methylation of 0.5 provides the optimal cutoff to distinguish the two clusters. d, Violin plots for methylation values at each HM450 CpG at the DINO/CDKN1A locus methylated and unmethylated clusters of TCGA Pan-Cancer samples, mean +/standard deviation. e, Location of 8 Illumina HM450 CpGs within the human p53 ChIP peak at the DINO/CDKN1A locus previously described (Younger et al., 2015). f, Coefficient for logistic regression analyses for the association between methylation values at individual HM450 CpGs within define p53 ChIP peaks at p53-regulated genes that are most strongly associated with TP53 status in the Pan-Cancer dataset, mean +/- standard deviation (Knijnenburg et al., 2018). g, Alteration matrix for TP53 and CDKN1A in the TGCA Pan-Cancer samples. h, Alteration matrix for TP53 and methylated DINO in the TGCA Pan-Cancer samples. i, Alteration matrix for TP53, CDKN2A and methylated DINO in TCGA DLBC samples. In the TCGA DLBC dataset, methylated DINO and TP53 alterations trended towards mutual exclusivity, but this did not reach statistical significance due to the small number of DLBC samples with copy number, somatic mutation, and methylation data (n = 37). However, deep deletions of CDKN2A, encoding the upstream activator of the p53 tumor suppressor pathway p14ARF, are far more prevalent than TP53 alterations in DLBC. Methylated DINO is mutually exclusive with CDKN2A deep deletions individually (P = 0.015) and CDKN2A and TP53 alterations (P = 0.004). j, Alteration matrix for methylated DINO and TP53 in a combined dataset of three hematologic malignancies including TCGA DLBC, TCGA LAML, and a chronic lymphocytic leukemia samples (Yosifov et al., 2020) demonstrates that methylated DINO and TP53 are mutually exclusive in hematologic malignancies.

Figure S2. Dino is required for tumor suppression of mouse Eµ-myc B cell lymphoma. Related

to Figure 1. a, Expression of *Cdkn1a* in B cells of indicated *Dino* genotype 6 hours after 2Gy irradiation, mean +/- standard deviation. **b**, Expression of *Dino* in B cells of indicated *Cdkn1a* genotype 6 hours after 2Gy irradiation, mean +/- standard deviation. **c**, Spleen weight at time of death in Eµ-myc mice of indicated genotypes (mean +/- standard deviation, *P=0.01, two-tailed T-test). **d**, Incidence of organ involvement by Eµ-myc lymphoma in mice of indicated genotype. **e**, Expression of indicated genotypes, mean +/- standard deviation. **f**, Dino expression in normal B cells following sham irradiation or 2Gy irradiation in comparison to Dino expression in Eµ-myc lymphomas from *Dino*^{+/-} mice. **g-h**, average CpG methylation in lymphoma samples from Eµ-myc+ mice of indicated *Dino* genotype at the *Dino* locus (**g**) and *Cdkn2a/Arf* locus (**h**). **i**, alteration matrix for *Cdkn2a/Arf* deletion or *Trp53 R246Q* mutations in lymphomas from Eµ-myc+ mice of indicated *Dino* genotype.

Figure S3. *Dino* **suppresses mouse fibrosarcoma. Related to Figure 2. a**, *in vitro* proliferation assay in E1A, H-ras^{G12V} MEFs of indicated genotype. **b**, Percentage of E1A, H-ras^{G12V} MEFs of indicated genotype that are EdU+ during tissue culture. **c**, western blot of p53 and β -tubulin in fibrosarcoma tumors of indicated genotype at the endpoint of in vivo tumor formation, in vitro *p53*^{+/+} and *p53*^{-/-} E1A, H-ras^{G12V} MEFs used as a positive and negative control for p53 western. *Trp53* sequencing of these samples revealed all tumors remained *Trp53* wildtype. **d**, *Dino* expression in E1A, H-ras^{G12V} MEFs prior to engraftment (cells) and in fibrosarcoma tumors at the endpoint of *in vivo* tumor formation. **e-f**, The expression of p53-induced genes in *Dino*^{-/-} E1A-Hras^{G12V} cells (**e**) and *Dino*^{+/-} E1A-Hras^{G12V} cells (f) relative to *Dino*^{+/+} E1A-Hras^{G12V} controls. (**e**, mean +/- standard deviation, *Rps27I*, P=0.01, *Aen*, P=0.05, *Gadd45a*, P=0.03, *Xpc*, P=0.03, two-tailed T-test), (**f**, mean +/- standard deviation).

е

TATCCTTACCATCATCAC

Figure S4. Development of Eµ-myc lymphoma growth competition assay. Related to Figures 3-

4. a, Representative flow cytometry and gates for B lymphoma cells infected with GFP or mCherry expressing lentivirus. **b**, Expression of Dino in *Dino*^{+/+} B cells either 6hr after 2Gy radiation or in *Dino*^{-/-} B lymphoma cells after infection with EV-GFP or Dino-GFP lentivirus, mean +/- standard deviation. All animals used in this experiment were $p53^{+/+}$. **c**, Nutlin-3a induced, p53-dependent *CDKN1A* expression in three *Dino*^{-/-} Eµ-myc lymphomas that were adapted to cell culture and retained wild-type p53 as confirmed by sequencing, (mean +/- standard deviation, #1 P=0.001, #2 P=0.002, #3 P=0.01, two-tailed T-test). **d**, western blot for p53 after 2-4 hours of nutlin treatment in three *Dino*^{-/-} Eµ-myc lymphoma cell lines. Total protein was used as a loading control since standard house keeping genes β -tubulin and actin showed significant variability between cell lines. **e**, western blot for cell line 3 after loading a larger amount of protein lysate confirms p53 protein expression after nutlin treatment in this cell line. **f**, *Trp53* exon 6 sequences of samples in C in region of $p53^{R246Q}$ mutation.

Figure S5. Regulation of DINO by methylation in human cancers. Related to Figure 5. a,

Methylation at HM450 CpGs covering the DINO/CDKN1A locus in TCGA SARC samples. Above: red lines indicate position of differentially methylated CpGs downstream of the DINO TSS. In this scale, 0 represents average beta value at each CpG across all SARC samples. b, Violin plots of methylation beta values at each HM450 CpG at the DINO/CDKN1A locus methylated and unmethylated clusters of TCGA SARC. c, Genome browser view of RNAseg for DINO expression in SARC samples with indicated DINO methylation status. Red line indicates the coordinates of DINO; blue line indicates exon 1 of CDKN1A. d, Violin plot of methylation at each DINO CpG in p53-intact dedifferentiated liposarcoma samples and normal adipose tissue, mean +/- standard deviation, * P<10⁻⁴, two tailed T test. e, Violin plot of methylation at each DINO CpG in p53-intact glioblastoma samples and normal glia, mean +/- standard deviation, * P<10⁻⁴, two tailed T test. **f**, Violin plot of methylation at each *DINO* CpG in p53-intact melanoma samples and normal melanocytes, mean +/- standard deviation, * P<10⁻ ³, two tailed T test. **g**, *DINO* and *TSH2B* methylation in BJ fibroblasts and HT-1080 sarcoma cells as measured by MeDIP, mean +/- standard deviation. h, DINO expression in HT-1080 cells after treatment with indicated dose of 5-aza-2'-deoxycitidine (dac) for 72 hours (mean +/- standard deviation, 10nm dac P=0.046, 25nM dac P=0.0004, 100nM dac P=5x10⁻⁵, two-tailed T-test). i, quantitative p53 western blot after cycloheximide (chx) chase in HT-1080 cells transfected with pcDNA vector control or pcDNA-DINO. j, Sample chromatograms for sequences within the DINO DMR after bisulfite conversion of DNA from HT-1080 cells infected with lentivirus expressing sqRNA and TET1-dCas9 or dTET1-dCas9. k-l, expression of canonical p53-regulated genes in HT-1080 cells after (k) 24 hours of Nutlin-3a treatment or (I) in cells infected with indicated CRISPR methylation editing viral constructs (TET1-dCas9 or dTET1-dCas9 with or without a sgRNA targeting the DINO DMR). mean+/- standard deviation. m, Progression Free Interval in TCGA stage I melanoma patients with tumors of indicated TP53 and DINO methylation status, log-rank test. n, Progression Free Interval in glioblastoma patients with tumors of indicated *TP53* and *DINO* methylation status, log-rank test. o, Progression Free Interval in pancreatic adenocarcinoma patients with tumors of indicated TP53 and DINO methylation status, log-rank test nonsignificant but patients with DINO methylated tumors, like those with TP53 mutated tumors, had reduced median survival.

	Sample	DINOme≥0.5,	DINOme≥0.5,	DINOme<0.5,	DINOme<0.5,	
	Number	TP53-wt	TP53-mut	TP53-wt	TP53-mut	Fisher Exact P
TCGA Pan-Cancer	8141	2145	751	3123	2122	<0.00001
TCGA SKCM	465	318	38	76	33	<0.00001
TCGA GBM	130	48	4	48	30	0.0001
TCGA SARC	229	44	12	88	85	0.0003
TCGA STAD	389	61	27	142	159	0.0003
TCGA PAAD	174	19	10	53	92	0.0065
TCGA LUSC	351	10	16	60	265	0.0209

Table S1. Relationship of *DINO* methylation and *TP53* alterations in select human cancers.Related to Figure 1.

	DINOme≥cutoff,	DINOme≥cutoff,	DINOme <cutoff,< th=""><th>DINOme<cutoff,< th=""><th></th><th>TP53 Alt (%),</th><th>TP53 Alt (%),</th></cutoff,<></th></cutoff,<>	DINOme <cutoff,< th=""><th></th><th>TP53 Alt (%),</th><th>TP53 Alt (%),</th></cutoff,<>		TP53 Alt (%),	TP53 Alt (%),
Methylation Cutoff	TP53-wt	TP53-mut	TP53-wt	TP53-mut	Fisher Exact P	DINOme≥cutoff	DINOme <cutoff< td=""></cutoff<>
0.8	77	13	5191	2860	0	0.14444444	0.355235374
0.7	424	130	4844	2743	<0.00001	0.23465704	0.361539475
0.6	1118	370	4150	2503	<0.00001	0.248655914	0.376221254
0.5	2145	751	3123	2122	<0.00001	0.259323204	0.404575786
0.4	3283	1355	1985	1518	< 0.00001	0.29215179	0.433342849
0.3	4307	2174	961	699	< 0.00001	0.335442061	0.421084337
0.2	4944	2675	324	198	0.2	0.351095944	0.379310345

Table S2. Mutual exclusivity of TP53 alterations and DINO methylation in the Pan-Cancerdataset across multiple methylation cutoff values. Related to Figure 1.

	Chromosome	Start	Stop
CDKN1A	chr6	36643696	36646241
BAX	chr19	49458109	49459140
DDB2	chr11	47236249	47237682
MDM2	chr12	69202420	69203119
RPS27I	chr15	63448812	63450014
AEN	chr15	89164217	89165584
XPC	chr3	14219749	14220446
TNFRSF10C	chr8	22925361	22926664
BBC3	chr19	47734508	47735453
CCNG1	chr5	162864504	162865267
GADD45A	chr1	68152194	68152661
SPATA18	chr4	52917597	52918603

Table S3. Genomic coordinates (Hg19) for p53 ChIP peaks at canonical p53 responsive genes, related to Fig S2A-S2B, from (Younger et al., 2015). Related to Figure 1.

Primer	Species	Sequence	Purpose
Dino F	mouse	tggagacctgatgataccca	Genotyping Dino GFP
Dino R	mouse	aagtctgggactactcagtc	Genotyping Dino GFP
Dino-eGFP R	mouse	gaacttgtggccgtttacgt	Genotyping Dino GFP
lgH-Fwd	mouse	CCTTTCTGTACGGTTGTTCGGG	Genotyping E-mu Myc
Myc Rev	mouse	CCTTTCTGTACGGTTGTTCGGG	Genotyping E-mu Myc
mDino Genomic Locus Fwd	mouse	ggagacctgatgatacccaact	Dino Copy Number Genomic QPCR
mDino Genomic Locus Rev	mouse	gcacacacacagatgcac	Dino Copy Number Genomic QPCR
Dino-eGFP Fwd	mouse	AAGCTGACCCTGAAGTTCATCTGC	Dino Copy Number Genomic QPCR
Dino-eGFP Rev	mouse	CTTGTAGTTGCCGTCGTCCTTGAA	Dino Copy Number Genomic QPCR
L32 genomic locus Fwd	mouse	TTCCTGGTCCACAATGTCAAG	Dino Copy Number Genomic OPCR - control
L32 genomic locus Rev	mouse	gtctcaggcttcaaccaagg	Dino Copy Number Genomic OPCR - control
DINO-F	human	GGAGGCAAAAGTCCTGTGTT	DINO Genomic gPCR meDIP
DINO-B	human	GGGCTCAGAGAAGTCTGGTG	DINO Genomic gPCB meDIP
TSH2B-F	human		TSH2B Genomic gPCB meDIP
TSH2B-R	human	GGAGGATGAAAGATGCGGTA	TSH2B Genomic gPCR meDIP
mDino-BamHI Fwd	mouse	tatataGGATCCgtagaaTTCAGTGCAGGGTGGTGGAGA	mDino cloning into lentiviral vector
mDino-Notl Rev	mouse		mDino cloning into lentiviral vector
nCDHvirusEE1a-Eorward	nlasmid		nCDH_EE1a_MCS_(PGK_GEP_T2A_Pure) sequencing
DINO_DMR_1E	human		hisulfite sequencing
	human		bisulfite sequencing
	numan		
Dino_me1_F	mouse		
Dino_me1_k	mouse		
Dino_mez_F	mouse		
Dino_me2_R	mouse		bisuifite sequencing
Cdkn2a_me_F	mouse		bisuifite sequencing
Cdkn2a_me_R	mouse		bisuifite sequencing
mDino QPCR FWd	mouse		RT-PCR
	mouse		RT-PCR
	numan		
	numan		RT- PCR
mBax QPCR Fwd	mouse		
mBax QPCR Rev	mouse		RT-PCR
nBAX_two	numan		
nBAX_rev	numan	CAGCCCATGATGGTTCTGAT	RT-PCR
	mouse		RT-PCR
	mouse	ассстадасссасаатдсад	RT- PCR
hCDKN1A Fwd	human	gaggccgggatgagttgggaggag	RT-qPCR
hCDKN1A rev	human	cagccggcgtttggagtggtagaa	RT-qPCR
mB-actin Fwd	mouse	tcctagcaccatgaagatcaagatc	RT-qPCR
mB-actin Rev	mouse	ctgcttgctgatccacatctg	RT-qPCR
hB-ACTIN Fwd	human	catgtacgttgctatccaggc	RT-qPCR
hB-ACTIN Rev	human	ctccttaatgtcacgcacgat	RT-qPCR
hGAPDH Fwd	human	gagtcaacggatttggtcgt	RT-qPCR
hGAPDH Rev	human	ttgattttggagggatctcg	RT-qPCR
mAen_Fwd	mouse	CACAAGGCTATCCCCTTTCA	RT-qPCR
mAen_Rev	mouse	GAGGGTGGACGTACTTCAGG	RT-qPCR
hAEN_Fwd	human	CATCACTCGGCAGCACAT	RT-qPCR
hAEN_Rev	human	ACTTGAGCGCCTGGAAGTC	RT-qPCR
mRps27l_Fwd	mouse	CTATCCCGGAAGTTGCTGAG	RT-qPCR
mRps27l_Rev	mouse	TCCAAGGAAGGGTGTAACAGA	RT-qPCR
hRPS27L_Fwd	human	ATCCGTCCTTGGAAGAGGAA	RT-qPCR
hRPS27L_Rev	human	GCTGAAAACCGTGGTGATCT	RT-qPCR
mXpc_Fwd	mouse	CCGAGGACAACAAAGTAGCC	RT-qPCR
mXpc_Rev	mouse	сссстсттсстсттссттб	RT-qPCR
hXPC_Fwd	human	AAAGAAAGTGGCCAAGGTGA	RT-qPCR
hXPC_Rev	human	CAGATGGTGTGCCTTCTTGA	RT-qPCR
mDdb2_Fwd	mouse	AAATGCCCAGAAACCCAGAAG	RT-qPCR
mDdb2_Rev	mouse	GTCCTGCTAGAAACGGGACC	RT-qPCR

1	1		
hDDB2_Fwd	human	TATTACGCCCCAGGAACAAG	RT-qPCR
hDDB2_Rev	human	TATTCAAGCAGGCACAG	RT-qPCR
mGadd45a_fwd	mouse	CCGAAAGGATGGACACGGTG	RT-qPCR
mGadd45a_Rev	mouse	TTATCGGGGTCTACGTTGAGC	RT-qPCR
hGADD45a_Fwd	human	ATGGATCAATGGGTTCCAGT	RT-qPCR
hGADD45a_Rev	human	CCTTGCATCAGTGTAGGGAGT	RT-qPCR
mBbc3_Fwd	mouse	GCG GCG GAG ACA AGA AGA	RT-qPCR
mBbc3_Rev	mouse	AGT CCC ATG AAG AGA TTG TAC ATG AC	RT-qPCR
hBBC3_fwd	human	GATGGACTCAGCATCGGAAG	RT-qPCR
hBBC3_rev	human	CACCAGCACAACAGCCTTT	RT-qPCR
mCcng1_Fwd	mouse	CGTGTCC TCAGTTCTTTGGC TTTGACACG	RT-qPCR
mCcng1_Rev	mouse	GATGCTTCGCCTGTACCTTCATT	RT-qPCR
hCCNG1_Fwd	human	CCTTCTGTGTTGGCATTGTCTATC	RT-qPCR
hCCNG1_Rev	human	CAAGCTCTTGCCAGAAGGTCAG	RT-qPCR
mPerp_Fwd	mouse	GACCCCAGATGCTTGTTTTC	RT-qPCR
mPerp_Rev	mouse	CAGCAGGGTTATCGTGAAGC	RT-qPCR
mMdm2_Fwd	mouse	GGACTCGGAAGATTACAGCCTGA	RT-qPCR
mMdm2_Rev	mouse	TGTCTGATAGACTGTGACCCG	RT-qPCR
hMDM2_fwd	human	GAAGGAAACTGGGGAGTCTTG	RT-qPCR
hMDM2_rev	human	GGTGGTTACAGCACCATCAG	RT-qPCR
mPmaip1 Fwd	mouse	GCAGAGCTACCACCTGAGTTC	RT-qPCR
mPmaip1 Rev	mouse	CTTTTGCGACTTCCCAGGCA	RT-qPCR
hPMAIP1 fwd	human	AGCTGGAAGTCGAGTGTGCT	RT-qPCR
hPMAIP1 rev	human	TTTTTGATGCAGTCAGGTTCC	RT-qPCR
hTNFRSF10C F	human	GGTGTGGATTACACCAACGCTTC	RT-qPCR
hTNFRSF10C_R	human	CTGACACACTGTGTCTCTGGTC	RT-qPCR
mMalat1_Fwd	mouse	ggcggaattgctggtagttt	RT-qPCR
mMalat1_Rev	mouse	agcatagcagtacacgcctt	RT-qPCR
mIncp21_Fed	mouse	GGAGTCTCATGCTCAGAGAAGAA	RT-qPCR
mIncp21_Rev	mouse	CCCTGACAGACAAGTACCCTCT	RT-qPCR
mmTrp53exon1F	mouse	TGGATGTCCCACCTTCTTT	gDNA sequencing
mmTrp53exon1R	mouse	GATACAGGTATGGCGGGATG	gDNA sequencing
mmTrp53exon2-3F	mouse	GGACTGCAGGGTCTCAGAAG	gDNA sequencing
mmTrp53exon2-3R	mouse	CTGAAGAGGAACCCCCAAAT	gDNA sequencing
mmTrp53ex4-5F	mouse	TGGTGCTTGGACAATGTGTT	gDNA sequencing
mmTrp53ex4-5R	mouse	TAGCACTCAGGAGGGTGAGG	gDNA sequencing
mmTrp53ex6F	mouse	CCCTACTCTACAACTAAAACTGAAACT	gDNA sequencing
mmTrp53ex6R	mouse	GGGACTCGTGGAACAGAAAC	gDNA sequencing
mmTrp53ex7-8F	mouse	GGGGGCCTAGTTTACACACA	gDNA sequencing
mmTrp53ex7-8R	mouse	ATGCGAGAGACAGAGGCAAT	gDNA sequencing
mmTrp53ex9F	mouse	CAAAACAAAAACCTGTAAGTGGA	gDNA sequencing
mmTrp53ex9R	mouse	GGTGCAGCCCTAAGCATCTA	gDNA sequencing
mmTrP53ex10F	mouse	GATGATGGTGGTGGTGATGA	gDNA sequencing
mmTrP53ex10R	mouse	CTACTCAGAGAGGGGGGCTGA	gDNA sequencing

Name	Source	ID	Reference
pCDH-EF1α-MCS-(PGK-GFP-T2A-		CD813A-	
Puro)	System Biosciences	1	
			(Samuelson
			and Lowe,
pBabe 12S E1A	Addgene	18742	1997)
			(Serrano et
pWZL hygro H-Ras V12	Addgene	18749	al., 1997)
			(Morgenstern
			and Land,
pBABE-zeo	Addgene	1766	1990)
Fund Case Tot1CD P2A BEP			(Liu et al.,
ruw-ucasa-retrod-rza-brr,	Addgene	108245	2018)
Fuw-dCas9-dead Tet1CD-P2A-BEP			(Liu et al.,
	Addgene	108246	2018)

			(Liu et al.,
pgRNA-modified	Addgene	84477	2016)

 Table S4. Primers and plasmids used in the study. Related to Figures 1, 2, 4, and 5.