SUPPLEMENTARY DATA

The Synaptonemal Complex Central Region Modulates Crossover Pathways and Feedback Control of Meiotic Double-Strand Break Formation

Min-Su Lee, Mika T. Higashide, Hyungseok Choi, Ke Li, Soogil Hong, Kangseok Lee, Akira Shinohara, Miki Shinohara, Keun P. Kim

Supplementary Figure S1. NPD ratio and coefficient of coincidence.

- (A) CO interference in NPD ratio in chromosomes III, VII, and V.
- (B) Coefficient of coincidence in chromosomes III and VII.

Supplementary Figure S2. Inter-interval interference in WT and gmc2^Δ cells.

Tetrad data shown in Figure 1 were analyzed by the Malkova method (58). (A) Schematic diagram for the analysis. (B) CO frequencies (cM) of the next interval, *LEU2-MAT*, and an independent interval, *CUP2-MET13*, on chromosome VII after rec+ or rec– categorization of the *URA3-LEU2* in chromosome III. (C) CO frequencies (cM) after rec+ or rec– categorization of each indicated interval on chromosome VII, and (D) chromosome V. Statistical significances were determined by testing whether 2(S.E.[cM^{rec-}-cM^{rec+}]) < [cM^{rec-}-cM^{rec+}]. Asterisks, significant difference; ns, not-significant; NA,

not assigned.

Supplementary Figure S3. Analysis of DSB levels in a rad50S background.

(A) Gel analysis (1D) at *HIS4LEU2* locus in *rad50S, rad50S* ecm11 Δ , *rad50S* gmc2 Δ , and *rad50S* ecm11 Δ gmc2 Δ cells (left). Quantification of DSBs from three independent meiotic cultures (right).

(B) Gel analysis (1D) at different loci in *rad50S, rad50S ecm11* Δ , *rad50S gmc2* Δ , and *rad50S ecm11* Δ gmc2 Δ strains. *ARG4*, *BUD23*, *CYS3*, and *ERG1* loci located on chromosomes VIII, III, I, and VII, respectively.

(C) Quantitative analysis of DSBs at various loci in three sets of independent meiotic cultures.

Supplementary Figure S4. Analysis of DSB levels in a *dmc1*[⊿] background.

(A) Gel analysis (1D) at the *HIS4LEU2*, *ARG4*, *BUD23*, and *CYS3* loci in *dmc1* Δ , *dmc1* Δ *ecm11* Δ , *dmc1* Δ *gmc2* Δ , and *dmc1* Δ *ecm11* Δ *gmc2* Δ mutants.

(B) Quantification of DSBs. Data are the means \pm SD (N = 3).

Supplementary Figure S5. Two-dimensional gel analysis for WT, $ecm11\Delta$, $gmc2\Delta$, and $ecm11\Delta$ $gmc2\Delta$ cells at the *HIS4LEU2* hotspot.

Two-dimensional gel images of Southern blotting for WT, $ecm11\Delta$, $gmc2\Delta$, and $ecm11\Delta$ $gmc2\Delta$ cells at the *HIS4LEU2* locus. Images show DNA species from representative meiotic time courses.

Supplementary Figure S6. Two-dimensional gel analysis for WT, $ecm11\Delta$, $gmc2\Delta$, and $ecm11\Delta$ $gmc2\Delta$ cells at the *ERG1* locus.

(A) Physical map of the *ERG1* locus.

(B) Two-dimensional gel images of Southern blotting for WT, $ecm11\Delta$, $gmc2\Delta$, and $ecm11\Delta$ $gmc2\Delta$ cells at the *ERG1* locus. Images show DNA species from representative meiotic time courses.

Supplementary Figure S7. Analysis of DSB levels in WT, $ecm11\Delta$, $gmc2\Delta$, and $ecm11\Delta$ $gmc2\Delta$ cells at the *ERG1* locus.

- (A) Representative 1D gel images of WT, $ecm11\Delta$, $gmc2\Delta$, and $ecm11\Delta$ $gmc2\Delta$ at the ERG1 locus.
- (B) Quantitative analysis of images shown in (A). Error bars indicate the means \pm SD (N = 3).

Supplementary Figure S8. Chromosome analysis of WT, $ecm11\Delta$, $gmc2\Delta$, and $ecm11\Delta$ $gmc2\Delta$ cells.

(A) Representative images of chromosome spreads immunostained for Zip3 (green) along meiotic progression of WT and $gmc2\Delta$ cells.

(B) Quantification of the number of Zip3 foci-positive nuclei along meiotic progression in WT (black), $ecm11\Delta$ (red), $gmc2\Delta$ (blue), and $ecm11\Delta$ $gmc2\Delta$ (green) cells.

(C) Quantification of the number of Zip3 foci along meiotic progression in WT and gmc2¹/₂ cells.

(D) Representative images of chromosome spreads and cells immunostained for Rad51 (green) and Dmc1 (red) along meiotic progression in WT and mutant cells.

(E) Quantification of the number of Rad51 and Dmc1 foci-positive nuclei along meiotic progression.

(F) Quantification of the number of Rad51 and Dmc1 foci along meiotic progression. Error bars indicate the median and 95% C.I., statistical significance was analyzed through the Mann-Whitney *U*-test (**** P < 0.0001, *** P < 0.001 and ns indicates P > 0.05).

Supplementary Figure S9. EG complex prevents additional DSB formation after the Ndt80 pathway, even with pseudo-synapsis.

(A) Representative image of meiotic nuclear spread from $ndt80 \Delta gmc2\Delta$, and $ndt80\Delta gmc2\Delta sgs1-\Delta 200$ cells at 8 h post-meiosis entry. Cells were co-stained for anti-Rec8 (green), anti-Zip1 (red), and DAPI (blue).

(B) Analysis of the chromosome axis.

(C) Representative image of ³²P-labeled DNA fragments covalently bound to Spo11-3FLAG in immunoprecipitates and quantitative analysis of the images for *ndt80* Δ , *ndt80* Δ *gmc2* Δ , *ndt80* Δ *sgs1*- Δ 200, and *ndt80* Δ *gmc2* Δ *sgs1*- Δ 200 mutants. Error bars indicate the means ± SD (*N* = 4).

Supplementary Figure S10. Absence of the EG complex restrains *zip3*⊿-induced additional DSBs at various loci.

(A) Meiotic division for $zip3\Delta$, $zip3\Delta$ ecm11 Δ , $zip3\Delta$ gmc2 Δ , and $zip3\Delta$ ecm11 Δ gmc2 Δ mutants. Error bars indicate the means ± SD (*N* = 3).

(B and C) Southern blot analysis (1D) of ARG4 and CYS3 loci in $zip3\Delta$, $zip3\Delta$ ecm11 Δ , $zip3\Delta$ gmc2 Δ , and $zip3\Delta$ ecm11 Δ gmc2 Δ mutants.

Supplementary Figure S11. The EG complex functions independently from Mus81-Mms4 in meiotic recombination.

(A) Meiotic nuclear division of WT, *ecm11* Δ , *mus81* Δ , and *ecm11* Δ *mus81* Δ strains. Error bars indicate the means ± SD (N = 3).

(B) Analysis of spore viability of WT, ecm11*A*, mus81*A*, and ecm11*A* mus81*A* strains.

(C) 1D gel analysis of WT, *ecm11* Δ , *mus81* Δ , and *ecm11* Δ *mus81* Δ cells.

(D) Quantification of DSBs and COs. The plots for WT and *ecm11* Δ are from Figure 2D. Error bars indicate the means ± SD (N = 3).

(E) 2D gel analysis of WT, *ecm11* Δ , *mus81* Δ , and *ecm11* Δ *mus81* Δ cells. The gel images for WT and *ecm11* Δ are from Figure 3B.

(F) Quantification of SEIs and dHJs. The plots for WT and *ecm11* Δ are from Figure 3B. Error bars indicate the means ± SD (N = 3).

Supplementary Figure S12. Meiotic recombination of WT, $ecm11\Delta$, $gmc2\Delta$, and $ecm11\Delta$ $gmc2\Delta$ cells at low temperature.

(A) CO/NCO analysis of WT, ecm11 Δ , gmc2 Δ , and ecm11 Δ gmc2 Δ cells at low temperature (23 °C).

Error bars indicate the means \pm SD (N = 3).

- (B) Representative images of two-dimensional gel analysis.
- (C) Quantitative analysis of results shown in panel B. Error bars indicate the means \pm SD (N = 3).

Supplementary table 1. Yeast strains used in this study.

Strain	Genotypet
KKY276	MATa/MATα HIS4::LEU2-(BamHI)/his4-x::LEU2-(NgoMIV)-URA3
KKY730	MATa/MAT $lpha$ HIS4::LEU2-(BamHI)/his4-x::LEU2-(NgoMIV)-URA3, ecm11 \varDelta ::HygB/"
KKY732	MATa/MAT α HIS4::LEU2-(BamHI)/his4-x::LEU2-(NgoMIV)-URA3, gmc2 Δ ::KanMX/"
KKY855	MATa/MATα HIS4::LEU2-(BamHI)/his4-x::LEU2-(NgoMIV)-URA3, ecm11Δ::HygB/", gmc2Δ::KanMX/"
KKY885	MATa/MATα HIS4::LEU2-(BamHI)/his4-x::LEU2-(NgoMIV)-URA3, rad50S::URA3/"
KKY984	MATa/MATα HIS4::LEU2-(BamHI)/his4-x::LEU2-(NgoMIV)-URA3, rad50s::URA3/", ecm11⊿::HygB/"
ККҮ983	MATa/MATα HIS4::LEU2-(BamHI)/his4-x::LEU2-(NgoMIV)-URA3, rad50s::URA3, gmc2Δ::KanMX/"
KKY985	MATa/MATα HIS4::LEU2-(BamHI)/his4-x::LEU2-(NgoMIV)-URA3, rad50s::URA3/", ecm11Δ::HygB/", gmc2Δ::KanMX/"
KKY389	MATa/MAT α HIS4::LEU2-(BamHI)/his4-x::LEU2-(NgoMIV)-URA3, ndt80 Δ ::KanMX4/"
KKY1469	MATa/MATα HIS4::LEU2-(BamHI)/his4-x::LEU2-(NgoMIV)-URA3, ndt80∆::KanMX4/", ecm11∆::HygB/"
KKY1471	MATa/MATα HIS4::LEU2-(BamHI)/his4-x::LEU2-(NgoMIV)-URA3, ndt80Δ::KanMX4/", gmc2Δ::KanMX/"
KKY1473	MATa/MATα HIS4::LEU2-(BamHI)/his4-x::LEU2-(NgoMIV)-URA3, ndt80Δ::KanMX4/", ecm11Δ::HygB/", gmc2Δ::KanMX/"
KKY2945	MATa/MATα HIS4::LEU2-(BamHI)/his4-x::LEU2-(NgoMIV)-URA3, ERG1::Sall / ERG1::Spel
KKY3012	MATa/MATα HIS4::LEU2-(BamHI)/his4-x::LEU2-(NgoMIV)-URA3, ERG1::Sall / ERG1::SpeI, ecm11Δ::HygB/"
KKY2996	MATa/MATα HIS4::LEU2-(BamHI)/his4-x::LEU2-(NgoMIV)-URA3, ERG1::SpeI / ERG1::Sall, gmc2Δ::KanMX/"
KKY2997	MATa/MATα HIS4::LEU2-(BamHI)/his4-x::LEU2-(NgoMIV)-URA3, ERG1::SpeI / ERG1::Sall, ecm11Δ::HygB/", gmc2Δ::KanMX/"
KKY1054	MATa/MAT α HIS4::LEU2-(BamHI)/his4-x::LEU2-(NgoMIV)-URA3, zip3 Δ ::KanMX/"
KKY1060	MATa/MATα HIS4::LEU2-(BamHI)/his4-x::LEU2-(NgoMIV)-URA3, zip3∆::KanMX/", ecm11∆::HygB/"
KKY1115	MATa/MATα HIS4::LEU2-(BamHI)/his4-x::LEU2-(NgoMIV)-URA3, zip3Δ::KanMX/", gmc2Δ::KanMX/"
KKY1059	MATa/MATα HIS4::LEU2-(BamHI)/his4-x::LEU2-(NgoMIV)-URA3, zip3∆::KanMX/", ecm11∆::HygB/", gmc2∆::KanMX/"
KKY1431	MATa/MAT $lpha$ HIS4::LEU2-(BamHI)/his4-x::LEU2-(NgoMIV)-URA3, dmc1 \varDelta ::KanMX/"
KKY1397	MATa/MATα HIS4::LEU2-(BamHI)/his4-x::LEU2-(NgoMIV)-URA3, dmc1⊿::KanMX/", ecm11⊿::HygB/"
KKY1400	MATa/MATα HIS4::LEU2-(BamHI)/his4-x::LEU2-(NgoMIV)-URA3, dmc1Δ::KanMX/", gmc2Δ::KanMX/"
KKY1399	MATa/MATα HIS4::LEU2-(BamHI)/his4-x::LEU2-(NgoMIV)-URA3, dmc1Δ::KanMX/", ecm11Δ::HygB/", gmc2Δ::KanMX/"

KKY6004	MATa/MATα HIS4::LEU2-(BamHI+ori), his4-x::LEU2-(NgoMIV)URA3, mus81Δ::KanMX/"
KKY5992	MATa/MAT α HIS4::LEU2-(BamHI+ori), his4-x::LEU2-(NgoMIV)URA3, ecm11 Δ ::HygB/", mus81 Δ ::KanMX/"
MSY831	MAT alpha, ho::LYS2, lys2, ura3, leu2::hisG, trp1::hisG
MSY833	MAT a, ho::LYS2, lys2, ura3, leu2::hisG, trp1::hisG
MHY615	MSY833/831 with SPO11-3FLAG::KanMX, ndt80/2::LEU2
MHY645	MSY833/831 with SPO11-3FLAG::KanMX, ndt80 <i>∆</i> ::LEU2, gmc2 <i>∆</i> ::KanMX
MSY5139	MSY833/381 with ndt80⊿::LEU2
MHY561	MSY833/381 with ndt804::LEU2, gmc24::KanMX
MHY812	MSY833/831 with sgs1⊿C200::KanMX, ndt80⊿::LEU2, Spo11-3FLAG::KanMX
MHY824	MSY833/831 with sgs1⊿C200::KanMX, ndt80⊿::LEU2 gmc2⊿::KanMX, Spo11- 3FLAG::KanMX
MSY4988	MAT alpha, ho::LYS2, lys2, HIS4-LEU2-URA3, ura3, leu2::hisG, cyh2-R, arg4-bgl
MSY4304	MAT a, ho::LYS2, lys2, his4B-leu2E, cup2-B, met13-B, trp5-S, ade6-B, arg4-bgl, ura3, leu2::hisG, arg4-bgl
MSY4992	gmc2Δ::KanMX, MSY4304
MSY4990	gmc2Δ::KanMX, MSY4988
MSY5085	MAT alpha, ura3, hom3-10, trp2, cyh2-R, his1, leu2::hisG (congenic SK1)
S2921	MAT a, ho::LYS2, lys2, can1R, leu2::hisG (congenic SK1)
MSY5209	gmc2Δ::HygB, MSY5085
MSY5073	gmc2⊿::HygB, S2921

[†] All strains are isogenic derivatives of parental SK1.

Supplementary table 2. Genetic analysis of *gmc2*⊿ cells by Papazian's NPD analysis on chromosomes III, V, and VII.

Chromosome III

Strain	Interval	PD ª	TT	NPD _{obs}	Total	cM ± SE ^b	NPD _{exp}	NPD ratio ± SE ^b
Wild type	URA3-LEU2	919	352	2	1273	14.3 ± 0.70	15	0.13 ± 0.09
	LEU2-HIS4	1223	54	0	1277	2.1 ± 0.28	0.3	N.A.
	HIS4-MAT	491	808	49	1348	40.9 ± 1.5	124	0.40 ± 0.06
gmc2∆	URA3-LEU2	764	297	5	1066	15.3 ± 0.91	13	0.39 ± 0.17
	LEU2-HIS4	1026	38	0	1064	1.8 ± 0.28	0.2	N.A.
	HIS4-MAT	563	518	36	1117	32.9 ± 1.6*	47	$0.77 \pm 0.14^*$

Chromosome VII

Strain	Intervals	PD ª	TT	NPD _{obs}	Total	cM ± SE ^b	NPD _{exp}	NPD ratio ± SE °
Wild type	CUP2-MET13	539	686	15	1240	31.3 ± 1.1	87	0.17 ± 0.05
	MET13-CYH2	1005	296	1	1302	11.6 ± 0.6	10	0.10 ± 0.10
	CYH2-TRP5	455	844	48	1347	42.0 ± 1.5	148	0.32 ± 0.05
	TRP5-ADE6	381	847	97	1325	53.9 ± 2.0	160	0.61 ± 0.08
gmc2∆	CUP2-MET13	284	597	54	932	48.4 ± 2.1*	114	$0.45 \pm 0.08^{*}$

M	ET13-CYH2	624	383	9	1016	21.5 ± 1.1*	25	0.36 ± 0.12*
C	YH2-TRP5	226	740	110	1076	65.1 ± 2.5*	114	0.96 ± 0.13*
TF	RP5-ADE6	244	686	119	1049	66.7 ± 2.7*	144	0.83 ± 0.12*

Chromosome V

Strain	Intervals	PD ª	TT	NPD _{obs}	Total	cM ± SE ^b	NPD _{exp}	NPD ratio ± SE ^b
Wild type	CAN1-URA3	330	892	25	1247	41.8 ± 1.2	N.A. ^c	N.A.
	URA3-HIS1	425	760	46	1231	42.1 ± 1.6	127	0.36 ± 0.07
	HIS1-HOM3	1203	20	0	1223	0.82 ± 0.18	0.04	N.A.
	HOM3-TRP2	976	235	3	1214	10.4 ± 0.7	7	0.46 ± 0.27
	URA3-HOM3	435	767	44	1246	41.4 ± 1.6	127	0.35 ± 0.07
	HIS1-TRP2	982	214	2	1198	9.4 ± 0.7	5	0.37 ± 0.26
gmc2∆	CAN1-URA3	547	666	15	1228	30.8 ± 1.1	81	0.19 ± 0.05
	URA3-HIS1	514	653	39	1206	36.8 ± 1.6	79	0.50 ± 0.09
	HIS1-HOM3	1160	29	0	1189	0.6 ± 0.16	0.09	N.A.
	HOM3-TRP2	855	302	14	1171	16.5 ± 1.1	12	1.17 ± 0.34*
	URA3-HOM3	533	647	33	1213	34.8 ± 1.5	59	0.44 ± 0.09
	HIS1-TRP2	877	277	10	1164	14.5 ± 1.0	10	1.00 ± 0.34*

Map distances and NPD ratios were calculated as described in the Material and Methods.

^a PD: parental di-type, TT:tetra type, NPD: non-parental di-type.

^b The SE for the map distances and NPD ratio with SE were calculated using the Stahl Lab online tool (https://elizabethhousworth.com/StahlLabOnlineTools/).

^c Papazian analysis cannot be applied when the frequency of TTs exceeds 2/3 of the total.

* The significance of the difference in MAP distance and NPD ratio between the wild type and the mutant were confirmed by overlap of the SE value around the map distance or NPD ratio. N.A.: not applicable.

Isogenic SK1		Total No. of tetrad								
strain	URA3	LEU2	HIS4	MAT	CUP2	MET13	CYH2	TRP5	ADE6	-
Wild type	1.7 (1.0)	6.2 (1.0)	1.5 (1.0)	1.0 (1.0)	5.4 (1.0)	5.1 (1.0)	0.94 (1.0)	1.4 (1.0)	2.6 (1.0)	1381
gmc2∆	1.3 (0.76)	6.6 (1.1)	1.9 (0.9)	1.7 (1.3)	13.0 (1.2)	7.8 (1.1)	4.7 (0.9)	2.6 (1.1)	7.1 (1.7)	1159
P-value ^a	0.63	0.68	0.54	0.16	1.6 x e ⁻¹¹	0.007	4.3 x e ⁻⁹	0.039	8.1 x e ⁻⁷	
										•
Congenic SK1	Chromosome V					III	VII	Total No.	of tetrad	
strain	CAN1	URA3	HIS1	НОМ3	TRP2	MAT	CYH2	-		
Wild type	0.7 (1.0)	0.1 (1.0)	2.0 (1.0)	0.8 (1.0)	2.7 (1.0)	0.6 (1.0)	0.6 (1.0)	125	57	
gmc2∆	0.8 (1.1)	0.4 (5.1)	2.5 (1.3)	1.9 (2.4)	3.9 (1.4)	1.0 (1.7)	1.6 (2.9)	124	2	
<i>P</i> -value ^a	0.98	0.10	0.39	0.95	0.10	0.24	0.01			

Supplementary table 3. Non-Mendelian segregation frequencies on chromosomes III and VII.

Percentages of tetrad-type with 3+:1–, 1+:3–, 4+:0–, and 0+:4– segregation for each marker were shown. The ratios of the frequency in the mutant relative to that in the wild type are shown in parentheses.

^a The statistical significance of the differences between the wild type and the *gmc2*^{*Δ*} was calculated using Chi-square test.