Legends to Supplementary Figures

Supplementary Figure 1. Characterization of Pax7 EMSA complexes with various probes. A) DNA sequences of probes used in gel retardation assays (EMSA). B,C) Competitive EMSA assays to assess relative affinities of composite HP.E0, PD and H.I2 targets. Complexes formed between the HP.E0 probe and Pax7 from AtT20Pax7 nuclear extracts were competed with the indicated molar excesses of either HP.E0, PD or H.I2 probes. Displacement curves (means ±SD, n=4) for quantitated band intensities (Image Lab, BioRad) were computed with GraphPad Prism. D) EMSA supershift experiments using the Flag2 antibody to supershift Flag-Pax7-containing DNA complexes.

Supplementary Figure 2. Nucleosome positioning relative to Pax7 Pioneer sites was determined by MnaseSeq analyses in AtT20neo and AtT20Pax7 cells. The MnaseSeq heatmaps (right) are sorted according to central read densities (+/-100 bp) and centered (+/- 1000bp) on the by Pax7 peak summit for each subset of sites. For comparison (left), the Pax7 ChIPseq and ATACseq profiles centered on Pax7 binding are shown (data from ref. 4). Only the Pioneered subset of sites shows a different pattern in AtT-Pax7 cells compared to the Neo control, revealing recruitment to nucleosome-occupied sites and nucleosome depletion after Pax7 binding.

Supplementary Figure 3. Characterization of Pax7 mutants within the PD (G43A and R56L) and HD (S264E) domains. A) Western blot analysis for expression of Pax7 and three mutants in AtT20 cells expressing N-terminally flagged Pax7 proteins. PCNA Western blot is used as loading control. B) EMSA using the indicated DNA probes incubated with nuclear extracts from AtT20 cells expressing the indicated Pax7 and mutants. C) Transcriptional activity of Pax7 and its DBD mutants assessed by cotransfection of indicated expression plasmids together with a luciferase reporter plasmid driven by six copies of the HP.E0 composite or by the PC2 gene enhancer. Luciferase activity was assessed as previously (5) in extracts of AtT20 cells prepared 48 hours post-transfection with PEI25K. D) Genomic recruitment (Flag-Pax7 ChIPseq) and ATACseq profiles at the Pax7 Pioneered sites compared to the same sites in AtT20 cells expressing the three Pax7 DBD mutants.

Supplementary Figure 4. Alignment of mouse Pax7, human PAX3 and human PAX6 sequences showing structural features of PD (green) and HD (blue) DNA binding domains. Sequences (Accession numbers P47239.2, P23760.2, P26367.2) were aligned using NCBI Blast 2. Amino acids legend: Black = all different ; Blue = 2/3 identical ; Red = 3/3 identical, Upper case = corresponding in number ; lower case = specific to one protein. The numbering used in indicated previous publications is shown together with positions in mouse Pax7 used in present work.

Supplementary Figure 5. Representative loci for genomic recruitment (Flag-Pax7 ChIPseq) and ATACseq for wildtype Pax7 and three DBD mutants as indicated. Two representative loci are shown for each subset of peaks in the Constitutive, Activated and Pioneered categories. Examples are shown for peaks containing multiple motifs (A), or only one Composite (B), PD (C) or HD (D) motif.

Supplementary Figure 6. Pax7 target genes. A) Time courses of mRNA accumulation determined by RNAseq analyses (5) showing rapid responses for genes regulated through "Pax7 Activated" enhancers compared to the slower responses of "Pioneered" target genes. B) A unique example, the *Oacyl* gene, of Pax7 pioneer action at promoter rather than enhancer sequences. Gene browser views of the *Oacyl* locus show the indicated ChIPseq and ATACseq analyses performed in AtT20Neo, AtT20Pax7 WT or mutant cells.

Probe sequences				
Composite HP.E0	TCGACGCAGAT <u>CCGTGACTAAT</u> GTTCCGACCTCGA			
PD (mutated HD)	TCGACGCAGAT <u>CCGTGAC</u> GCCAGTTCCGACCTCGA			
HD (mutated PD)	TCGACGCAGAT <i>CGTCCGC<mark>TAAT</mark>TCCAACGACCTCGA</i>			
H.I-2	TCGACCAGAT <i>CGTCCGC<mark>TAATTA</mark>CCAACGACCTCGA</i>			
H.I2	TCGACTCGTCCGC <u>TAAT</u> TG <u>ATTA</u> TCCAACGACCTCGA			

А

D

		G10A R23L Underhill, D. A. Fortin, A. S., and P. Gros (1997) et al. (1997)	
		G43A R56L	
	1	MAAL PGAVPRMRPGPGONYPRTGEPLEVSTPL GOGRVNOL GGVETNGRPLENHTRHKTVEMAHHGTPGCVTSROL RV5H	80 m Pax7
	1	MTTI AGAVPRMRPGPGONYPRSGEPI EVSTPI GOGRVNOL GGVETNGRPLENHTRHKTVEMAHHGTRPCVTSROLRVSH	80 h PAX3
	1		50 h PAX6
PD			
	81		160 m Pax7
	81	GCVSKILCRYQETGSIRPGAIGGSKPKQVTTPDVEKKIEEYKRENPGMFSWEIRDKLLKDAVCDRNTVPSVSSISRILRS	160 h PAX3
	51	GCVSKILGRYYETGSIRPRAIGGSKPR-VATPEVVSKIAQYKRECPSIFAWEIRDRLLSEGVCTNDNIPSVSSINRVLRN	₁₂₉ h PAX6
	161	KFGKKEDDEEG-DKKE-EDGEKKAKHSIDGILGDKGNRLDEGSDVESEPD	208 m Pax7
OP	161	KFGKGEEEEAD]ERKEaEESEKKAKHSIDGILSERASAPQSDEGSDIDSEPD	212 h PAX3
	130	LASEKQQMGADGMYDKLRMLNGQTGSWGTRPGWYPGTSVPGQPTqdgcqqqegggentnsissngedsdeaq	201 h PAX6
		215 S264E 274	
	209	α_1 α_2 α_3 α_4 α_5 α_5 α_5 α_5 α_6	286 m Pax7
нр	213	LPLKRKQRRSRTTFTAEQLEELERAFERTHYPDIYTREELAQRAKLTEARVQVWFSNRRARWRKQAGANQLMAFNHLI	290 h PAX3
	202	mrLQLKRKLQRNRTSFTQEQIEALEKEFERTHYPDVFARERLAAKIDLPEARIQVWFSNRRAKWRREEKLRNQRR	276 h PAX6
	287	PGGFPPTGMPTLPPYQLPDSTYPTTTISQDGGSTVHRPQPLPPSTMHQGGLAAAAAAADTSSAYGARHSFSSYS	360 m Pax7
	291	PGGFPPTAMPTLPTYQLSETSYQPTSIPQAVsDPSSTVHRPQPLPPSTVHQSTIPSNPDSSSAYCLPSTRHGFSSYT	367 h PAX3
	277	QASNTPSHIPISSSFSTSVYQPIPQPTTPVSSFTSGSMLGRTDTALTNTYSALPPMPSFTMAN	339 h PAX6
	361	DSFMNPGAPSNHMNP-VSNGLSPQVMSILSNPSAVPPQPQADFSISPL-HGGLDSASSISASCSQRADSIKPGDSLPTSQ	438 m Pax7
	368	DSFVPPSGPSNPMNPTIGNGLSPQVMGLLTNHGGVPHQPQTDYALSPL-TGGLEPTTTVSASCSQRLDHMKSLDSLPTSQ	446 h PAX3
	340	NLPMQPPVPSQTSSYSCMLPTSPSVNG-RSYDTYTPPHMQTHMNSQPMgTSGTTSTGLISPGVSVPVQVPGSEPDMS	415 h PAX6
		477 489	
OAR	439	SYCPPTYSTTGYSVDPVAGYQYSQYGQTAVdylaknvslstqrrmklgehsavlgllpvetgQAY 503 m Pax7	
	447	SYCPPTYSTTGYSMDPVTGYQYGQYGQSKPWTF 479 h PAX3	
	416	QYWPRLQ 422 h PAX6	

Time after Pax7 induction by tamoxifen (h)

В

Gene symbol	Sequence accession number	Amplicon length	Primer sequence	Location	
Candh	NM 000084.2	110	TGCAGTGGCAAAGTGGAGAT	Exon 2	
Gapun	NW_006064.3		ACTGTGCCGTTGAATTTGCC	Exon 2	
Case	NM 010521.2	107	GCCTCTATCACCTGAATCT	Exon 11	
Gaso	NM_019521.2		CCAGTTCCAACTCCTCAT	Exon 12	
GoreF	NIM 000400 0	122	CACCGTTCAGAAGCAATG	Exon 3	
Gpico	NIVI_022420.2		GGAACTTAAGGTCTTTCACC	Exon 4	
Dodb0	NM_001081377.3	150	CAGCCACAGGACGAATTCTAC	Exon 4	
FCull9			ACCCAAAACCAGACACTCTTG	Exon 5	
Ddo2o	NM_001143848.2	161	GAGAACCAGGAGGTCATT	Exon 18-19	
Fueza			CGGTATTGGGCTTCATTC	Exon 20	
Dao	NM_025973.3	168	TGCCCAGTACCTGAATGA	Exon 7	
Fyc			CCTTCCTCCTGGATGATGTA	Exon 8-9	
Kif21h	NM 001020472.2	161	AGAACCAGTCTCGCTATG	Exon 15	
NIIZ ID	NW_001039472.2		CTTCTTGAGCTGAGCAATC	Exon 16	
Muhaal	NM_175418.5	200	ACGAGGTCCGAATCTTTG	Exon 19	
муррст			ATACTCTAGCACATAGCCATC	Exon 20	
Ocard	NM_177028.3	181	GTCCAGATATGTTTGCTTCC	Exon 4	
Oacyi			CTGTTGCTCTCCATGTTTC	Exon 5	
Beek2	NM_008792.4	123	TGACAAGTGGCCTTTCAT	Exon 12	
F USKZ			ATCAGGGTCCATTCCTTC	Exon 12	
Thha	NIM 011591 2	183	CACTCAAAGTGGTAAACTCC	Exon 19	
THDSZ	6.10C11U_IVIN		СТСТСАТGTAGCCTGTCTTA	Exon 20-21	

Supplementary Table 1. Sequences of oligonucleotide primers

Experiment	Cell line	Number of cells	Sequencing depth (read number)	Matching control for peak calling	Antibody reference	Antibody quantity (µg)	Replicate number
ATAC-seq	AtT-20 Neo	1,00E+05	95251912	Input AtT Pax7	N/A	N/A	2
ATAC-seq	AtT-20 Pax7	1,00E+05	82583056	Input AtT Pax7	N/A	N/A	2
ATAC-seq	AtT-20 Pax7 G43A	1,00E+05	32502682	Input AtT Pax7	N/A	N/A	1
ATAC-seq	AtT-20 Pax7 R56L	1,00E+05	31497109	Input AtT Pax7	N/A	N/A	1
ATAC-seq	AtT-20 Pax7 S264E	1,00E+05	26377490	Input AtT Pax7	N/A	N/A	1
ChIP-seq	AtT-20 Pax7	1,00E+07	77949054	AtT-20 Neo	Flag M2 Sigma	6	1
ChIP-seq	AtT-20 Pax7 G43A	1,00E+07	94880640	AtT-20 Neo	Flag M2 Sigma	6	1
ChIP-seq	AtT-20 Pax7 R56L	1,00E+07	72825980	AtT-20 Neo	Flag M2 Sigma	6	1
ChIP-seq	AtT-20 Pax7 S264E	1,00E+07	102208451	AtT-20 Neo	Flag M2 Sigma	6	1
MNAse-seq	AtT-20 Neo	3,00E+06	220458865	N/A	N/A	N/A	2
MNAse-seq	AtT-20 Pax7	3,00E+06	229205088	N/A	N/A	N/A	2

Supplementary Table 2. Summary of high throughput sequencing datasets and experimental conditions

	Pax7	H3K4me1		p300		ATAC		SMC1
	AtT-20	AtT-20	AtT-20	AtT-20	AtT-20	AtT-20	AtT-20	AtT-20
	Pax7	Neo	Pax7	Neo	Pax7	Neo	Pax7	Neo
Constitutive	PEAK AT	^{РЕАК АТ}	^{РЕАК АТ}	^{РЕАК АТ}	^{РЕАК АТ}	^{РЕАК АТ}	^{РЕАК АТ}	N/A
n = 13 126	p ≤ 1e-5	р ≤ 1е-5	р ≤ 1е-5	р ≤ 1е-5	р ≤ 1е-5	р ≤ 1е-5	р ≤ 1е-5	
Activated n = 733	^{РЕАК АТ} р ≤ 1е-5	^{РЕАК АТ} р ≤ 1е-5	^{РЕАК АТ} р ≤ 1е-5	NO PEAK AT p ≤ 1e-3	^{РЕАК АТ} р ≤ 1е-5	N/A	^{РЕАК АТ} р ≤ 1е-5	N/A
Pioneered	РЕАК АТ	NO PEAK AT	РЕАК АТ	NO PEAK AT	^{РЕАК АТ}	NO PEAK AT	^{РЕАК АТ}	N/A
n = 876	р ≤ 1е-5	p ≤ 1e-3	р ≤ 1е-5	p ≤ 1e-3	р ≤ 1е-5	p ≤ 1e-3	р ≤ 1е-5	
Primed n = 5 352	РЕАК АТ р ≤ 1е-5	NO PEAK AT p ≤ 1e-3	^{РЕАК АТ} р ≤ 1е-5	NO PEAK AT p ≤ 1e-3	NO PEAK AT p ≤ 1e-3	NO PEAK AT p ≤ 1e-3	N/A	N/A
Resistant	PEAK AT	NO PEAK AT	NO PEAK AT	NO PEAK AT	NO PEAK AT	NO PEAK AT	NO PEAK AT	NO PEAK AT
n = 8 541	p ≤ 1e-5	p ≤ 1e-3	p ≤ 1e-3	p ≤ 1e-3	p ≤ 1e-3	p ≤ 1e-3	p ≤ 1e-3	p ≤ 1e-3

Supplementary Table 3. ChIP and ATAC-seq thresholds to categorize Pax7 peaks