Supplemental data to

A type III CRISPR-Cas system mediates co-transcriptional DNA cleavage at the transcriptional bubbles in close proximity to active effectors

Jinzhong Lin^{1,2}, Yulong Shen¹, Jinfeng Ni^{1*} and Qunxin She^{1,2*}

¹ CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Jimo, Qingdao, Shandong, 266237, P.R. China
² Archaea Centre, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark

*To whom correspondence should be addressed. Tel: +45 53-258631522; Fax: +45 532-88369278; Email: shequnxin@sdu.edu.cn; correspondence can also be directed to jinfgni@sdu.edu.cn.

This file includes: Figures S1 to S8 Tables S1 to S2

Figure S1 Effect of ATP and its analogues on the ssDNase Activity of LdCsm complex. (**A**) RNA-activated ssDNA cleavage of LdCsm in the presence of ATP or its analogues. NC: Negative control without ATP. (**B**) Structures of ATP and its analogues.

Figure S2 Michaelis-Menten modeling of ssDNA cleavage by LdCsm complex. (A & B) Michaelis-Menten modeling of LdCsm ssDNA cleavage in the absence (A) or presence (B) of ATP. The fluorescence production rates (V) were calculated for all tested substrate concentrations [S] and plotted against the substrate concentrations. The resulting curves were fitted with the Michaelis-Menten model. (C) The kinetic parameters of ssDNA degradation LdCsm with or without ATP. RFU: Relative Fluorescence Unit.

Figure S3 Purification of LdCsm1 mutations. (**A**) Conserved residues in LdCsm1. Ten Csm1 homologues: *Lactobacillus bulgaricus* (Lb), *Streptococcus thermophilus* (St), *Lactobacillus equicursoris* (Le), *Lactobacillus ruminis* (Lr), *Lactobacillus salivarius* (Ls), *Lactobacillus acidipiscis* (La), *Lactococcus lactis* subsp. *lactis* (LI), *Staphylococcus epidermidis* (Se), *Thermococcus onnurineus* (To) and *Thermus thermophilus* (Tt) were selected and aligned using MEGA5 (1) and visualized using ESPript 3 (2). Some highly conserved residues marked with red arrows were chosen to produce the LdCsm1 variants. (**B**) Coomassie blue-stained SDS-PAGE gel of protein components of the wild-type and mutated LdCsm1 effector complexes. M: protein size marker.

Figure S4 Effect of LdCsm1 D541 mutations on the target RNA cleavage, ssDNA cleavage and the in vivo anti-plasmid activity of the LdCsm system. (A) SDS-PAGE analysis of protein components of LdCsm effectors carrying LdCsm1 D541 mutations, M: protein size marker. (B) Effect of LdCsm1 D541 mutations on the target RNA cleavage. (C) Effect of LdCsm1 D541 mutations on the RNA-activated ssDNA cleavage in the presence of ATP. (D) Effect of LdCsm1 D541 mutations on the anti-plasmid activity. (E) Effect of other Palm 2 mutation of LdCsm1 on the anti-plasmid activity. LdCsm1 mutations tested: D541N (Csm1^{P2D541N}), D541L (Csm1^{P2D541L}), D541T (Csm1^{P2D541T}), D541A (Csm1^{P2D541A}) and K659/K663A (Csm1^{P2KK}).

Figure S5 Detection of p15AIE-Cas-S1 and pBad-CTR in minipreparation assay. (A) Agarose gel analysis of plasmid DNAs mini prepared from *E. coli* colonies addition with different pattern of p15AIE-Cas-S1 and

pBad-CTR. The plasmid DNAs were prepared from 0.5% glucose and 0.1% L-arabinose colonies, respectively. SC, supercoiled. Empty triangles represent supercoiled (bottom) and nicked (top) of p15AIE-Cas-S1, filled triangles represent supercoiled (bottom) and nicked (top) of pBad-CTR, the middle triangle represent a unclassified band of pBad-CTR, which be indicated by southern blotting in (**C**). (**B & C**) Southern blotting analysis of p15AIE-Cas-S1 and pBad-CTR. Left panel, Gel-Red[®] staining before transfer. Empty triangle represents p15AIE-Cas-S1 band in (**B**), filled triangles represent pBad-CTR bands in (**C**). **Right panel**, southern blotting analysis of p15AIE-Cas-S1 and pBad-CTR, respectively. Empty triangles indicate the plasmid p15AIE-Cas-S1, filled triangles indicate the plasmid pBad-CTR. SC, supercoiled.

Figure S6 Anti-plasmid efficiency of the wild-type and LdCsm1-mutated LdCsm systems. The wild-type (**A**) and LdCsm1 mutated (**B & C**) LdCsm systems mediate efficient plasmid clearance preferably to nontarget plasmid in *E. coli*. The *E. coli* colonies of Csm1^{P2D541T}, Csm1^{P2D541L}, Csm1^{P2D541A} and Csm1^{P2KK} from Figure S4 were employed for plasmid minipreparation. Empty triangles denote p15AIE-Cas-S1, the nontarget plasmid; filled triangles indicate pBad-CTR, the target plasmid.

Figure S7 Survival rates of *E. coli* cells in the stepwise induction cultures Viable cells were determined for 120 min samples in **Figure 5A and 5B**. Viable cell counts with pBad-NTR were set up to 100% for each LdCsm effector, with which relative survival rates were calculated. Values shown are averages of three independent assays, bars representing the standard deviations.

Figure. S8 LdCsm^{dCsm3} system may provide a potential platform for specific RNA quantification. Quantified time-course fluorescence signal generated by WT LdCsm (**A**) and LdCsm^{dCsm3} (**B**) effectors with varying concentrations of S1-46 RNA (CTR). (**C**) The fluorescence accumulation exhibits a positively linear relation to the increase of target RNA concentrations in a large range (0.01 nM to 1 nM for LdCsm^{dCsm3} effector).

ssDNA and RNA	Sequence (5'-3')	Description
oligos		
	GCTAACAACTTATCTCCGCTAGAAGGAGACGAGAACGCAGCACTGA	For plasmid pUCE-LPwt construction
Re-LPwt-F	AGGGCGGAAAC	
	GCTAACAACTTATCTCCGCTAGAAGGAGACGAGAACGCGGCACTGA	For plasmid pUCE-LCwt construction
Re-LCwt-F	AGGGCGGAAAC	
	GCTAACAACTTATCTCCGCTAGAAGGAGACGAGAACGCACCACTGA	For plasmid pUCE-LPd construction
Re-LPd-F	AGGGCGGAAAC	
	GCTAACAACTTATCTCCGCTAGAAGGAGACGAGAACGCGCCACTGA	For plasmid pUCE-LCd construction
Re-LCd-F	AGGGCGGAAAC	
		For plasmids pUCE-LPwt, pUCE-LCwt,
Re-L-R	GTTCTCGTCTCCTTCTAGCGGAGATAAGTTGTTAGCGAATGCTAAGT	pUCE-LPd, pUCE-LCd construction
		For plasmids pUCE-LPwt, pUCE-LCwt,
L-R1	TGTTAGCGAATGCTAAGTGTTGGAGGGTTTCCGCCCTTCAGTGG	pUCE-LPd, pUCE-LCd construction
Csm1-S274A-F	AGCTGCGGGCCCGGGCATTTTACGTTG	For LdCsm1 S274A mutation
Csm1-S274A-R	ATGCCCGGGCCCGCAGCTGCTTGTAAGCTC	For LdCsm1 S274A mutation
Csm1N-H307A-F	CAGAACAGCGCTGATGGTCTGCTTTTTATTG	For LdCsm1 H307A mutation
Csm1N-H307A-R	GACCATCAGCGCTGTTCTGGTAAAGGATATTC	For LdCsm1 H307A mutation
Csm1N-D541A-F	TTGATGATCGCTATTGATGACCTCCATGCCAA	For LdCsm1 D541A mutation
Csm1N-D541A-R	CATCAATAGCGATCATCAAAGAAGCAAGC	For LdCsm1 D541A mutation
Csm1N-D543A-F	GATCGATATTGCTGACCTCCATGCCAAATTCTT	For LdCsm1 D543A mutation
Csm1N-D543A-R	GAGGTCAGCAATATCGATCATCAAAGAAG	For LdCsm1 D543A mutation
Csm1N-S571A-F	GGAACTTGCCAGAAGAATTGACATGTTC	For LdCsm1 S571A mutation
Csm1N-S571A-R	AATTCTTCTGGCAAGTTCCGCGAATCTGCTG	For LdCsm1 S571A mutation
Csm1N-K659/663A-F	CAGCATTTGCCGGCGCGGACCGGATTGTGTTGTTC	For LdCsm1 K659/663A mutation
Csm1N-K659/663A-R	CCGCGCCGGCAAATGCTGCTGTTCTTAACAGTTCC	For LdCsm1 S571A K659/663A mutation
Csm3-D34A-F	GGTGCGATCGCCAACCCGATAATTAAGGATCC	For LdCsm3 D34A mutation
Csm3-D34A-R	ATCGGGTTGGCGATCGCACCAATAGCCGCA	For LdCsm3 D34A mutation
Sall-Cas6-F	AGGGTCGACGTGCAGAAGATAAGTTTAGTTTG	For LdCsm1 Palm1 mutations
Sacl-Csm1-R	CTCTGGAAGAGCTCAGCATAG	For LdCsm1 Palm1 mutations
Sacl-Csm1-F	CTATGCTGAGCTCTTCCAGAG	For LdCsm1 Palm 2 mutations
Stul-Csm1-R	GTAAATGAAGGCCTTACCTCG	For LdCsm1 Palm 2 mutations
Stul-Csm1-F	CGAGGTAAGGCCTTCATTTAC	For LdCsm3 D34A mutation
KpnI-Csm4-R	GACAGTGGTACCGCGTATAAGC	For LdCsm3 D34A mutation
Repeat-probe	GTTCTCGTCTCCTTCTAGCGGAGATAAGTTGTTAGC	For p15AIE-Cas-S1 southern blotting
	TGGCCTTTTGCTCACATGTTCTTTCCTGCGTTATCCCCTGATTCTGTG	For pBad-CTR southern blotting
pBR322-probe	GATAACCGTATT	
	GCTCGTCATCAAAATCACTCGCATCAACCAAACCGTTATTCATTC	For pBad-CTR southern blotting
Kan-probe	ATTGCGCCTGAG	
Nucleic acid		

Table S1 Nucleic acid oligo and substrates used in this study.

substrates			
S10 RNA	AUAGAAUGCCCCCAUUAUACAAUAUCUACGUUUUAGAUGAAAAAAA	Unspecific RNA	
S1-40 (PTR)	UGUUAAGUCUGGUUUCCCUCCAGGGUAUCUAAGCUUUGAA	Target RNA Lacking any 3'-flanking	
		sequence	
S1-46 (CTR)	UGUUAAGUCUGGUUUCCCUCCAGGGUAUCUAAGCUUUGAAAAAAA	Target RNA with noncomplementary	
	A	3'-flanking sequence with crRNA	
S1-48 (NTR)	UGUUAAGUCUGGUUUCCCUCCAGGGUAUCUAAGCUUUGAAGUUC	Target RNA with complementary	
	UCGU	3'-flanking sequence with crRNA	
S10-60 ssDNA	ACTATAGGGAGAATAGAATGCCCCCATTATACAATATCTACGTTTTA	Unspecific ssDNA substrate	
	GATGACCCCCCC		
FAM-poly-16T-BHQ1	FAM-TTTTTTTTTTTTTT-BHQ1	fluorophore quencher ssDNA reporter	
Target dsDNA	TAATACGACTCACTATAGGGAGATGTTAAGTCTGGTTTCCCTCCAGG	Target dsDNA substrate in vitro	
(non-template strand)	GTATCTAAGCTTTGAACAAGAGCACCCGGGCACGCGTCTCCGG		
Nontarget dsDNA	TCGATCCCGCGAAATTAATACGACTCACTATAGGGGAATTGTGAGC	Nontarget dsDNA substrate in vitro	
(non-template strand)	GGATAACAATTCCCCTCTAGAAATAATTTTGTTTAACTTTAAGA		
Mismatch RNAs	Sequence (3'-5')		
	5'-ACGAGAACUUCAAAGCUUAGAUACCCUGGAGG-3' (crRNA)		
Perfect target (PT)		UUGUGG	
SS1-1	AAAAAA <mark>U</mark> AGUUUCGAAUCUAUGGGACCUCCCUUUGGUCUGAAUUGUGG		
SS1-2	AAAAAAAUGUUUCGAAUCUAUGGGACCUCCCUUUGGUCUGAAUUGUGG		
SS1-3	AAAAAAAA <mark>C</mark> UUUCGAAUCUAUGGGACCUCCCUUUGGUCUGAAUUGUGG		
SS1-4	AAAAAAAAGAUUCGAAUCUAUGGGACCUCCCUUUGGUCUGAAUUGUGG		
SS1-5	AAAAAAAAGUAUCGAAUCUAUGGGACCUCCCUUUGGUCUGAAUUGUGG		
SS1-6			
SS1-7	AAAAAAAAGUUU <mark>G</mark> GAAUCUAUGGGACCUCCCUUUGGUCUGAAUUGUGG		
SS1-8	AAAAAAAAGUUUC <mark>C</mark> AAUCUAUGGGACCUCCCUUUGGUCUGAA	AAAAAAAAGUUUC <mark>C</mark> AAUCUAUGGGACCUCCCUUUGGUCUGAAUUGUGG	
SS1-9	AAAAAAAAGUUUCG <mark>U</mark> AUCUAUGGGACCUCCCUUUGGUCUGAA	UUGUGG	
SS1-10	AAAAAAAAGUUUCGA <mark>U</mark> UCUAUGGGACCUCCCUUUGGUCUGAA	UUGUGG	
SS1-1-2	AAAAAA <mark>UU</mark> GUUUCGAAUCUAUGGGACCUCCCUUUGGUCUGAAUUGUGG		
SS1-3-4	AAAAAAAA <mark>CA</mark> UUCGAAUCUAUGGGACCUCCCUUUGGUCUGAAUUGUGG		
SS1-5-6	AAAAAAAAGU <mark>AA</mark> CGAAUCUAUGGGACCUCCCUUUGGUCUGAA	UUGUGG	
SS1-7-8	AAAAAAAAGUUU <mark>GC</mark> AAUCUAUGGGACCUCCCUUUGGUCUGAA	UUGUGG	
SS1-9-10	AAAAAAAAGUUUCG <mark>UU</mark> UCUAUGGGACCUCCCUUUGGUCUGAA	NUUGUGG	
SS1-11-12	AAAAAAAAGUUUCGAA <mark>AG</mark> UAUGGGACCUCCCUUUGGUCUGAAUUGUGG		
SS1-13-14	AAAAAAAAGUUUCGAAUC <mark>AU</mark> UGGGACCUCCCUUUGGUCUGAAUUGUGG		
SS1-15-16	AAAAAAAAGUUUCGAAUCUA <mark>AC</mark> GGACCUCCCUUUGGUCUGAAUUGUGG		
SS1-17-18	AAAAAAAAGUUUCGAAUCUAUG <mark>CC</mark> ACCUCCCUUUGGUCUGAAUUGUGG		
SS1-19-20	AAAAAAAAGUUUCGAAUCUAUGGG <mark>UG</mark> CUCCCUUUGGUCUGAAUUGUGG		
SS1-21-22	AAAAAAAAGUUUCGAAUCUAUGGGAC <mark>GA</mark> CCCUUUGGUCUGAAUUGUGG		
SS1-23-24	AAAAAAAAGUUUCGAAUCUAUGGGACCU <mark>GG</mark> CUUUGGUCUGAAUUGUGG		

Strains	Reference	Description
Lactobacillus delbrueckii subsp. bulgaricus	A donation from (LABCC,	http://www.bio149.cn/
ND04	IMAU)	
Escherichia coli JM109	Home-made	N/A
E. coli BL21 (DE3)	Home-made	N/A
Plasmids	Reference	Description
p15AIE-Cas	Lin et al. (3)	N/A
p15AIE-Cas(Csm1 ^{P1S274A})	This study	A LdCsm1 mutant carrying S274A
		substitution in Palm1 domain
p15AIE-Cas(Csm1 ^{P1H307A})	This study	A LdCsm1 mutant carrying H307A
		substitution in Palm1 domain
p15AIE-Cas(Csm1 ^{P1SH})	This study	A LdCsm1 mutant carrying S274A and
		H307A substitution in Palm1 domain
p15AIE-Cas(Csm1 ^{P2D541A})	This study	A LdCsm1 mutant carrying D541A
		substitution in Palm2 domain
p15AIE-Cas(Csm1 ^{P2D543A})	This study	A LdCsm1 mutant carrying D543A
		substitution in Palm2 domain
p15AIE-Cas(Csm1 ^{P2DxD})	Lin et al. (3)	A LdCsm1 mutant carrying D541A and
		D543A substitution in Palm2 domain
p15AIE-Cas(Csm1 ^{P2D541N})	This study	A LdCsm1 mutant carrying D541N
		substitution in Palm2 domain
p15AIE-Cas(Csm1 ^{P2D541T})	This study	A LdCsm1 mutant carrying D541T
		substitution in Palm2 domain
p15AIE-Cas(Csm1 ^{P2D541L})	This study	A LdCsm1 mutant carrying D541L
		substitution in Palm2 domain
p15AIE-Cas(Csm1 ^{P2S571A})	This study	A LdCsm1 mutant carrying S571A
		substitution in Palm2 domain
p15AIE-Cas(Csm1 ^{P2DD})	Lin et al. (3)	A LdCsm1 mutant carrying D599A and
		D600A substitution in Palm2 domain
p15AIE-Cas(Csm1 ^{P2KK})	This study	A LdCsm1 mutant carrying K659A and
		K663A substitution in Palm2 domain
p15AIE-Cas ^{dCsm3}	This study	A LdCsm3 mutant carrying D34A substitution
p15AIE-Cas-S1	Lin et al. (3)	N/A
p15AIE-Cas(Csm1 ^{P2D541A})-S1	This study	A LdCsm1 mutant carrying D541A
		substitution in Palm2 domain
p15AIE-Cas(Csm1 ^{P2D541N})-S1	This study	A LdCsm1 mutant carrying D541N
		substitution in Palm2 domain
p15AIE-Cas(Csm1 ^{P2D541T})-S1	This study	A LdCsm1 mutant carrying D541T
		substitution in Palm2 domain
p15AIE-Cas(Csm1 ^{P2D541L})-S1	This study	A LdCsm1 mutant carrying D541L

Table S2 Strains and plasmids utilized in this work.

		substitution in Palm2 domain
р15AIE-Cas(Csm1 ^{P2KK})-S1	This study	A LdCsm1 mutant carrying K659A and
		K663A substitution in Palm2 domain
pUCE	Lin et al. (3)	N/A
pUCE-S1	Lin et al. (3)	N/A
pUCE-LPwt	This study	A plasmid carrying spacer for L. plantarum
		16S rRNA detection using WT LdCsm
pUCE-LCwt	This study	A plasmid carrying spacer for L. casei 16S
		rRNA detection using WT LdCsm
pUCE-LPd	This study	A plasmid carrying spacer for L. plantarum
		16S rRNA detection using with LdCsm3 dead
		mutant
pUCE-LCd	This study	A plasmid carrying spacer for L. casei 16S
		rRNA detection using with LdCsm3 dead
		mutant
pET30a-Csm2	Lin et al. (3)	N/A
pBad-G	Lin et al. (3)	N/A
pBad-CTR	Lin et al. (3)	N/A
pBad-NTR	Lin et al. (3)	N/A

REFERENCE

- 1. Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M. and Kumar, S. (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. *Mol Biol Evol*, **28**, 2731-2739.
- 2. Robert, X. and Gouet, P. (2014) Deciphering key features in protein structures with the new ENDscript server. *Nucleic Acids Res*, **42**, W320-324.
- 3. Lin, J., Feng, M., Zhang, H. and She, Q. (2020) Characterization of a novel type III CRISPR-Cas effector provides new insights into the allosteric activation and suppression of the Cas10 DNase. *Cell Discov*, **6**, 29.