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I. CONVOLUTION AND MATRIX MULTIPLICATION

Fig. S1. (A) The matrix-vector multiplication form of the convolution
operation. (B) A 2 × 2 convolution kernel convolves a 4 × 4 image with
dilation scale s=1. (C) A 2× 2 convolution kernel convolves a 4× 4 image
with dilation scale s=2.

II. MSD-CSC AND THEORETICAL ANALYSIS

A. Theorem 1

Theorem 1: In MSD-CSC, all dimensions in Γi−1 will be
reconstructed successfully.
Proof: The coding in the i-th layer is Γi−1 = Dsi

i Γi =[
I (F sii )

T
]

Γi , Let ξ = (ξ1, ξ2, · · · , ξn) = DiΓi,
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As illustrated in Fig. SS2. We can obtain:
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∣∣∣
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This indicates that for every solution Γi which can not re-
construct all dimensions in Γi−1, we can always find a solution
η. η makes the Lasso problem in MSD-CSC strictly smaller.
So, the optimal solution must reconstruct all dimensions in
Γi−1.�

B. Lemma 2

Lemma 2: For a matrix A 6= 0, let’s assume the matrix AAT

has eigenvalues λ1, · · · , λn. As a result, the matrix

B =

(
I
A

)
·
(
I AT

)
=

(
I AT

A AAT

)
has eigenvalues 0, · · · , 0, λ1+1, · · · , λn+1. Here the number
of zeros is equivalent to the number of columns of A.
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Proof: Assume X is an eigenvector of AAT correspond-
ing to the eigenvalue λ. Let’s consider the vector X ′ =(
1
λA

TX,X
)T 6= 0 and the following equation(

I AT

A AAT

)
·
(

1
λA

TX
X

)
=

(
1
λA

TX +ATX
X + λX

)

= (λ+ 1)

(
1
λA

TX
X

)
Obviously, B has an eigenvalue λi+1 and X ′ is a correspond-
ing eigenvector. So, B has eigenvalues λ1+1, · · · , λn+1. Let’s
further consider the trace of B, tr(B) = tr(I) + tr

(
AAT

)
=

λ1 +λ2 + · · ·+λn +n. Then, the sum of the rest eigenvalues
is zero because the trace of a matrix is equivalent to the
sum of all eigenvalues. In addition, all the eigenvalues of B
are nonnegative (A nonzero matrix with the form of MMT

has nonnegative eigenvalues). Taken together, all the rest
eigenvalues of B are zeros. �

Fig. S2. Illustration of a sparse coding scheme and the recovery role of the
identity matrix of the dictionary in the i-th layer of MSD-CSC. Assume the
signal in the (i-1)-th layer is n.

III. ALGORITHMS

Algorithm 1 The layered thresholding algorithm
Input:

Signal X
A set of special dictionaries {Di}
A set of special thresholding {bi}
Thresholding operator P ∈ {S, S+}

Output:
Encoding signals

{
Γ̂i

}
, i = 1, 2, · · · , k

1. Γ̂0 ← X
2. for i = 1 : k do:
3. Γ̂i ← Pbi

(
DT
i Γ̂i−1

)

Algorithm 2 MSD-CSC ISTA in the i-th layer
Input:

Signal X , convolution F sii , thresholding bi, parameters ci
width w, unfolding

Output:
Encoding signals Γ̂i
1. f1 = conv (X,F sii ) //conv denotes convolution
2. Γ̂i = ReLU (ci × concat(X, f1) + bi)
3. for k = 1 : unfolding do:
4. f1← Γ̂i[1 : −w) + (F sii )

T · Γ̂i[−w]−X
//index −w denotes the last w channels

5. f2 = conv (f1, F sii )
6. f3← concat (f1, f2)

7. Γ̂i ← ReLU
(

Γ̂i − ci × f3 + bi

)
8. return Γ̂i

Algorithm 3 MSD-CSC FISTA in the i-th layer
Input:

Signal X , convolution F sii , thresholding bi, parameters ci
width w, unfolding, t1 = 1

Output:
Encoding signals Γ̂i
1. f1 = conv (X,F sii ) //conv denotes convolution
2. Γ̂i = ReLU (ci × concat(X, f1) + bi)
3. Γ̂0

i = Γ̂1
i

4. for k = 1 : unfolding do:

5. tk+1 ←
1+
√

1+4t2k
2

6. Z ← Γki + tk−1
tk+1

(
Γki − Γk−1i

)
7. f1← Z[1 : −w) + (F sii )

T · Z[−w]−X
//index −w denotes the last w channels

8. f2 = conv (f1, F sii )
9. f3← concat (f1, f2)
10. Γk+1

i ← ReLU (Z − ck × f3 + bk)

11. return Γ1+ unfolding
i

IV. EXPERIMENTS

All models are trained on a single GPU card: Tesla P40.
Generally, Res-CSC needs more training time since the ad-
ditional term for Res-CSC (Table S1) and MSD-CSC takes
more time to train though MSD-CSC has fewer parameters
(Table S2). For the MSD-CSC, we note that this situation
is not mainly due to the algorithm itself. The key reason is
that existing deep learning training software do not support
the dilation convolution and dense connection operations well
since they assume that all channels of a certain feature map
are computed in the same way, and GPU convolution routines
such as the cuDNN library assume that feature data is stored
in a contiguous memory. Therefore, concatenate operation can
be expensive in the current software. Frequent concatenate and
split operations are used in MSD-CSC (Fig. S3A). This limits
the application of MSD-CSC with more unfolding and layers.
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Fig. S3. (A) An illustration shows MSD-CSC ISTA with unfolding = 2. Xk denotes the signal input the k-th layer. F denotes convolution and FT denotes
multiply with the transpose of convolutional matrix, c© denotes concatenate operation, s© denotes split channels, here we split last w channels, w is the
number of convolution kernels in this layer. +, −, × and ReLU represents their literal meaning. (B) An architecture designed for a classification task. Tensor
flow in each layer is illustrated in (A) with ISTA as the forward propagation algorithm.

TABLE S1
COMPUTATIONAL TIME OF RES-CSC AND RESNET ON CIFAR10, CIFAR100 AND SVHN RESPECTIVELY.

Layers Para CIFAR10 CIFAR100 SVHN
ResNet Res-CSC ResNet Res-CSC ResNet Res-CSC

20 0.27M 0.78h 0.89h 0.78h 0.89h 0.67h 1.22h
32 0.46M 0.89h 1.33h 0.89h 1.33h 1.11h 1.89h
44 0.66M 1.06h 2.11h 1.06h 2.11h 1.50h 2.67h
56 0.85M 1.41h 2.78h 1.41h 2.78h 1.89h 3.56h
110 1.70M 2.83h 5.21h 2.83h 5.21h 3.61h 7.11h
218 3.40M 5.21h 9.80h 5.21h 9.80h 7.33h 14.28h

TABLE S2
COMPUTATIONAL TIME OF MSD-CSC AND OTHER CLASSIC CSC MODELS ON CIFAR10, CIFAR100 AND SVHN RESPECTIVELY.

Model Layer Para unfolding CIFAR10 CIFAR100 SVHN
Feed-Forward 6 4.0M 0 0.59h 0.59h 0.75h

ML-CSC-ISTA 6 4.0M 1 0.67h 0.67h 0.88h
4.0M 2 0.75h 0.75h 1.08h

ML-CSC-FISTA 6 4.0M 2 0.80h 0.80h 1.12h

MSDNet
6 0.1M 0 0.75h 0.75h 1.17h
9 0.3M 0 1.08h 1.08h 1.71h

12 0.6M 0 1.29h 1.29h 1.96h

MSD-CSC-ISTA

6 0.1M 1 2.91h 2.91h 4.46h
2 5.08h 5.08h 7.75h

9 0.3M 1 4.25h 4.25h 6.50h
2 7.41h 7.41h 11.22h

12 0.6M 1 4.80h 4.80h 7.50h
2 8.45h 8.45h 12.95h

MSD-CSC-FISTA
6 0.1M 2 5.70h 5.70h 8.70h
9 0.3M 2 8.25h 8.25h 12.50h

12 0.6M 2 9.41h 9.41h 14.22h


