
Supplementary Information for:
"Experimental measurement of the quantum geometric tensor

using coupled qubits in diamond"

A. CONNECTION BETWEEN QUANTUM GEOMETRY AND RABI OSCILLATION

A.1 Parametric modulation induced coherent transition for discrete quantum systems

In the main text, we experimentally demonstrate the connection between parametric modulation induced coherent transition
and quantum geometric tensor for discrete quantum systems. Here, we provide a detailed analysis on such a fundamental
connection following Ref.[1]. Consider a discrete quantum system with a general HamiltonianH(λ) which depends on a set of
dimensionless parameters λ = (λ1, λ2, · · · , λN )where N is the dimension of parameter space, the eigenstates are given as follows

H(λ)|n(λ)〉 = ϵn(λ)|n(λ)〉. (1)

If the Hamiltonian has no energy degeneracy, the definition of quantum geometric tensor (QGT) is [2]

χµν =
〈
∂µn(λ)

�� (1 − |n(λ)〉〈n(λ)|) ��∂νn(λ)〉. (2)

The real part of QGT Re(χµν ) = дµν is the Fubini-Study metric that quantifies the distance between nearby states |n(λ)〉 and
|n(λ + dλ)〉 on parametric manifold, the imaginary part Im(χµν ) = −Fµν (λ)/2where Fµν (λ) is the local Berry curvature, which is
responsible for the geometric (Berry) phase. The QGT is shown to connect with the coherent response on parametric modulation
[1]. In the main text, we consider two types of parametric modulation

[
λµ (t), λν (t)

]
: (a) the linear parametric modulation

with λµ (t) = λ0
µ + aµ sin(ωt), λν (t) = λ0

ν + aν sin(ωt); (b) the elliptical parametric modulation with λµ (t) = λ0
µ + aµ sin(ωt),

λν (t) = λ
0
ν + aν cos(ωt).

As a specific example of linear parametric modulation with aµ , 0 and aν = 0, when considering weak parametric modulation
i.e. aµ � 1, the time-dependent Hamiltonian can be expanded as

H[λ(t)] = H(λ0
) + aµ

[
∂µH(λ

0
)

]
sin(ωt). (3)

Assume that the initial state is prepared on the ground state |n(λ0
)〉, it will be excited onto the higher energy levels by the time-

dependent Hamiltonian. Since the Hamiltonian is periodic, the problem can be solved by Floquet theorem. But if the frequency
of modulation is on resonance with the energy detuning between |n(λ0

)〉 and |m(λ0
)〉 namely ~ω = ~ωn↔m ≡ |ϵm(λ) − ϵn(λ)|,

the Floquet Hamiltonian can be simplified as a two-level Hamiltonian in the Hilbert subspace spanned by {|n(λ0
)〉, |m(λ0

)〉} as
follows

Hrot(λ
0
) =

(
ϵm(λ) − ~ω Ωn↔m(λ)
Ω∗n↔m(λ) ϵn(λ)

)
, (4)

where

Ωn↔m(λ) =
aµ

2
〈m(λ)|∂µH(λ)|n(λ)〉, (5)

with the following relation as ��〈m(λ)|∂µH(λ)|n(λ)〉��2
= [ϵm(λ) − ϵn(λ)]

2
〈∂µn(λ)|m(λ)〉〈m(λ)|∂µn(λ)〉. (6)

According to the definition of QGT, it can be seen that the diagonal element of the Fubini-Study metric can be expressed as
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follows

дµµ (λ) =
〈
∂µn(λ)

�� (1 − |n(λ)〉〈n(λ)|) ��∂µn(λ)〉 (7)

=
∑
m,n

〈
∂µn(λ)|m(λ)〉〈m(λ)|∂µn(λ)

〉
(8)

=
∑
m,n

|〈m(λ)|∂µH(λ)|n(λ)
〉
|2

(ϵm(λ) − ϵn(λ))2
(9)

=
∑
m,n

4|Ωn↔m(λ)|2

a2
µω

2
n↔m

. (10)

For a two-level quantum system, the Rabi frequency of coherence transition is

Ωl (aµ ) = 2|Ωn↔m(λ)| = aµд
1/2
µµ (λ)ωc , (11)

where ωc = ωд↔e represents the resonant frequency between the ground state and the excited state.
We proceed to consider general linear parametric modulation λµ (t) = λ0

µ +aµ sin(ωt), λν (t) = λ0
ν +aν sin(ωt) with aµ , 0 and

aν , 0. The amplitude of parametric modulation is small |aµ |, |aν | � 1, thus the time-dependent Hamiltonian can be written as
follows

H[λ(t)] = H(λ0
)+aµ

[
∂µH(λ

0
)

]
sin(ωt) (12)

+aν
[
∂νH(λ

0
)

]
sin(ωt). (13)

And the coherent transition Rabi frequency is

Ωn↔m(λ) =
1
2
〈m(λ)|aµ∂µH(λ) + aν ∂νH(λ)|n(λ)〉. (14)

Similarly, we can get the following relation between parametric modulation induced coherent transition and the Fubini-Study
metric as ∑

m,n

4|Ωn↔m(λ)|2

ω2
n↔m

= a2
µдµµ + 2aµaνдµν + a2

νдνν . (15)

In particular, for a two-level quantum system, the corresponding Rabi frequency of coherent transition Ωl (aµ ,aν ) = 2|Ωn↔m(λ)|
is related to the Fubini-Study metric as follows

Ωl (aµ ,aν )
2/ω2

д↔e = a2
µдµµ + 2aµaνдµν + a2

νдνν . (16)

Therefore, one can extract the off-diagonal element of the Fubini-Study metric as follows

дµν =
[
Ωl (aµ ,aν )

2 − Ωl (aµ ,−aν )
2] /(4aµaνω2

д↔e

)
. (17)

The coherent response on the elliptical parametric modulation with λµ (t) = λ0
µ + aµ sin(ωt), λν (t) = λ0

ν + aν cos(ωt) can be
analysed in a similar way. The corresponding time-dependent Hamiltonian can be written as follows

H[λ(t)] = H(λ0
)+aµ

[
∂µH(λ

0
)

]
sin(ωt)

+aν
[
∂νH(λ

0
)

]
cos(ωt). (18)

The coherent transition Rabi frequency is

Ωn↔m(λ) =
1
2
〈m(λ)|aµ∂µH(λ) − iaν ∂νH(λ)|n(λ)〉, (19)

which is connected with the local Berry curvature as∑
m,n

4|Ωn↔m(λ)|2

ω2
n↔m

= a2
µдµµ + aµaνFµν + a

2
νдνν . (20)
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For a two-level quantum system, we have the Rabi frequency of coherent transition Ωc (aµ ,aν ) = 2|Ωn↔m(λ)| is related to the
Fubini-Study metric and the local Berry curvature as follows

Ωc (aµ ,aν )
2/ω2

д↔e = a2
µдµµ + aµaνFµν + a

2
νдνν . (21)

Therefore, one can measure the local Berry curvature in the following way

Fµν =
[
Ωc (aµ ,aν )

2 − Ωc (aµ ,−aν )
2] /(2aµaνω2

д↔e

)
. (22)

We remark that, for a discrete quantum system with more than two energy levels, the frequency shall be modulated in a
larger range and a series of resonant transitions from the specific eigenstate to the other eigenstates shall be taken into account
respectively. In the limit aµ ,aν � 1 where µ,ν ∈ {λ1, λ2, · · · , λN }, each resonant transition can be approximated as a two-level
system and the transition element 〈m(λ)|∂µH(λ)|n(λ)〉 [see Eq.(3) in the main text] can be measured similarly.

A.2 Floquet analysis of coherent response on parametric modulation

The Hamiltonian of a two-level quantum system that we realize in the main text is given in Eq.(5). The system’s response to
periodic parametric modulation reveals information on quantum geometry. Here, we provide Floquet analysis for the example
of linear parametric modulation θ (t) = θ0 + aθ sin(ωt), φ(t) = φ0 + aφ sin(ωt) with aθ = 0 and aφ , 0. In this case, the
time-dependent Hamiltonian can be expanded as

H(t) = H0(θ0,φ0) +
∑
n,0
Hne

inωt , (23)

with

Hn =
A

2
Jn(aφ ) sinθ0

(
0 e−iφ0

(−1)neiφ0 0

)
, (24)

where Jn is the n-th order Bessel function of the first kind. The eigenstates of the HamiltonianH0(θ0,φ0) are

|ψ1〉 = cos
θ0
2
|↑〉 + sin

θ0
2
eiφ0 |↓〉, (25)

|ψ2〉 = − sin
θ0
2
e−iφ0 |↑〉 + cos

θ0
2
|↓〉, (26)

with the corresponding eigenenergy ±A
2 respectively. Then one can rotate the above time-dependent Hamiltonian written in the

basis {|ψ1〉, |ψ2〉} as

H ′(t) =
A

2
(|ψ1〉〈ψ1 | − |ψ2〉〈ψ2 |) +

∑
n,0
H ′ne

inωt , (27)

where

H ′2n−1 =
A

2
J2n−1(aφ ) sinθ0

(
0 e−iφ0

−eiφ0 0

)
, (28)

H ′2n =
A

2
J2n(aφ ) sinθ0

(
sinθ0 cosθ0e

−iφ0

cosθ0e
iφ0 − sinθ0

)
. (29)

Under rotating wave approximation, in the resonance case ~ω � A, the higher order terms can be ignored and the above
Hamiltonian can be simplified as

H ′(t)=
A

2
(|ψ1〉〈ψ1 | − |ψ2〉〈ψ2 |) (30)

+
A

2
J1(aφ ) sinθ0e

iωt (e−iφ0 |ψ1〉〈ψ2 | − e
iφ0 |ψ2〉〈ψ1 |

)
+ h.c .

which leads to the following effective Hamiltonian as

Hrot =

( A
2 −A2 J1(aφ ) sinθ0e

iφ0

−A2 J1(aφ ) sinθ0e
−iφ0 −A2 + ~ω

)
. (31)
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Therefore, the Rabi frequency of coherent transition from the ground state to the excited state is

Ω =
A

2
J1(aφ ) sinθ0 = aφд

1/2
φφ ωc/2. (32)

We remark that the above Floquet analysis can be extended to general linear parametric modulation as well as elliptical parametric
modulation.

A.3 Engineering of the effective Hamiltonian with parametric modulation

In the main text, we engineer a microwave driving field with amplitude, frequency and phase modulation [see Eq.(5)] acting
on the NV center spin that leads to the following Hamiltonian as

H(t) =
ω0
2
σz +A sinθt cos [ω0t − f (t) + φt ]σx , (33)

where θt and φt are periodically modulated parameters and f (t) is a function which can be controlled in experiment. We first
define the operator

K(t) =
ω0t

2
σz −

A

2

∫ t

0
cosθτdτσz ≡ A(t)σz . (34)

The effective Hamiltonian in the rotating frame can be written as

Heff= eiK(t )H(t)e−iK(t ) + i
( ∂eiK(t )
∂t

)
e−iK(t ) (35)

�
A

2
sinθt cos

[
A

∫ t

0
cosθτdτ − f (t) + φt

]
σx

+A sinθt sin
[
A

∫ t

0
cosθτdτ − f (t) + φt

]
σy

+
A

2
cosθtσz,

where we use rotating-wave approximation and neglect the fast oscillating terms with frequency 2ω0. If we set the phase control
function f (t) = A

∫ t
0 cosθτdτ , the effective Hamiltonian can be simplified as

Heff �
A

2
[
cosθtσz + sinθt

(
cosφtσx + sinφtσy

) ]
(36)

which is the desired Hamiltonian. In our experiments, we implement the phase control function f (t) for θt = θ0 + aθ sin(ωt) as
follows

f (t) =A

∫ t

0
cosθτdτ

=A

∫ t

0
cos [θ0 + aθ sin(ωτ )]dτ

=A

∫ t

0

{
cosθ0

[
J0(aθ ) + 2

∞∑
n=1
J2n(aθ ) cos(2nωτ )

]
− 2 sinθ0

∞∑
n=0
J2n+1(aθ ) sin ((2n + 1)ωτ )

}
�A cosθ0J0(aθ )t −

4A sinθ0
ω

J1(aθ ) sin2(ωt/2),

(37)

where Jn(x) is the n-th order Bessel function of the first kind. The approximation in the last line is valid for the present scenarios
with aθ � 1.
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B. PROBING THE TOPOLOGY OF A TWO-LEVEL SYSTEM

B.1 Initial state preparation and verification

In our experiments, the first step is to prepare the NV center spin into the ground state of the unperturbed HamiltonianH(θ0,φ0)
as follows

H(θ0,φ0) =
A

2

(
cosθ0 sinθ0e

−iφ0

sinθ0e
iφ0 − cosθ0

)
. (38)

which is a superposition state |ψ (0)〉 = cos θ
2 |−1〉 + eiφ0 sin θ

2 |0〉, see Eq.(41), in which we denote |↑〉 ≡ |−1〉 and |↓〉 ≡ |0〉. Such
an initial state can be prepared by applying a resonant microwave driving field as

Hp =
ω0
2
σz + Ω sin(ω0t + φ)σx , (39)

for time duration t = θ0/Ω, where Ω is the Rabi frequency. If the initial state is not in the eigenstate of the HamiltonianH(θ0,φ0),
it would cause oscillation that may blur the coherent oscillation arising from parametric modulation. In order to verify that we
have indeed prepared the NV center spin into the right initial state, we perform experiments by engineering a microwave driving
field corresponding to the Hamiltonian in Eq.(52). If the initial state is the ground state ofH(θ0,φ0), no transition to the excited
state will be observed. In the experiments, we carefully tune the microwave pulse duration for the initial state preparation so that
no transition to the excited state under the HamiltonianH(θ0,φ0) occurs, as shown in Fig.1.

0 20 40 60 80 100
0

0.5

1

FIG. 1. Verification of initial state preparation. The state evolution from the initial state |ψ (0)〉, as governed by the Hamiltonian H(θ0,φ0),
is quantified by the fidelity pд(t) = |〈ψ (t)|ψ (0)〉|2. The plot shows two initial states that are prepared by the microwave pulse Hi (t) =
Ω sin(ω0t + φ0)σx with different time duration t = 11.94 ns (red, �) and t = 0.04 ns (blue, ◦).

B.2 Calibration of Rabi frequency and microwave amplitude

As we program parametric modulation in the waveform of AWG by specifying the microwave output amplitude, it is necessary
to calibrate the relation between the microwave amplitude of AWG output and the Rabi frequency of the NV center spin. In

0.2 0.3 0.4 0.5 0.6 0.7 0.8
AWG Output Amplitude

10

15

20

FIG. 2. Calibration of Rabi frequency and microwave amplitude. The measured Rabi frequency Ω of the NV center spin as a function of the
output amplitude (in the unit of 500 mV [Vpp]) of arbitrary waveform generator while using the same microwave amplifying efficiency.
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FIG. 3. Parametric modulation resonance measurement. The probability that the NV center spin remains in the ground state |ψ (д)〉 at time
T as a function of the modulation frequency ω of (a) linear parametric modulation with aθ = 0, aφ = 0.08, and (θ0,φ0) = (π/2, 0), T = 450
ns; (b) linear parametric modulation with aθ = aφ = 0.1, and (θ0,φ0) = (3π/4, 0), T = 400 ns; (c) elliptical parametric modulation with
aθ = aφ = 0.1, and (θ0,φ0) = (π/6, 0), T = 450 ns.

Fig.2, we show one example of such a calibration, which shows that the Rabi frequency of the NV center spin scales linear with
the AWG output amplitude for the parameter regime in which our experiments are performed. The microwave calibration is done
for all the measurements.

B.3 Parametric modulation resonance measurement

In the parametric modulation resonance measurement experiments, we first prepare the NV center spin in the ground state |ψ0〉
of the HamiltonianH(θ0,φ0) by a microwave pulse n̂(φ0)|θ0 . We then apply the engineered microwave driving field with different
types of parametric modulation and fix the time duration T . By sweeping the parametric modulation frequency ω, we measure
the probability p0(T ) that the NV center spin remains in the ground state |ψ0〉. When the parametric modulation frequency ω
matches the transition frequency, we observe a resonance signal in the probabilityp0(T ). In the main text, as shown in Fig.1(e), we
provide an example of parametric modulation resonance measurement. In Fig.3, we show the parametric modulation resonance
measurement data for the other types of parametric modulation.

B.4 Precise determination of parametric modulation resonance and oscillation frequency

After preparing the NV center spin in the ground state |ψ0〉 of the Hamiltonian H(θ0,φ0) by a microwave pulse n̂(φ0)|θ0 , we
perform parametric modulation resonance measurement by sweeping the parametric modulation frequency ω, and measure the
probability p0(T ) that the NV center spin remains in the ground state

��ψд〉, from which we can roughly determine the resonant
frequency. The more accurate we determine the parametric modulation resonant frequency, the more precise we can extract the
information on quantum geometry. Therefore, in the experiments, we optimise the parametric modulation frequency to achieve
the best possible oscillation contrast in order to improve the accuracy in determining the Rabi frequency. Fig.4 shows coherent
transition from the ground state to the excited state on parametric modulation with slightly different modulation frequency. It can
be seen that when the resonant condition is better matched, the parametric modulation induced coherent oscillation demonstrates

0 1 2 3
0

0.2

0.4

0.6

0.8

1

FIG. 4. Identification of exact resonance frequency. Coherent oscillation under linear parametric modulation with slightly different modulation
frequency ω = (2π )20.3 MHz (red, ◦) and ω = (2π )20.28 MHz (blue, �). The other parameters are: θ0 = π/4, φ = 0, aθ = 0.1 and aφ = 0.1.
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a higher contrast. We observe that the Rabi frequencies depend on the modulation amplitudes, but also, on the form of the
parametric modulation, which is shown to represent direct signatures of the system’s quantum geometry.

B.5 Detecting topological transition from measurement of quantum geometry

The topological transition can be detected in our experiment by extending the Hamiltonian into Eq.(12) with a tunable constant
r that can be realised with an additional frequency detuning. For different value of r , the QGT of the Hamiltonian Eq.(12) can
be calculated analytically as

дθθ =
(1 + r cosθ )2

4(1 + r 2 + 2r cosθ )2
, (40)

дφφ =
sin2 θ

4(1 + r 2 + 2r cosθ )
, (41)

дθφ = 0, (42)

Fθφ =
sinθ (1 + r cosθ )

2(1 + r 2 + 2r cosθ )3/2
. (43)

With a finite value of r , all elements of the QGT can also be measured directly in our experiment using the similar method as
described in the main text. In this case, the frequency of parametric modulation would depend on θ because the eigenenergies
of Hamiltonian Eq.(12) are

E±(r , θ ,φ) = ±
A

2

√
1 + r 2 + 2r cosθ , (44)

which change with the value of θ . The NV center spin shall be initialised into the eigenstate

|ψд〉 = cos
θ ′

2
| − 1〉 + sin

θ ′

2
eiφ |0〉, (45)

with

θ ′ = cos−1 cosθ + r
√

1 + r 2 + 2r cosθ
(46)

which depends on the value of r .
When r = 0, we can look at the parameter space as a sphere S2 embedded in R3, with a magnetic (Dirac) monopole at its

origin. Changing the additional parameter r moves the location of this monopole away from the origin, and the topology of this
parameter space is characterized by the number of monopoles inside the sphere. The number of monopoles is counted by the
Chern number, which is the integral of the Berry curvature over the sphere [2]

C =
1

2π

∫
S2
Fθφdθdφ. (47)

For a finite value of r , the distribution of Berry curvature Fθφ is not symmetric on both sides of θ = π/2. When r approaches 1,
the value of Fθφ has a singularity around θ = π which corresponds to a topological transition, where the monopole moves out
of the sphere. In terms of the Chern number, the Chern number is C = 1 when r < 1, but C = 0 when r > 1.

C. QUANTUM GEOMETRY MEASUREMENT OF AN INTERACTING TWO-QUBIT SYSTEM

C.1 Description and characterisation of the system

Coupling the NV center to a neighboring nuclear spin allows us to explore the quantum geometry and topology of an interacting
two-qubit system. In our experiment, this two-qubit system consists of the NV center electron spin and a 13C nuclear spin located
in the vicinity of the NV center. The nuclear spin of 14N is polarised, such thatmI (N ) = +1; in this setting, the total Hamiltonian
of the NV electron spin (spin-1) and 13C nuclear spin (spin- 1

2 ) can be written as

H = DдsS
2
z + γeB ‖Sz + γnB ‖Iz +AzSz ⊗ Iz +AxSz ⊗ Ix , (48)
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FIG. 5. Characterisation of spin-spin interaction. Pulsed optically detected magnetic resonance (pulsed ODMR) measurement with three
different magnetic fields applying along the NV axis: B ‖ = 749.32 Gauss (a), 669.64 Gauss (b), 504.83 Gauss (c). The two resonance dips
corresponds to the transition frequencies ω1 and ω2 as in Eq.(49-50).

where S is a spin-1 operator and where I is the spin- 1
2 operator; Dдs = 2.87GHz is the zero-field splitting, γe = 2.8MHz/G and

γn = 1.07kHz/G is the electronic spin and nuclear spin gyromagnetic ratio, respectively.
We perform pulsed optically detected magnetic resonance (pulsed ODMR) measurement (see Fig.5) in order to determine the

coupling strength (Ax and Az ) between the NV center electron spin and the 13C nuclear spin. Following the Hamiltonian in
Eq.(48), the transition frequencies are given by [3]

ω1 = ωs −
1
2

√
A2
x + (Az − γcB ‖)2 −

1
2
γcB ‖, (49)

ω2 = ωs +
1
2

√
A2
x + (Az − γcB ‖)2 +

1
2
γcB ‖, (50)

where ωs = Dдs − γeB ‖ − A
hs
N , γe and γc represent the gyromagnetic ratio of the NV center electron spin and 13C nuclear spin,

respectively; Ahs
N = −2.16 MHz is the energy shift arising from the 14N nuclear spin projectionmI (N ) = +1 associated with the

NV center. The results for pulsed ODMR, as measured when applying three different magnetic fields along the NV axis, are
shown in Fig.5. When combined with Eqs.(49)-(50), the measured transition frequencies ω1 and ω2 allow us to estimate the
strength of the spin-spin interaction, and we obtain

Ax ≈ 2.79MHz Az ≈ 11.832MHz. (51)

We also point out that the pulsed ODMR measurement obtained by using a magnetic field of B ‖ = 505.13 Gauss along the NV
axis [Fig.5(c)] only exhibits a single resonance; this result reflects the fact that the 13C nuclear spin is effectively polarised at the
excited-state level anti-crossing (ESLAC) point; see Ref. [4].

C.2 Details of topological property

In our experiment, we choose the NV center electronic spin manifold spanned by the spin sublevelsms = −1 andms = 0 to
encode the first qubit |0〉 ≡ |ms = −1〉 , |1〉 ≡ |ms = 0〉. The nuclear spin of 13C encodes the second qubit |0〉 ≡

��+ 1
2
〉
, |1〉 ≡

��− 1
2
〉
.

Based on this configuration, we write the Hamiltonian describing these two coupled qubits [Eq. (48)] as

H =
ω0
2
σz +

(γnB ‖
2
−
Az

4

)
τz −

Ax

4
τx −

Az

4
σz ⊗ τz −

Ax

4
σz ⊗ τx , (52)
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where σ and τ are the Pauli operators associated with the first and second qubit; ω0 = Dдs − γeB is the energy splitting between
the statesms = 0 andms = −1 of the NV center electron spin, which is controlled through the magnetic field B ‖ applied along
the NV axis. Applying an additional microwave field

Hmw = Ωmw sinθ (t) cos
(
ω0t − 2Ωmw

∫ t

0
cosθ (τ )dτ + φ

)
σx , (53)

one is able to rotate the electronic spin into an arbitrary direction; this protocol realizes the effective Hamiltonian in Eq.(13) of
the main text. The Hamiltonian can be expressed in matrix form as

Hrot(θ ,φ) =
1
2

©­­­«
Ωmw cosθ + γnB ‖ −Az −Ax Ωmw sinθe−iφ 0

−Ax Ωmw cosθ − γnB ‖ +Az 0 Ωmw sinθe−iφ
Ωmw sinθeiφ 0 −Ωmw cosθ + γnB ‖ 0

0 Ωmw sinθeiφ 0 −Ωmw cosθ − γnB ‖

ª®®®¬ , (54)

where we used the basis

|0〉 |0〉 = |−1〉e |+1/2〉n , |1〉 |0〉 = |0〉e |+1/2〉n , (55)
|0〉 |1〉 = |−1〉e |−1/2〉n , |1〉 |1〉 = |0〉e |−1/2〉n . (56)

Henceforth, we denote the eigenstates of the Hamiltonian in Eq. (54) as |Ψ1〉, |Ψ2〉, |Ψ3〉, |Ψ4〉, according to their ordered
eigenenergies ϵ1 < ϵ2 < ϵ3 < ϵ4.
Importantly, we find that the topological properties of the NV center are enriched by the interaction with the neighboring

nuclear spin 13C. Indeed, in the single-qubit scenario, the Chern number of the ground state remains C = 1 for all values of the
driving parameter Ωmw. In contrast, in the interacting-qubit setting, the spin-spin interaction favors zero Chern numbers for all
eigenstates; hence, tuning the drive parameter Ωmw allows one to drive topological phase transitions in this case. Specifically,
the Chern number of the eigenstates |Ψ1〉 and |Ψ3〉 change from C = 0 to C = 1 after passing through the phase boundary

corresponding to the critical value Ω(c1)
mw =

1
2

[
−γnB ‖ +

√
(γnB ‖ −Az )2 +A

2
x

]
. Similarly, the Chern number of the eigenstates

|Ψ2〉 and |Ψ4〉 change fromC = 0 toC = −1. The significance of the QGT in interacting systems is highlighted by its connection
with the quantum Fisher information, which characterizes the statistical distinguishability between eigenstates [5]. In particular,
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FIG. 6. (a) The Fubini-Study metric дθθ (associated with the eigenstate |Ψ3〉) as a function of Ωmw close to the critical value Ω
(c1)
mw . (b) The

eigenvalues as a function of the parameter θ for Ωmw = 5.5456 MHz close to the critical value.
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the singular behaviour of the QGT is expected to be associated with quantum critical phenomena [5]; we remind that the quantum
metric is related to the generalized susceptibility, and hence to quantum fluctuations via the fluctuation-dissipation theorem [6, 7].
In Fig. 6(a), we plot the Fubini-Study metric дθθ (associated with the eigenstate |Ψ3〉), which clearly shows a singular behaviour.
The singularity arises due the nearly degenerate eigenstates around the critical point, see Fig.6(b).

We also notice that the system features a second phase boundary at the critical value

Ω(c2)
mw =

1
2

[
γnB ‖ +

√
(γnB ‖ −Az )2 +A

2
x

]
, (57)

where the eigenstates |Ψ2〉 and |Ψ3〉 undergo a topological phase transition associated with an exchange of the Chern number
(C = −1 ↔ C = 1); we note that the topological properties of the eigenstates |Ψ1〉 and |Ψ4〉 are not modified through this
process. We point out that in the regime Ωmw � Ω(c1)

mw , the spin-spin interaction becomes less significant and we thus recover the
topological properties of the two-level system, as we discussed in the case of two-level system.

C.3 Extracting the QGT elements for interacting qubits

1. Initial state preparation and verification

For arbitrary values of the parameters (θ ,ϕ), the eigenstates of the interacting Hamiltonian in Eq.(12) are superposition states,
which can be written in the form

|Ψ〉 = cosϑ
(
cosα0 |−1〉e + sinα0e

i β0 |0〉e
)
⊗ |+1/2〉c

+ sinϑeiη
(
cosα1 |−1〉e + sinα1e

i β1 |0〉e
)
⊗ |−1/2〉c .

(58)

In our experiment, and without loss of generality, we have decided to measure the elements of the quantum geometry tensor
associated with the eigenstate |Ψ3〉. In fact, the initial state of the interacting spin system turns out to have a relatively high fidelity
with the eigenstate |Ψ3〉 when applying a magnetic field B ∼ 510 Gauss (ESLAC) along the NV axis [see Fig.5(c)] together with
a 532 nm polarizing laser pulse.
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FIG. 7. Coherent manipulation of the 13C nuclear spin. (a) Experimental sequence to determine the energy splitting of the 13C nuclear spin
and to observe Rabi oscillation: The first 532 nm laser pulse initialises the system and is followed by a RF-pulse acting on the 13C nuclear
spin; the subsequent selective microwave-pulse flips the NV center electron spin state conditioning on the 13C nuclear spin state |+1/2〉c and
the readout 532 nm laser pulse provides the information on the state population of the 13C nuclear spin. (b) The resonance when sweeping
the frequency of the RF-pulse indicates that the energy splitting of the 13C nuclear spin (when the NV center spin is in the ms = 0 state) is
ωc = 0.4961 ± 0.0017 MHz. (c) Rabi oscillation of the 13C nuclear spin.
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In order to achieve the high fidelity of the initial state preparation, one can first apply a radio-frequency pulse and prepare the
13C nuclear spin into the following state

|ψ 〉c = cosϑ |+1/2〉c + sinϑeiη |−1/2〉c . (59)

When the NV center electron spin is in thems = 0 state, the energy splitting of the 13C nuclear spin is ωc = γcB ‖ . As shown
in Fig.7(a), we sweep the frequency of the radio-frequency pulse (while fixing the pulse length), and the subsequent microwave
pulse selectively flips the NV center electron spin state conditioning on the 13C nuclear spin state |+1/2〉c . The resonance
observed in Fig.7(b) indicates that the energy splitting of the 13C nuclear spin is ωc = 0.4961 ± 0.0017 MHz. By applying
a radio-frequency field at such a resonant frequency, we then measure Rabi oscillations of the 13C nuclear spin, see Fig.7(c).
Subsequently, two selective microwave pulses that excite the electronic transition |−1〉 ↔ |0〉 conditioning on the 13C nuclear
spin state |+1/2〉c and |−1/2〉c , respectively, would prepare the whole system into the target eigenstate |Ψ〉 in the form given in
Eq. (58). The protocol for the verification of the system’s initial state is similar to that described in the above section B.1.

2. Rabi oscillations induced by parametric modulation

Our experiment aims to extract all the elements of the quantum geometric tensor (QGT) associated with an eigenstate of the
interacting two-qubit setting; as explained above, we take this eigenstate to be |Ψ3〉. To achieve such a goal, we engineer a
microwave driving field associated with a specific parametric modulation, and we extract the relevant coupling matrix elements
(generalized Rabi frequencies) entering the QGT through Rabi-oscillation measurements. A priori, the Rabi oscillations induced
by parametric modulations involve all the eigenstates of the interacting-spin system: they take place between the state of reference
|Ψ3〉 and all the other three eigenstates |Ψ1〉, |Ψ2〉 and |Ψ4〉. However, we find that the Rabi frequency related to the transition
between |Ψ3〉 and |Ψ1〉 is an order of magnitude larger as compared to all other transitions (to |Ψ2〉, |Ψ4〉), when using the same
experimental parameters. In this sense, the elements of the QGT related to the eigenstate |Ψ3〉 are dominated by the generalized
Rabi frequencies associated with the coherent transition between |Ψ3〉 and |Ψ1〉; we note that the contribution to the QGT scales
as ∼ Ω2 in terms of the generalized Rabi frequency Ω, see e.g. Eq.(24). In Fig.8, we plot the measured Rabi frequency Ω
related to the coherent transition between the states |Ψ3〉 and |Ψ1〉, under linear and elliptical parametric modulations. These
measurements allowed us to extract the complete quantum geometry tensor, which is displayed in Fig.5 (in the main text) together
with theoretical predictions based on the Hamiltonian in Eq.(13).
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FIG. 8. Rabi frequency Ω of coherent transitions induced by parametric modulations, as a function ofθ for four types of parametric modulations:
(a-b) Linear parametric modulation with aϕ = a and aθ = 0 (a); aϕ = 0 and aθ = a (b). (c) Linear parametric modulation with aθ = a and
aϕ = a (brown, �); aθ = a and aϕ = −a (blue, ◦) (c). (d) Elliptical modulation with aθ = a and aϕ = a (blue, ◦); aθ = a and aϕ = −a (brown,
�). The experiment parameters are: Ωmw = 2.13 MHz. The curves represent the theoretical predictions.
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