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Methods 

ZF1 sample information 

ZF1 is an adult male of native Tibetan ancestry, who has lived in Lhasa (3,680m) for 

more than 30 years. He is healthy (measured by physical exam and self-report), 

normotensive, non-anemic, normal pulmonary function and nonsmoking (by self-

report). Written informed consent was obtained from ZF1. Freshly drawn blood 

samples were collected for DNA extraction. The protocol of this study was reviewed 

and approved by the Internal Review Board of Kunming Institute of Zoology, Chinese 

Academy of Sciences (Approval ID: SWYX-2012008) and Tibetan University 

(Approval ID: 2011-XZDX-001). 

 

Data Generation 

PacBio data: high-quality genomic DNA was extracted from blood sample using the 

Phenol-Chloroform method and sequenced by the PacBio sequencer RSII (P6-P4 

sequencing reagent). 

BioNano data: according to the protocol provided by Bionano Genomics company, we 

obtained the high-molecular-weight DNA and constructed the high-quality sequencing 

library. Nt.BspQI was used for enzyme digestion. We used Irys system to analyze 

Bionano data. 

10X Genomics data: high-molecular-weight DNA was used to construct the DNA 

library, and the protocol from 10X Genomic Chromium™ and Illumina Hiseq 

sequencer was adopted to generate long linked-reads data. 

Hi-C data: adequate lymphocytes (1.5×107) were extracted from fresh human 

peripheral blood. We constructed library by the previously published protocol and 

performed Illumina HiSeq PE150 sequencing to generate Hi-C data. 

HiSeq XTen data: the 100× paired-end reads (150-bp) were generated using Illumina 

HiSeq X sequencer. 

 

De novo assembly 



We obtained in total 24,880,404 subreads from PacBio RSII sequencer, and all these 

long reads were error-corrected and assembled into contigs using Falcon (v3.0) 

(https://github.com/PacificBiosciences/FALCON-integrate), and then polished by 

Quiver [1]. For scaffolding the contigs, we adopted two different strategies to enhance 

the assembling: 

Strategy-1: after obtaining the assembled contigs and error-corrected long-reads, 

we mapped 10X Genomics linked-reads with these contigs and anchored them into 

preliminary scaffolds. We then generated the optical maps and the Irys BioNano 

platforms (Irys System, BioNano Genomics) was used in scaffolding preliminary 

scaffolds to elongations by the hybrid scaffold pipeline (Bionano Solve v3.1) 

(Supplementary Fig. 2a and Supplementary Table 2). 

Strategy-2: with the contigs assembled from PacBio reads, we first hybrid-

assembled them into preliminary scaffolds using BioNano optical map using hybrid 

scaffold pipeline (same as above). Then we mapped 10X Genomics linked-reads with 

the preliminary scaffolds based on the supported linked-reads (Supplementary Fig. 2b 

and Supplementary Table 3). 

Next, we aligned the Hi-C reads using BWA [2] with default parameters. Long 

scaffolds within each chromosomal linkage group were then assigned based on the Hi-

C-based proximity-guided assembly. The original cross-linked long-distance physical 

interactions were then processed into paired-end sequencing libraries. First, all the reads 

from the Hi-C libraries were filtered by the HiC-Pro software (v2.8.1) [3], and the 

paired-end reads were uniquely mapped onto the draft assembly scaffolds, which were 

then grouped into 24 chromosome clusters using SALSA software [4] (Supplementary 

Table 23 and 24). The clustering errors were corrected by referring to GRCh38. 

PBJelly v.15.8.24 [5] was used to close gaps of draft genomes. Briefly, all the gaps 

(length ≥25 bp) on the assembly were identified. Then, the long Pacbio reads were 

aligned to the scaffold genome using PBJelly. After read alignment, the supporting 

procedure was parsed by checking the multi-mapping information. After the gap-

supporting sequence reads are identified, PBJelly assembles the reads for each gap to 

generate a high-quality gap-filling consensus sequence. Finally, the assembly was 



polished with Illumina reads by aligning the paired-end short-reads to the assembly 

using BWA. Picard was used to remove duplications within reads, and base-correction 

of the assembly was performed using Pilon [6] (Supplementary Fig. 2). 

 

Phasing the diploid assembly 

We used HapCUT2 [7] and CrossStitch (https://github.com/schatzlab/crossstitch) to 

generate a phased genome with all the variants (SVs from PacBio, SNVs and INDELs 

from 10X Genomics). 

 

Gap closure in the human reference genome GRCh38 

We closed the gaps in the human reference genome (GRCh38) by using the approach 

of the previous study [8]. A region consisting of continuous runs of Ns in the GRCh38 

was defined as a gap. We extracted these GRCh38 gaps based on the BED file format, 

and the 5kb flanking sequences upstream and downstream of the gaps were mapped to 

the assembly by MUMmer (nucmer -f  -r -l 15 -c 25). A gap is defined as closed only if 

the two flanking sequences in GRCh38 could both be aligned to the ZF1 assembly with 

consistent orientation, and the aligned length is over 2.5kb. The added bases were 

precisely counted according to the position of the two flanking sequences on the ZF1 

assembly. 

 

Evaluation of consensus quality and sequence quality 

Consensus quality of the ZF1 assembly was evaluated by comparing each chromosome 

with the reference genome GRCh38 using MUMmer [9] (arguments: nucmer --mum -c 

1000 -l 100; delta-filter -i 85 -l 1000 -1). 

We mapped all 100× Illumina short reads to the ZF1 assembly using the BWA-

MEM [2] module. Then we used Picard to mask the PCR duplicates and generated the 

dedup.bam file. Variants were called by the Haplotype Caller module of Genome 

Analysis Toolkit (GATKv3.6) (https://www.broadinstitute.org/gatk/) [10]. The SNPs 

and INDELs were filtered using the GATK Variant Filtration module with the following 

criteria, respectively: SNPs filtering: “QUAL <50; QD < 2.0; FS > 60.0; MQ < 30.0; 



MQRankSum < -12.5; ReadPosRankSum < -8.0; DP < 30”; INDELs filtering: “QUAL 

<50; QD < 2.0; FS > 200.0; ReadPosRankSum < -20.0; DP < 30”. As the previous 

studies described [11, 12], we counted the total number of the homozygous SNVs 

(SNPs+INDELs) which represent the sites with base errors in the ZF1 assembly. The 

base-error rate was calculated as the number of homozygous sites divided by the total 

sites of the ZF1 assembly (Supplementary Table 6). 

 

Gene Annotation  

We used GRCh38 (http://ftp.ensemblorg.ebi.ac.uk/pub/release-

90/fasta/homo_sapiens/dna/) as the reference annotation panel. After performing repeat 

masking to ZF1 and the reference panel, we aligned ZF1 to GRCh38 by Last [13] and 

generated the maf file. Then we applied CESAR2.0 (Coding Exon Structure Aware 

Realigner 2.0, http://github.com/hillerlab/CESAR2.0) [14] to identify genes and the 

coding exons. Functional annotation for the ZF1 genes was performed using four 

databases: KEGG (https://www.genome.jp/kegg/), Swiss-Prot 

(https://www.uniprot.org/), InterPro (http://www.ebi.ac.uk/interpro/) and NR 

(https://www.ncbi.nlm.nih.gov/refseq/) (Supplementary Fig. 5). 

 

Detection of SVs 

For long-read PacBio data, we used mapping software NGLMR [15] to align the error-

corrected reads (‘preads’) from Falcon output to the human reference genome GRCh37. 

We used GRCh37 instead of GRCh38 for SV detection because the majority of the 

previously reported SVs were based on GRCh37, and the downstream analyses 

included the comparisons of these SVs among different populations. Then we used 

Sniffles [15] to call SVs from the bam file and we required each variant with support 

from at least ten reads. For the NGS short-read Illumina data, we mapped the reads to 

the human reference genome GRCh37 using BWA. After sorting and removing 

duplicates, we used CNVnator [16], Pindel [17], Lumpy [18], BreakDancer [19] and 

BreakSeq2 [20] to call SVs. We further merged the results from five algorithms by 

MetaSV [21]. We also used PopIns [22] to call the non-reference non-repetitive 



insertions from Illumina data. For BioNano data, we detected SVs by Irys Solve (v3.1). 

For the 10X Genomics data, Long Ranger (v2.1.6) was applied to call genetic variants 

including SVs, SNVs and INDELs. The SNVs and INDELs were used in the phasing 

analysis. 

 

Estimation of SV mutation rate 
We used the Watterson’s 𝜃 to estimate the mutation rate, which is calculated as below: 
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where K is the total number of segregating SV sites and n is the number of haploid 
genomes. Then we  assumed the effective population size Ne=10,000[23] and 
calculated the mutation rate µ as below:  

θ = 4Neµ 

SV annotation and enrichment analysis 

Annotation for ZF1 SVs were defined by VEP 

(http://www.ensembl.org/info/docs/tools/vep/index.html) [24]. Repeat analysis for SVs 

region were used by RepeatMasker v4.0.1. Function enrichment analysis was perform 

by DAVID v6.7 [25]. In addition, we calculated the odds ratio to evaluate the 

enrichment of the genes affected by SVs in a set of priori candidate genes (the hypoxia 

regulatory genes or previously reported adaptive genes in Tibetans). 
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where S1 denotes the number of SV genes presenting in the priori candidate gene list; 

S0 denotes the number of SV genes absent from the priori candidate gene list; N1 denotes 

the number of non-SV genes presenting in the priori candidate gene list; N0 denotes the 

number of non-SV genes absent from the priori candidate gene list. The sum of S1, S0, 

N1 and N0 is the total number of genes across the genome. An odds ratio significantly 

above 1 (p < 0.05, the Chi-squared test) indicates that the SV genes are enriched in the 

priori gene set.  

 

Overlap enrichment analysis of SVs versus genomic elements 



We performed permutation tests for functional genomic elements overlapped with four 

different class of SVs (DEL, DUP, INS and INV). The genomic elements used in this 

study were from previous study [23]. The null distribution (random background) of the 

overlap counts was calculated from the true genomic elements overlapped with the 

random shuffled SV locations. We shuffled each type of SV for 1,000 times, and 

generated 1,000 random SV sets. The same number of SVs and the same length 

distribution of SVs of each SV type was kept in each shuffled set. We adopted log2 fold 

change of the observed overlap statistic versus the mean of the null distribution to 

present the enrichment of genomic element-SV overlap. 

 

SV genotype estimation using NGS data 

We used the deletions and duplications detected by long-read sequencing platform as 

candidate copy number variable regions to further investigate the frequency difference 

in Tibetan and Han Chinese populations. The population genomic data are whole-

genome sequenced (~30X) from a previous study (38 Tibetans and 39 Han Chinese) 

using Illumina HiSeq X10 [26]. As the short-read NGS data have bias for reads 

coverage at certain genomic regions [27], we applied a stringent strategy to filter the 

CNV regions where we could get high quality results from NGS data. First, we filtered 

out the TGS CNVs where the variants could not be detected from ZF1 NGS data. Then 

we used CNVnator to obtain the genotype for each remaining CNV region in ZF1 

sample and removed the region where the NGS genotype was inconsistent with TGS 

calling (consistent NGS genotype range: CNVnator genotype<1.3 for TGS deletion; 

2.7<CNVnator genotype<4.3 for TGS duplication; we excluded the regions with copy 

number>4 due to the inaccurate estimation of high copy number variants from NGS). 

Next, we genotyped the remaining CNV regions for each of the 38 Tibetan and 39 Han 

Chinese samples using CNVnator. Based on the rounding results of the CNV genotypes, 

we removed the CNV regions that failed to pass the parity test [28] in either Tibetan or 

Han Chinese population. VST [29] was used to measure allelic divergence between 

Tibetans and Han Chinese at the 1,887 CNV regions which passed all the filtering steps 

above.  



To obtain population frequency of non-repetitive insertions, we used the 

assembled ZF1 genome (including the associated contigs) as reference and aligned 

short-reads of 38 Tibetan and 39 Han Chinese NGS data to this reference. For each 

insertion with sequence available reported by Sniffles, we located the positions of these 

sequences on the ZF1 assembly and removed the duplications using Lastz [30] (--

notransition --nogapped –step=20 –filter=identity:90 –filter=coverage:90); we 

excluded insertions with more than 70% of repeats reported by Tandem Repeat Finder 

(TRF) or RepeatMasker. Next we determined the copy number (CN, e.g. 0, 1, 2..) of 

insertions for each sample by rounding the value of two times of the relative read-depth 

of the insertion. The relative read-depth was calculated as the average read depth of 

inserted sequence divided by the average whole genome coverage. The average read 

depth was calculated using SAMtools depth module. A total of 593 non-repetitive 

insertions were included in the analysis. Finally, to mitigate the potential batch effects 

from NGS data, we used a conservative way to measure the insertion frequency 

differentiation between Tibetan and Han Chinese by taking the minimum (mVST) of the 

two VST values for each insertion locus: one was directly based on CN states (VST[CN], 

as calculated for the CNV differentiation), and the other one (VST[norm-RD]) was based 

on median-normalized relative read-depth (that is, the relative read-depth divided by 

the median in each population; if the median equals to zero, then no normalization was 

performed).  

We listed the top 5% of the VST and mVST for CNVs and insertions (calculated 

separately) in Supplementary Table 16 and 17 respectively. The 5% of the empirical 

VST (VST[CN]) is 0.0956 corresponding to the 98.3 percentile in the simulated null 

distribution (see section below). 

 

Simulation of SV frequency differentiation between Tibetans and Han Chinese 

We employed ms [31] to generate a null VST distribution to assess the SV frequency 

differentiation between Tibetans and Han Chinese under neutral evolution. Following 

previous studies [26], we assumed that Tibetans and Han Chinese split 10,000 years 

ago (T3), and after the divergence, a bottleneck event in Tibetans occurred till 9,000 



years before present (T2). We also considered an exponential growth of effective 

population size (Ne) for Han Chinese starting at 2,000 years before present (T1). We 

assumed the Ne of the Tibetan-Han Chinese common ancestry (N1) to be 20,000, the 

Ne at T2 in Tibetan to be 5,000 (N2), and the Ne for present Tibetans and Han Chinese 

at T3 to be 20,000 (N3) and 50,000 (N4) respectively (Supplementary Fig. 21). We 

assumed generation time of 25 years and the mutation rate of SV to be 10-5 per 

generation [32]. The following ms command was used to perform the simulation: 
ms 154 2000 -t 0.4 -s 1 -I 2 78 76 -g 1 458.1 -n 1 5 -n 2 2 -eg 0.002 1 0 -en 0.009 2 0.5 -ej 0.01 
2 1 

 

SV validation using PCR and Sanger sequencing 

We genotyped the candidate SVs in ~900 unrelated Tibetans and ~100 unrelated Han 

Chinese samples using PCR and Sanger sequencing. The primers were designed by 

Primer Premier 5, the extended 200bp sequences were included at SV breakpoints as 

PCR target and sequenced using Sanger sequencing. 

 

Physiological traits measurement and association analysis of Tibetan populations 

We collected physiological traits data and blood samples from 1,039 Tibetan volunteers 

who are native residents at the sampled locations, and they were from three different 

altitude regions in Tibet, including Lhasa (elevation: 3,658m), Bange (elevation: 

4,700m) and Langkazi (elevation: 5,108m). We also sampled a Han Chinese population 

(n=100) from Dalian, China (elevation: 60m) as the reference. We filtered the samples 

based on the following criteria: 1) healthy (by physical examination and self-report); 2) 

normotensive, non-anemic, normal pulmonary function and non-pregnant; 3) 

18≤age≤70; 4) nonsmoking (by self-report). The ethnic identity was confirmed by self-

claims and by report of the first language learned, and related individuals were excluded. 

Written informed consents were obtained from all participants.  

We collected venous blood (5 ml from each individual) from subjects who fasted 

overnight. We measured a total of 19 physiological traits including NO: serum nitric 

oxide level; PAP: systolic pulmonary arterial pressure; SPO2: peripheral capillary 



oxygen saturation. HB: hemoglobin concentration, RBC: red blood count; HCT: 

hematocrit; MCV: mean red cell volume; RDW: red cell distribution width; PLT: 

platelets; LPC: lymphocyte count; SBP: systolic blood pressure; DBP: diastolic blood 

pressure; HR: heart rate; PEF: peak expiratory flow rate (L/min); MVV: Maximum 

Ventilatory Volume (L/min); FEF: Forced expiratory flow at 25%-75% (L/min); FEV1: 

Forced Expiratory Volume In 1s (%); FFR: FEV1/FVC; FVC: forced vital capacity (L). 

The HB concentration and other blood parameters were measured immediately using 

an automated hematology analyzer (Sysmex pocH-100i, Japan). SPO2 was measured 

at forefinger tip with a hand-held pulse oximeter (Nellcor NPB-40, CA) at rest, and the 

fingertip was cleaned with alcohol swab before measurement. Serum NO levels were 

measured by protocol as we described before [33]. For lung function test, we performed 

on a Microlab Spirometer 3500K, version 5.X.X Carefusion (Micro Medical Ltd., 

Rochester, United Kingdom) according to the ATS (American thoracic society) 

recommendation and the international standardized guideline [34]. Subjects were kept 

sitting position with a nose clip, and after two or three slow vital capacity tests, we 

collected the results of at least three forced vital capacities. The highest of the recorded 

FVC values was reported in the present study. PEF, MVV, FEF and FEV1 were 

measured as primary data. Stringent quality control was conducted in the entire 

procedure. 

Genetic association analysis of physiological traits was performed using PLINK 

1.07 [35]. We used additive model to evaluate the association between SVs and 

phenotypes. Sex, age and altitude were treated as covariates for association analysis of 

all phenotypes. For lung functions (PEF, MVV, FEF, FEV1, FVC and FFR), we also 

took BMI as the covariate. To test the joint effect on association of the MKL1-163bp-

deletion and the SCUBE2-662bp-insertion, we employed a joint-additive model and 

took the allelic status of the MKL1 163bp-deletion as the covariate (by plink: “—

condition” argument). For multiple test correction, we used Benjamini & Hochberg 

(1995) step-up FDR control to adjust the P values using R function of p.adjust. We 

performed association test for samples from Lhasa, Bange and Langkazi separately. We 



performed the heterozygosity test including Cochrane’s Q statistics and I2 heterogeneity 

index (Q>0.1 and I2<25 for homogeneous) [36], and found no genetic heterogeneity 

before pooling together the three populations.  

 

Non-reference sequences shared by archaic hominid and de novo assembled Asian 

genomes 

To search for the sequences that are present in the Asian genomes (i.e. AK1, HX1 or 

ZF1) and the archaic hominids (Neanderthal or Denisovan) but absent in the human 

reference genome, we aligned the archaic short reads that could not be mapped to 

GRCh37 (reference-unmapped reads, RURs) to each of the individual genomes. We 

used the high-coverage Altai Neanderthal genome (~51×) from reference [37], and the 

RURs were downloaded from 

(http://cdna.eva.mpg.de/neandertal/altai/AltaiNeandertal/bam/unmapped_qualfail/). 

The high-coverage Denisovan sequencing data (~30×) were from the literature [38], 

and we processed the Denisovan raw reads following the published protocols [38] to 

align to human reference GRCh37 and extracted the RURs. Then we mapped the 

Neanderthal and Denisovan RURs to each of the individual genomes (i.e. AK1, HX1 

or ZF1 contigs) using bwa aln [2]. We treated all the archaic pair-end RURs as single-

end reads during mapping. After mapping, we considered the regions with archaic 

RURs reaching an average depth with range between 1/3 and 1.5 folds of the genome-

wide depth of the archaic reads mapped to reference human GRCh37 (i.e. Neanderthal: 

(17, 75), Denisovan: (10, 45)), as such depth range indicates that the archaic genome 

might likely contain one or two copies of these sequences. We further used Lastz (--

notransition --nogapped –step=20 –filter=identity:90 –filter=coverage:90) [30] to 

align the sequences of these regions to GRCh37 and removed the sequences with high-

similarity in the human reference genome. The proportion of each individual genome 

sharing the novel sequences with archaic hominids was calculated as the total region 

length with the depth falling the range above divided by the total size of the individual 

genome.  

To obtain the positions of these sequences regarding the human reference genome, 



we aligned individual contigs (ZF1, HX1 and AK1) with GRCh37 using MUMmer [9], 

and we only considered the sequences where their flanking positions could be 

determined based on GRCh37 coordinates. As shown in Supplementary Fig. 22, we 

required both the aligned segments larger than 500-bp (c>500 & d>500) and filtered 

out the contigs with less than 50% coverage of alignments (a/(c+d)<0.5). We required 

the gap between two alignments on ZF1 contig to be larger than that on human reference 

genome (a>b). The region with archaic reads mapping must contain more than five 

reads, and the region length must be greater than half of the gap between two alignments 

on ZF1 contig (a’>a/2). The inserted sequences meeting all the above conditions were 

considered as novel sequences with clear positions on the human reference genome. As 

the sub-telomeric and sub-centromeric regions contain lots of repeats, we further 

removed the sequences located within 1Mb of telomeres or centromeres. We focused 

on the sequence that the archaic RUR could only align to one of the three Asian 

individual contigs but not the other two individual contigs. Such sequences were 

referred as individual-specific novel sequences shared with archaic hominids. In order 

to check whether these individual-specific novel sequences could be found in other 

modern humans other than East Asians, by using Lastz (--notransition --nogapped –

step=20 –filter=identity:95 –filter=coverage:95), we further aligned the ZF1-specific 

sequences to two additional modern human de novo assemblies (NA12878 and 

NA19240 downloaded from NCBI with accession PRJNA323611) [12], which 

represent European and African genomes respectively. To assess whether the ZF1-

specific sequences present in non-human primates, using Lastz (--notransition --

nogapped –step=20 –filter=identity:80 –filter=coverage:80), we aligned the sequences 

to the genomes of chimpanzee, gorilla and orangutan [12]. 

 

Estimation of EHH 

To examine whether there is a selective sweep around the SCUBE2 622-bp insertion 

(Chr11: 9068607) and the MKL1 163-bp deletion (Chr22:40935468-40935631), we 

first phased the genotypes in the 1-Mb region around these variants (Chr11: 8568607-

9568607 and Chr22:40435468-41435631), respectively, in the combined dataset of the 



whole-genome sequences of 39 Tibetan highlanders and 38 Han Chinese lowlanders, 

using SHAPEIT v2 [39] (r837) without any reference populations. We then calculated 

the EHH statistics for the focal SVs compared to the alternative alleles in these two 

populations, and the result was visualized using an R package rehh [40] with default 

parameters. The ancestral allele for each locus was determined according to the 

ancestral sequences released by the 1000 Genomes Project.  
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Supplementary Figures 
 

 
Supplementary Fig. 1 | Length distribution of raw reads and error-corrected 
subreads. a. Read length distribution of raw reads. b. Read length distribution of error-
corrected subreads, which are used for de novo assembly and SV detection. 
 
  



 
Supplementary Fig. 2 | Overview of data generation and de novo assembly pipeline. 
Two different versions of scaffolding are shown as a. and b., respectively. 
 
  



 
 
Supplementary Fig. 3 | Comparison between the ZF1 assembly and five previous 
high-quality assemblies. The solid circles refer to the genome assembles by PacBio 
long reads, and the hollow circles refer to the genome assembles by other sequencing 
data without PacBio long reads.  



 

 

 
Supplementary Fig. 4 | Dot plots of comparison between ZF1 assembly and 
GRCh38 assembly. 



 
Supplementary Fig. 5 | Summary of function annotation of ZF1 by different 
databases. 
  



 

Supplementary Fig. 6 | Comparison of function elements between GRCh38 and 
ZF1 
 
  



 
 
Supplementary Fig. 7 | Median length and total base statistics of different SVs.  



 

Supplementary Fig. 8 | Genome-wide distribution of large-scale structure 
variants of ZF1 (1kb-2Mb) 
 
  



 
Supplementary Fig. 9 | Correlation with each chromosome length and SV numbers 
and SV length. 
  



 
Supplementary Fig. 10 | Functional enrichment of the ZF1-specific SVs. The 
significant terms were marked “*”. 
 
  



 
 
 
 
 
 
 
 
 
 
 
Supplementary Fig. 11 | Manhattan plot of VST between Tibetan and Han 
Chinese. The red line refers to the top 5% of 1887 candidate CNVs.  
 
 
 
  



 

Supplementary Fig. 12 | mVST distribution of non-repetitive insertions between 
Tibetan and Han Chinese. The red-dashed line refers to the top 5% of 593 candidate 
non-repetitive insertions.  
 
  



 
Supplementary Fig. 13 | Null distribution of VST between the Tibetan and Han 
Chinese populations. 
The histogram represents the VST between the Tibetan and Han Chinese under the 
simulation model without natural selection (Suplementary Figure 18). The solid blue 
line shows the 95 percentiles of this null distribution (VST=0.0675). The solid and the 
dash red line corresponds to the observed VST of the MKL1 deletion (VST=0.106, 
corresponding to 98.7 percentile of the null distribution) and the SCUBE2 insertion 
(VST[CN]=0.096, corresponding to 98.3 percentile in the null distribution; note that 
mVST=min(VST[CN], VST[norm-RD]) and the VST[norm-RD]=0.079, therefore 
mVST=0.079 for this insertion) in the real data respectively. 
 
  



Supplementary Fig. 14 | 
The epigenetic signals 
overlapped with the MKL1 
163-bp deletion. The data 
was obtained from ENCODE 
at UCSC Genome Browser. 
 
 
  



Supplementary Fig. 15 | Genetic association analysis between three candidate 
SVs and multiple physiological traits in Tibetans. Dot line in red refers to 
significance cutoff (FDR=0.05 for b; P=0.05 for a. and c.), see Methods for the 
abbreviation of each phenotype. Blue- and red-filled histogram refers to negative and 
positive associated relevance, respectively. 
 
  



 
Supplementary Fig. 16 | Comparison of SBP and DBP among three genotypes of 
the COL6A2 insertion. I: 53bp insertion in COL6A2; W: wildtype. 
 
  



 

Supplementary Fig. 17 | Overview of insertion at SCUBE2 and validation. Sanger 
PCR validation of insertion region were aligned as follow (up); agarose gel 
electrophoresis evaluation for 662bp-insertion at SCUBE2 (down). “W”: wildtype; 
“I”: insertion. 



 
Supplementary Fig. 18 | Comparison of the P values of associations with lung 
functions using two different models. The red bars indicate the P values using only 
the SCUBE2 622bp-insertion, and the green bars indicate the P values when including 
both the SCUBE2 622bp-insertion and the MKL1 163bp-delection.  



 
Supplementary Fig. 19 | Schematic diagram of the putative effects of the MKL1 
163bp-deletion on the associated phenotypes. CAM: cell adhesion molecules; PH: 
pulmonary hypertension; HB: hemoglobin; RBC: red blood cell; HCT: hematocrit; 
PLT: platelet. The regulatory pathway from CAM to PH were based on the previous 
studies [41, 42]. 
 
  



 
Supplementary Fig. 20. Comparison of repeat element proportion between TGS-
only SVs and NGS recalled SVs. The proportion of repeat element is compared 
between the SVs only detected by TGS (TGS-only) and the SVs detected by both TGS 
and NGS (TGS_NGS_overlap) for each of the SV type. The repeat element was 
annotated by RepeatMasker. ****: P<0.0001; ns: non-significant. 
 
  



 

 

Supplementary Fig. 21 | Model of simulation for the null VST distribution 
between the Tibetan and Han Chinese without natural selection. 
Following our previous estimation [26], we assumed that the Tibetan and the Han 
Chinese split 10,000 years ago (T3), and after the divergence a bottleneck event in the 
Tibetan occurred till 9,000 years before present (T2). We also assumed an exponential 
growth of effective population size (Ne) for Han Chinese starting at 2,000 years 
before present (T1). We set the Ne of the Tibetan-Han Chinese common ancestry (N1) 
to be 20,000, the Ne at T2 in Tibetan to be 5,000, and the Ne for present Tibetan and 
Han Chinese at T3 to be 20,000 (N3) and 50,000 (N4) respectively. 
 
  



 

Supplementary Fig. 22 | Illustration of novel sequence position identification on 
the reference genome. 
The blue boxes represent the alignments of ZF1 and GRCh37 (c and c’; d and d’). The 
gaps between adjacent alignments are indicated in green (a, b). The red bars represent 
the archaic reference unmapped reads, and the orange rectangle indicates the region of 
these unmapped reads (a’). 
 


