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Appendix A: The second Chern number

The change of second Chern number always accompanies with the gap closing and reopening process, which occurs
around the Dirac points. Assuming f5 = 0, there are four Dirac points, located at D1,2 : ± 2π

3 (−1, 1,−1, 1) and

D3,4 : ± 2π
3 (−1, 1, 1,−1) in the 4D BZ. Here, we calculate the changes of the second Chern number passing through

the first Dirac point, as we tune the mass term in f5. Expanding fi(k), i = 1, 2, 3, 4, 5 around the Dirac point at

D1 = 2π
3 (1,−1, 1,−1), one obtains f1 = −

√
3
2 t(k1 − k2), f2 = − t

2 (k1 + k2), f3 = −
√
3
2 t(k3 − k4), f4 = − t

2 (k3 + k4),
and f5 = m− t up to the first order of k. Substituting fi into Eq.(2) in the main text, we get
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3

8π3
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f5

=
sgn(m− t)

2
, (S1)

where sgn(x) is the sign of x. The changes of the second Chern number are the same for the Dirac points at D1 and

D4 due to time-reversal symmetry [1]. With similar calculations, we obtain C2 = − sgn(2m+t)
2 near the Dirac points

D2,3. Therefore, the change of the second Chern number should be ∆C2 = −2 as we increases the mass m across
m = −t/2, and ∆C2 = 2 as m increasingly crosses m = t. On the other hand, if the mass term tends to negative or
positive infinity, it is the only dominant term in the Hamiltonian with the other terms negligible. In these situations,
all particles are actually localized in real space on the energy level with energy −|m|, and the system behaves like an
atomic insulator with topological number C2 = 0. Therefore, we find that the 4D system stays in the topologically
nontrivial states with the second Chern number C2 = −2 if −t/2 < m < t, as shown in Fig.1a.
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Appendix B: Surface Weyl states

We consider the 4D system terminated in the r1 direction with the semi-infinite system in the region of r1 > 0,
and investigate the surface states on the r1 = 0 surface. Following the method given in Ref. [2], we write the bulk
Hamiltonian (1) in the form,

H = Ψ†k[h(k) · Γ]Ψk, . (S1)

Here, Ψk is the vector of quasi-particle annihilation operators, and

h(k) = b0 + be−ik1 + b∗eik1

= b0 + 2br cos k1 + 2bi sin k1, (S2)

where b0 = (−t(1 +cos k2), t sin k2, f3, f4, f5), br = (−t/2, 0, 0, 0, 0) and bi = (0, t/2, 0, 0, 0) are the real and imaginary
components of the vector b, respectively. b0 can be decomposed into the components b0⊥ and b0‖, where b0⊥ is normal

to the plane spanned by (br, bi) and b0‖ lies with on the plane. Then we can define

h‖(k) = b0‖ + 2br cos k1 + 2bi sin k1, (S3)

as the projection of h(k) on the the (br, bi) plane. h(k) is on a plane that is offset from the plane containing h‖(k)

by the vector b0⊥.

For a fixed parallel momentum k̃ = (k2, k3, k4), h‖(k) traces out an ellipse in the (br, bi) plane. As proved
in [2], the system has mid-gap edge states if and only if h‖(k) encloses the origin. The energy of the edge states is

given by the distance of the vector b0⊥. According to this proof, we obtain that the edge states exist if and only if
0 < 1 + cos k2 < 1/2, which gives that the edge states appears in the 3D BZ with k2 ∈ (2π/3, 4π/3) and k3,4 ∈ [0, 2π],
with the energies given as Es± = ±|b0⊥|.

In order to derive the effective Hamiltonian for the surface states, we first define the projector

P± =
1

4
(1± Γ⊥)(1− iΓxΓy), (S4)

that projects states onto the surface states with energy Es±, where Γx = v̂1 · Γ, Γy = v̂2 · Γ and Γ⊥ = v̂⊥ · Γ.
v̂1 = (1, 0, 0, 0, 0) and v̂2 = (0,−1, 0, 0, 0) are unit vectors as a coordinate basis of the plane spanned by (br, bi).
Therefore the effective surface Hamiltonian is

Hs = Es+P+ + Es−P−

= |b0⊥|Γ⊥
1 + iΓ1Γ2

2
= b0⊥ · ΓPs

= (f1Γ1 + f2Γ2 + f5Γ5)Ps (S5)

where Ps = (1+iΓ1Γ2)/2 = diag(0, 0, 1, 1). Therefore the effective surface Hamiltonian can be written as a two-by-two
Hamiltonian

Hs
2×2 = −f3σ1 + f4σ2 + f5σ3, (S6)

with the basis, in terms of the basis of H, (0, 0, 1, 0) and (0, 0, 0, 1). The coefficients f3,4,5 are given in the main

text, which are functions of k̃. Now it is easy to calculate the Weyl points on the surface. The Weyl points are
located at the gap closing points of Hs

2×2 as the solutions of the equations f3(k̃) = 0, f4(k̃) = 0 and f5(k̃) = 0 under
the constraint k2 ∈ (2π/3, 4π/3). The positions of the two Weyl points are hence given by 2π(5/12, 1/3,−1/3) and
2π(−5/12,−1/3, 1/3), which are related by time-reversal symmetry.

To determine the chirality of the Weyl point w1, we expand the effective surface Hamiltonian around the Weyl
point w1. The Hamiltonian reads Hw1 =

∑
i,j kiaijσj up to the first order of k, where i, j = 1, 2, 3 and the matrix a

has entries, a11 = 0, a12 = 0, a13 = −1, a21 =
√

3/2, a22 = −1/2, a23 = −1, a31 = −
√

3/2, a32 = −1/2, a33 = 0. The
chirality χ of the Weyl points is given by the sign of the determinant of matrix a. Because χ = sgn(Det(a)) = +1 for
the w1 point, we see it is left handed. The Weyl point at w2 has the same chirality due to the time reversal symmetry.
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Appendix C: Circuit systems

In this section, we present the correspondence between the tight-binding lattice model and our proposed circuit
lattice. According to the Kirchhoff current law, the currents flowing through the a, b, c, d nodes in the home unit cell
of Fig.2 are given as

Ia =
∑
R,α

jωCa,Raα
(v(Raα, α)− v(0, a))− v(0, a)(jωCa0 +

1

jωL
),

Ib =
∑
R,β

jωCb,Rbβ
(v(Rbβ , β)− v(0, b))− v(0, b)(jωCb0 +

1

jωL
),

Ic =
∑
R,γ

jωCc,Rcγ (v(Rcγ , γ)− v(0, c))− v(0, c)(jωCc0 +
1

jωL
),

Id =
∑
R,δ

jωCd,Rdδ
(v(Rdδ, δ)− v(0, d))− v(0, d)(jωCd0 +

1

jωL
), (S1)

where Iτ with τ = a, b, c, d are the currents that flow through node τ , v(0, τ) is the voltage at node τ in the home
unit cell 0 = (0, 0, 0, 0), v(Raα, α) is the voltage at node α in the unit cell at Raα, ω is the resonance frequency of
the circuit lattice, Cτ,Rτα

are capacitors connecting nodes τ and α. Cτ0 and L are capacitors and inductors, through
which the nodes are connected to ground, with the ground voltage set to zero. Considering the current conservation
at each node, namely, the sum of the inflow and outflow currents at every node equal to zero, (S8) can be simplified,
and rewritten as

(
∑
R,α

Ca,Raα + Ca0)v(0, a)−
∑
R,α

Ca,Raαv(Raα, α) =
1

ω2L
v(0, a),

(
∑
R,β

Cb,Rbβ
+ Cb0)v(0, b)−

∑
R,β

Cb,Rbβ
v(Rbβ , β) =

1

ω2L
v(0, b),

(
∑
R,γ

Cc,Rcγ
+ Cc0)v(0, c)−

∑
R,γ

Cc,Rcγ
v(Rcγ , γ) =

1

ω2L
v(0, c),

(
∑
R,δ

Cd,Rdδ
+ Cd0)v(0, d)−

∑
R,δ

Cd,Rdδ
v(Rdδ, δ) =

1

ω2L
v(0, d). (S2)

The current equations for all unit cell can be written in a similar way. Assuming the circuit system has the translational
symmetries along the r1,2,3,4 directions, the voltage on the nodes satisfies the Bloch theorem, which gives that v(Rτα+
R, α) = eik·Rv(Rτα, α), where R denotes the lattice index. Performing the Fourier transform, (S9) can be written
into a four by four matrix equation in k space. To cast this equation into the same form of the Hamiltonian, Eq.(1),
in the main text, we introduced the vectors in (S8) and (S9) as Rad = Rbc ∈ {(0, 0, 0, 0), (1, 0, 0, 0), (0, 1, 0, 0)}, Rab =
−Rcd ∈ (0, 0, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1), Raa = Rcc ∈ (0, 1, 1, 0), (0,−1,−1, 0), and Ca,Rab

= Cb,Rbc
= Ca,Rad

=
Ca,Raa

= Cc,Rac
= −Cc,Rcd

= C. Exchanging the order of the subscripts, one gets Rαβ = −Rβα (α 6= β) and
Cα,Rαβ

= Cβ,Rβα
. Therefore, through straightforward calculations, we can write (S9) as Haa Hab Hac Had

Hbb Hbc Hbd

Hcc Hcd

† Hdd


 va(k)
vb(k)
vc(k)
vd(k)

 =
1

ω2L

 va(k)
vb(k)
vc(k)
vd(k)

 , (S3)

where Haa = Ca0 + 8C − C cos(kx + k2), Hbb = Cb0 + 6C, Hcc = Cc0 + 2C − C cos(kx + k2), Hdd = Cd0, Hab =
−C(1 + eik3 + eik4), Hac = 0, Had = Hbc = −C(1 + eik1 + eik2), Hbd = 0, Hcd = C(1 + e−ik3 + e−ik4), where the
parameters of capacitor are choosing as Cab = Cbc = Cad = −Ccd = C, Cc0 = Ca0 + 6C and Cd0 = Cb0 + 6C.
The matrix in the left hand side of (S10) can be written in terms of the Γ matrices, with the coefficients given as
f1(k) = −C(1+cos k1 +cos k4), f2(k) = C(sin k1 +sin k2), f3(k) = −C(1+cos k3 +cos k4), f4(k) = C(sin k3 +sin k4),
f5(k) = Ca0−Cb0+2C

2 − C cos(k2 + k3), f0(k) = Ca0+Cb0+14C
2 − C cos(k2 + k3). Comparing with the tight-binding

Hamiltonian in the main text, we find the correspondences between the circuit lattice and the tight-binding lattice
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model, which are listed below. The capacitance C corresponds to the hopping parameters t with the relation t = C,
the voltages (va, vb, vc, vd)

T correspond to the wave function, and the frequency ω corresponds to the eigenvalues with
the relation ε = 1

ω2L . The mass term, now characterized by m = (Ca0 − Cb0)/2 + C, can be tuned by Ca0 and Cb0.
As discussed in the main text, the system is topologically nontrivial for −t/2 < m < t. We can choose the parameters
as C = 1µF, Ca0 = 1C, Cb0 = 3C, Cc0 = 7C, Cd0 = 9C, R = 1MΩ, and L = 1µH, with Cb0 = Ca0 + 2C, which lead
to that the case of m = 0 corresponds to the second Chern number C2 = −2.

We now address how to construct the 4D circuit lattice on a 2D circuit board. We first consider the connections
in the (r3,r4) space. The capacitors connecting the nodes separated by the vectors, Rab and Rcd, are placed on this
plane. Choosing the Born-von Karman periodic boundary conditions (PBCs) for the circuit lattice, the voltage on
the nodes satisfies v(R + Niri, α) = v(R, α), where R is the lattice index, α is the node index, and i runs over the
dimensions of the 4D space. With the PBCs in the r3-r4 space, the a, d nodes on the right (top) edge are connected
to the b, c nodes on the left (bottom) edge, and the electronic devices are placed on a finite block with cyan color as
shown in Fig.2 a. For the convenience of the connections in the r1 and r2 directions, we connect all nodes to the edge
of the block by wires. The small black solid squares with the same label denote they are equipotential points connected
by wires. The wires are not shown in Fig.2 a to make the figures neat. Recalling that the hopping parameters tcd
have opposite signs comparing to other hopping parameters, which leads to the capacitors connecting c-d nodes have
opposite signs compared to other capacitors. Here we choose the capacitors Ccd with negative capacitance. In Fig.2 a,
the positive capacitors are indicated by red solid line while the negative ones are indicated by red dashed lines. The
sub-circuit to realize the negative capacitor is given in Fig.2 d, which will be proved later. With the circuit block
given in Fig.2 a, the connections on the r1-r2 plane are schematically shown in Fig.2 e. The capacitors, connecting
the a-d, b-c, a-a, and c-c nodes that are separated by Rad, Rbc, Raa, and Rcc, are indicated with red solid line. The
black lines indicate the wires and the the small blue square at the lines crossing point means these lines are connected,
lines with no square mean that they are not connected. Experimentally, we can use the multi-layer board and put
the lines on different layers to avoid the connection between them.

Capacitors on the circuit lattice connecting nodes c-d are chosen to have negative capacitance. Here we design
a two-port device, whose I-V property behaves as a capacitor with negative capacitance. The circuit diagram is
shown in Fig.S1 a, where the operation amplifiers, indicated by the triangle shape, are used. For an ideal operational
amplifier, there is no voltage across its inputs. Therefore the input terminals V+ and V− behave like a short circuit.
But this kind of short is virtual, different from a real one, and draws no current because of the infinite impedance
between the two inputs. We assume the voltage at A and B nodes are V2 and V1, respectively. The voltage on the
other nodes are marked as shown in Fig.S1 a. Some nodes have the same voltage as A or B nodes for the virtual short
property between +, − nodes of the operation amplifiers. Then according to the Kirchhoff’s current law, we obtain
the current outflow for the A nodes and inflow for the B nodes, which are explicitly given as

i1 =jωC(Vo2 − V1),

i2 =jωC(V2 − Vo1). (S4)

For the currents in the internal branch, we get

(Vo1 − V2)/R =(V2 − V1)/R,

(V1 − Vo2)/R =(V2 − V1)/R. (S5)

which lead to V2−Vo1 = −(V2−V1) and Vo2−V1 = −(V2−V1). Substituting these identities in to eqs.(S11), we have

i1 = i2 = −jωC(V2 − V1). (S6)

Comparing to a positive valued capacitor, here the I-V relation satisfies I/V = jωC. Therefore the above result
shows that the two-port device given in Fig.S1 a, whose I-V properties behaves effectively as a capacitor with
negative capacitance −C.

The circuit in Fig.S1 b can be simplified as given in Fig.S1 c, where two operational, OP3 and OP4, working as a
voltage follower are removed. In this case, we have

i11 =jωC(V2 − Vo1),

i12 =(V2 − V1)/R,

i21 =(V2 − V1)/R,

i22 =jωC(Vo2 − V1). (S7)
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The currents in the internal branch satisfy the relations given in (S12). With above equations we get

I1 =i11 + i12 = (V2 − V1)(
1

R
− jωC),

I2 =i21 + i22 = (V2 − V1)(
1

R
− jωC). (S8)

Therefore, if R is large enough, we have I1 = I2 ≈ −jωC(V2 − V1), getting the same result as given in (S13). The
simulation result for the circuit in Fig.S1 a is shown in Fig.S1 c, which is consistent with the analytic result.

FIG. S1. The designed capacitor with effective capacitance −C. a, The sub-circuit to realize the −C capacitor. Four
operational amplifiers are used, where the OP3 and OP4 are used as voltage follower. b, The same as a, but with OP3 and OP4

being removed. If R is sufficiently large, this circuit is approximately equivalent to the circuit in a. c, The simulation results
for the circuit in a. The voltage at node A are plotted by the blue solid line and the current flow out node A is plotted by
the red circle line . The pink dashed line denotes the current for a +C capacitor connected to the same voltage source. From
the simulated V-I properties of the circuit, the sub-circuit behaves effectively as a capacitor with negative capacitance, which
is consistent with the analytic results.

Appendix D: Simulation details

We perform the simulations of the circuit lattice by using the LTspice software. In order to obtain the resonance
frequency of the circuit lattice, we probe the voltage v(t,R, α) at each node as a function of time, and then extract
the frequency information from v(ω,k, α), which can be obtained by the Fourier transform of v(t,R, α). To excite
the voltage signals at each node, we use a pulse source, which is connected at the four nodes in the (1,1,1,1) unit cell,
and is then removed immediately after the voltage at each nodes starting to oscillate. Then we collect the voltage
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data v(t,R, α). The parameters of the pulse source are set as pulse(Vinitial = 0,Von = 1V ,Vdelay = 0us,Vrise =
1us,Vfall = 1us,Ton = 1us,Tperiod = 4us), where Vinitial is the voltage when the pulse is not on, Von is the value when
the pulse is fully turned on, Tdelay is the time delay, Trise is the rise time of the pulse, Tfall is the fall time of the
pulse, Ton is the pulse width, and Tperiod is the period of the pulse. The ideal operational amplifier are used in the
sub-circuit for negative value capacitors. The pulse voltage source are connected at the four nodes in the (1, 1, 1, 1)
lattice and removed after 100µs when the whole system is activated. The parameters for transient analysis are set as
tran(tstep = 5µs, tstop = 2ms), which saves the voltage at every node every 5µs to 2ms. After the v(t,R, α) data are
obtained, we can extract the band dispersion as discussed in the main text .

Here, we provide the details for the open boundary conditions in the r1 direction as discussed in the main text. As
shown in Fig.2 e, we remove the capacitors that are used to connect node-a (b) on the top edge and node-d (c) on
the bottom edge. Recalling that the onsite energy of a node corresponds to the sum of all the capacitors connected
to this node, the removal of the capacitors on the top (bottom) edge changes the onsite energy of node-a, b (and c,
d) on the top (bottom) edge. In order to ensure that our simulation results can be compared with those obtained
from the tight-binding model, extra capacitors with capacitance C is used to connect these four types of removal
nodes to ground, respectively, to make the onsite energy of these nodes equal that of the bulk nodes. If we remove
the capacitors that connecting the a (b) nodes on the top edge and d (c) nodes on the bottom edge but not repair
these two edges by adding capacitors as we did above, the surface onsite energy on these nodes will be different from
that of bulk nodes. The changes of surface onsite energy can just shift the position of Weyl points in momentum and
frequency space, rather than make them disappear, since the Weyl points can disappear only when Weyl points with
opposite topological charges are annihilated in pairs. In the 4D topological system, the surface Weyl points with the
same topological charges are located on one surface, while the opposite topological charged Weyl points are separated
spatially on the other surface. Therefore the 4D surface Weyl points are stable.
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