Supplementary information

Metal	Observed Activity	References [26, 193]	
Bismuth	 Bi(III) exhibits low toxicity against humans and potent toxicity against bacteria. <i>H. pylori</i> appears particularly susceptible to three bismuth drugs: ranitidine bismuth citrate (Pylorid), colloidal bismuth subcitrate (CBS, De-Nol), and bismuth subsalicylate (Pepto-Bismol) Bi(III) and CBS identified as metallo-β lactamase inhibitors. 		
Iridium	 Ir(III) complexes shown bacteriostatic activity Good antimicrobial potential High cost of element and high dosage required for antibacterial effect, thus not a primary resource 	[26]	
Iron	 Moderate antibacterial activity against the Gram-positive bacteria <i>S. aureus</i> Inactive against Gram-negative <i>E. coli</i> and <i>P. aeruginosa</i> More studies required to determine <i>in vitro</i> and <i>in vivo</i> efficacy and toxicity 	[194]	
Palladium	 Antibacterial activity observed against <i>E. faecalis, S. aureus,</i> <i>E. coli, K. pneumonia,</i> and <i>P. aeruginosa</i> Proposed antibacterial activity caused by binding with DNA and protein More studies required to determine <i>in vitro</i> and <i>in vivo</i> efficacy and toxicity 	[195, 196]	
Platinum	 Bactericidal activity, inducing bacterial filamentation and lysis in lysogenic bacteria Proposed antibacterial activity caused by interaction with DNA 	[197]	
Rhenium	 Antimicrobial activity not well researched Promising activity against Gram-positive bacteria in particular Lack of <i>in vivo</i> data, requires further research 	[26]	

 Table S1. Other metals with antibacterial potential.

Metal	Observed Activity				
Rhodium	 Bacteriostatic effect against the Gram-positive bacterium <i>S. pneumoniae</i> without significant cytotoxic side-effect on host cell <i>in vitro</i> Affects bacterial metal ion binding and metabolic pathways More studies required to determine <i>in vitro</i> and <i>in vivo</i> efficacy and toxicity 				
Ruthenium	 Bactericidal activity Labile ruthenium complexes bind nucleic acids through ligand exchange reactions Inert ruthenium compounds, generally bearing one or more polypyridyl ligand(s), can bind DNA and RNA through intercalation Remarkable antimicrobial activity shown <i>in vitro</i> Rapid clearance following IV administration reduces efficacy of compounds administered <i>in vivo</i>, likely better for topical administration Lower propensity to induce resistance in <i>Streptococcus pyogenes</i> than penicillin Further efficacy experiments required to determine <i>in vivo</i> efficacy 	[26]			
Tellurium	 Antibacterial activity demonstrated against <i>E. coli</i>, <i>E. cloacae</i>, and <i>P. aeruginosa</i> Te ions taken up by bacteria as if amino acids, replacing sulfur atom to form Tellurium-cysteine and Tellurium-methionine More studies required to determine <i>in vitro</i> and <i>in vivo</i> efficacy and toxicity 	[199-201]			

		Gra	Gram-Positive				
	А.	Р.	Ε.	К.	E. Coli	S. aureus	E. faecium
	baumannii	Aeruginosa	cloacae	pneumoniae			
(11)	24	189	47	189	12	0.04-0.09	0.09
(12)	15-29	464	116	464	4-7	0.02	0.05-0.1
(13)	4-17	>547	4-9	34	9	0.3-0.5	0.3-0.5
(14)	9-19	>547	4	34	9	0.3	0.3-0.5
(15)	8-16	>503	8-16	31	8-31	0.5	0.2-0.5
(16)	3-6	23-91	3	11	1-6	0.3	0.3

Table S2. MIC values of auranofin analogues (11) to (16) tested against a series of Gramnegative and Gram-positive bacterial strains (μ M).

References

- 193. Nazari P, Dowlatabadi-Bazaz R, Mofid MR, Pourmand MR, Daryani NE et al. The Antimicrobial Effects and Metabolomic Footprinting of Carboxyl-Capped Bismuth Nanoparticles Against Helicobacter pylori. *Applied Biochemistry and Biotechnology* 2014;172(2):570-579.
- 194. **Patra M, Gasser G, Wenzel M, Merz K, Bandow JE et al.** Synthesis and Biological Evaluation of Ferrocene-Containing Bioorganometallics Inspired by the Antibiotic Platensimycin Lead Structure. *Organometallics* 2010;29(19):4312-4319.
- Kalaivani P, Prabhakaran R, Ramachandran E, Dallemer F, Paramaguru G et al. 195. Influence of terminal substitution on structural, DNA, Protein binding, anticancer and palladium(ii) complexes antibacterial activities of containing 3-methoxy salicylaldehyde-4(N) substituted thiosemicarbazones. Dalton Transactions, 10.1039/C1DT11838B 2012;41(8):2486-2499.
- 196. Kalaivani P, Prabhakaran R, Dallemer F, Poornima P, Vaishnavi E et al. DNA, protein binding, cytotoxicity, cellular uptake and antibacterial activities of new palladium(ii) complexes of thiosemicarbazone ligands: effects of substitution on biological activity. *Metallomics*, 10.1039/C1MT00144B 2012;4(1):101-113.
- 197. Johnstone TC, Alexander SM, Lin W, Lippard SJ. Effects of Monofunctional Platinum Agents on Bacterial Growth: A Retrospective Study. *Journal of the American Chemical Society* 2014;136(1):116-118.
- 198. Yang X-Y, Xu J-Y, Meng M, Li N, Liu C-Y et al. Dirhodium (II) complex interferes with iron-transport system to exert antibacterial action against Streptococcus pneumoniae. *Journal of Proteomics* 2019;194:160-167.
- 199. Kalechman Y, Shani A, Sotnik-Barkai I, Albeck M, Sredni B. The Protective Role of Ammonium Trichloro(dioxoethylene-*O*,*O'*) tellurate in Combination with Several Cytotoxic Drugs Acting by Different Mechanisms of Action. *Cancer Research* 1993;53(24):5962-5969.
- 200. Ramadan SE, Razak AA, Ragab AM, El-Meleigy M. Incorporation of tellurium into amino acids and proteins in a tellurium-tolerant fungi. *Biological Trace Element Research* 1989;20(3):225.
- 201. **D'Arcy K, Doyle AP, Kavanagh K, Ronconi L, Fresch B et al.** Stability of antibacterial Te(IV) compounds: A combined experimental and computational study. *Journal of Inorganic Biochemistry* 2019;198:110719.