SUPPORTING INFORMATION

Selective C–H iodination of (hetero)arenes

Lalita Tanwar,^{†,‡} Jonas Börgel,[†] Johannes Lehmann,[†] Tobias Ritter^{*,†,‡}

[†]Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany [‡]Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany *Correspondence to: ritter@kofo.mpg.de

TABLE OF CONTENTS

TABLE OF CONTENTS	1
MATERIALS AND METHODS	4
EXPERIMENTAL DATA	5
General procedure for C–H iodination of (hetero)arenes	5
2-lodo-tetrahydrobenzofuranone (2)	5
lodinated-nimesulide (3)	6
4-lodoanisole (4)	6
4-Iodophenol (5)	8
4-Iodoacetanilide (6)	8
4-lodofluorobenzene (7)	9
4-lodonitrobenzene (8)	9
4-Iodoaniline (9)	10
2-Acetyl-4-iodo-1-methylpyrrole (10)	11
3-lodo-2,6-dimethoxypyridine (11)	12
3-lodoazaindazole (12)	12
4-lodopyrazole-3-carboxylate (13)	13
2-lodo-5-bromothiazole (14)	14
6-Chloro-7-iododezapurine (15)	14
2-(5-lodothiophene)-benzothiazole (16)	15
4-lodopyrazole-1-benzoic acid (17)	15
Iodinated-ipriflavone (18)	16
lodinated-coumarin1 (19)	17
Gram-scale synthesis: Iodinated-coumarin1 (19)	17
Iodinated-procymidone (20)	18
Iodinated-boscalid triflate salt (21)	19
lodinated-diclofenac (22)	19
lodinated-napropamid (23)	20
lodinated-fenobirinacid (24)	21
lodinated-strychnine triflate salt (25)	22
Formation of acetyl hypoiodite	22
Comparison to NIS method	23
Table S1. Comparison of hypoiodites method with NIS	24
Electrochemical data	24
Cyclic Voltammograms	24

Table S2. Value of E ^{red} vs Ag/AgCl in MeCN	25
Table S3. Modulation of sulfonyl based hypoiodites.	
SPECTROSCOPIC DATA	27
¹ H NMR of 2-lodo-tetrahydrobenzofuranone (2)	27
¹³ C NMR of 2-lodo-tetrahydrobenzofuranone (2)	
¹ H NMR of Iodinated-nimesulide (3)	29
¹³ C NMR of Iodinated-nimesulide (3)	
¹ H NMR of 4-lodoanisole (4)	
¹³ C NMR of 4-lodoanisole (4)	
¹ H NMR of 4-lodophenol (5)	
¹³ C NMR of 4-lodophenol (5)	
¹ H NMR of 4-lodoacetanilide (6)	35
¹³ C NMR of 4-lodoacetanilide (6)	
¹ H NMR of 4-lodofluorobenzene (7)	
¹⁹ F NMR of 4-lodofluorobenzene (7)	
¹³ C NMR of 4-lodofluorobenzene (7)	
¹ H NMR of 2-Acetyl-4-iodo-1-methylpyrrole (10)	40
¹³ C NMR of 2-Acetyl-4-iodo-1-methylpyrrole (10)	41
¹ H NMR of 3-lodo-2,6-dimethoxypyridine (11)	42
¹³ C NMR of 3-lodo-2,6-dimethoxypyridine (11)	43
¹ H NMR of 3-lodoazaindazole (12)	
¹³ C NMR of 3-lodoazaindazole (12)	45
¹ H NMR of 4-lodopyrazole-3-carboxylate (13)	46
¹³ C NMR of 4-lodopyrazole-3-carboxylate (13)	
¹ H NMR of 2-lodo-5-bromothiazole (14)	
¹³ C NMR of 2-lodo-5-bromothiazole (14)	
¹ H NMR of 6-Chloro-7-iododezapurine (15)	
¹³ C NMR of 6-Chloro-7-iododezapurine (15)	51
¹ H NMR of 2-(5-Iodothiophene)-benzothiazole (16)	

	¹³ C NMR of 2-(5-lodothiophene)-benzothiazole (16)	53
	¹ H NMR of 4-lodopyrazol-1-benzoic acid (17)	54
	¹³ C NMR of 4-lodopyrazol-1-benzoic acid (17)	55
	¹ H NMR of Iodinated-ipriflavone (18)	56
	¹³ C NMR of Iodinated-ipriflavone (18)	57
	¹ H NMR of Iodinated-coumarin1 (19)	58
	¹³ C NMR of Iodinated-coumarin1 (19)	59
	¹ H NMR of Iodinated-procymidone (20)	60
	¹³ C NMR of Iodinated-procymidone (20)	61
	¹ H NMR of Iodinated-boscalid triflate salt (21)	62
	¹³ C NMR of Iodinated-boscalid triflate salt (21)	63
	¹⁹ F NMR of Iodinated-boscalid triflate salt (21)	64
	¹ H NMR of Iodinated-diclofenac (22)	65
	¹³ C NMR of Iodinated-diclofenac (22)	66
	¹ H NMR of Iodinated-napropamid (23)	67
	¹³ C NMR of Iodinated-napropamid (23)	68
	¹ H NMR of Iodinated-fenobirinacid (24)	69
	¹³ C NMR of Iodinated-fenobirinacid (24)	70
	¹ H NMR of Iodinated-strychnine triflate salt (25)	71
	¹³ C NMR of Iodinated-strychnine triflate salt (25)	72
	¹⁹ F NMR of Iodinated-strychnine triflate salt (25)	73
R	EFERENCES	74

MATERIALS AND METHODS

All reactions were carried out under an ambient atmosphere unless otherwise stated and monitored by thinlayer chromatography (TLC). Concentration under reduced pressure was performed by rotary evaporation at 25–40 °C at an appropriate pressure. Purified compounds were further dried under high vacuum (0.008–0.5 Torr). Yields refer to purified and spectroscopically pure compounds.

Solvents

Dichloromethane was purchased from Sigma-Aldrich and used as received. Acetonitrile was purchased from fisher scientific and used as received. All deuterated solvents were purchased from Eur*iso*-Top.

Chromatography

Thin layer chromatography (TLC) was performed using EMD TLC plates pre-coated with 250 µm thickness silica gel 60 F₂₅₄ plates and visualized by fluorescence quenching under UV light. Flash chromatography was performed using silica gel (40–63 µm particle size) purchased from Geduran®. Preparatory high-performance liquid chromatographic separation was executed on a Shimadzu Prominence Preparative HPLC system.

Spectroscopy and Instruments

NMR spectra were recorded on a Bruker AscendTM 500 spectrometer operating at 500 MHz, 125 MHz, and 470 MHz for ¹H, ¹³C, and ¹⁹F acquisitions, respectively; or on a Varian Unity/Inova 600 spectrometer operating at 600 MHz, 150 MHz, and 565 MHz for ¹H, ¹³C, and ¹⁹F acquisitions, respectively. Chemical shifts are reported in ppm with the solvent resonance as the internal standard. For ¹H NMR: CDCl₃, δ 7.26; (CD₃)₂SO, δ 2.50. For ¹³C NMR: CDCl₃, δ 77.16; (CD₃)₂SO, δ 39.52.¹ Data is reported as follows: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad; coupling constants in Hz; integration.

Starting materials

All substrates were used as received from commercial suppliers, unless otherwise stated.

EXPERIMENTAL DATA

General procedure for C–H iodination of (hetero)arenes

Under an ambient atmosphere, a 4 mL borosilicate vial equipped with magnetic stir bar was charged with arene (0.200 mmol, 1.00 equiv), molecular iodine (50.8 mg, 0.200 mmol, 1.00 equiv), Ag (I) salt (0.200 mmol, 1.00 equiv), and MeCN (1.0 mL, c = 0.20 M). Subsequently, the vial was capped, and the reaction mixture was stirred at 23 °C for 24 h. The reaction mixture was diluted with EtOAc (5 mL), and the resulting mixture was filtered through a short pad of silica gel using EtOAc (5 mL) as eluent. The filtrate was collected and concentrated by rotary evaporation. The residue was purified by column chromatography on silica gel to afford iodinated product.

2-lodo-tetrahydrobenzofuranone (2)

Under an ambient atmosphere, a 4 mL borosilicate vial equipped with magnetic stir bar was charged with molecular iodine (66.0 mg, 0.260 mmol, 1.30 equiv), AgOMs (52.0 mg, 0.260 mmol, 1.30 equiv), tetrahydrobenzofuranone (**S2**) (27.2 mg, 0.200 mmol, 1.00 equiv), and MeCN (1.0 mL, c = 0.20 M). The vial was capped, and the reaction mixture was stirred at 23 °C for 1 h. The reaction mixture was diluted with EtOAc (5 mL), and the resulting mixture was filtered through a short pad of silica gel using EtOAc (5 mL) as eluent. The filtrate was collected and concentrated by rotary evaporation. The residue was purified by column chromatography on silica gel eluting with a solvent mixture of ethyl acetate:pentane (5:95 (v:v)) to afford 42 mg of **2** as a colorless solid (80% yield).

 \mathbf{R}_{f} (ethyl acetate:pentane, 10:90 (v:v)) = 0.21.

NMR Spectroscopy:

¹**H NMR** (500 MHz, CDCl₃, 25 °C, δ): 6.82 (s, 1H), 2.90 (t, J = 6.3 Hz, 2H), 2.49 – 2.44 (m, 2H), 2.16 (p, J = 6.4 Hz, 2H).

¹³C NMR (126 MHz, CDCl₃, 25 °C, δ): 193.0, 171.0, 124.1, 117.1, 89.2, 37.6, 23.5, 22.6.

HRMS-EI-Ion trap (m/z) calc'd for C₈H₇O₂I [M]⁺, 261.9489; found, 261.9485; deviation: -1.5 ppm.

Iodinated-nimesulide (3)

Under an ambient atmosphere, a 4 mL borosilicate vial equipped with magnetic stir bar was charged with molecular iodine (55.0 mg, 0.220 mmol, 1.10 equiv), AgOTf (56.0 mg, 0.220 mmol, 1.10 equiv), nimesulide (**S3**) (61.70 mg, 0.200 mmol, 1.00 equiv), and DCM (1.0 mL, c = 0.20 M). The vial was capped, and the reaction mixture was stirred at 23 °C for 24 h. The reaction mixture was diluted with EtOAc (5 mL), and the resulting mixture was filtered through a short pad of silica gel using EtOAc (5 mL) as eluent. The filtrate was collected and concentrated by rotary evaporation. The residue was purified by column chromatography on silica gel eluting with a solvent mixture of ethyl acetate:pentane (30:70 (v:v)) to afford 90 mg of **3** as a pale yellow solid. Analytically pure sample was obtained by purification with high performance liquid chromatography with an YMC-Pack Triart C18 column with an eluent mixture of 0.1% (v/v) aqueous trifluoroacetic acid /acetonitrile (30:70 (v/v) at a flow rate of 42.5 mL·min⁻¹ and UV detection at a wavelength of 220 nm to afford 78 mg of **3** as a pale yellow solid (90% yield).

 \mathbf{R}_{f} (ethyl acetate:pentane, 30:70 (v:v)) = 0.35.

NMR Spectroscopy

¹**H NMR** (500 MHz, DMSO, 25 °C, δ): 10.19 (s, 1H), 8.06 (dd, *J* = 9.1, 2.6 Hz, 1H), 7.78 (d, *J* = 8.8 Hz, 2H), 7.74 (d, *J* = 9.1 Hz, 1H), 7.63 (d, *J* = 2.6 Hz, 1H), 6.97 (d, *J* = 8.8 Hz, 2H), 3.18 (s, 3H).

¹³**C NMR** (126 MHz, DMSO, 25 °C, δ): 155.4, 146.5, 143.1, 138.8, 135.9, 121.5, 121.0, 119.9, 113.5, 88.4, 40.8.

HRMS-ESIneg- Ion trap (m/z) calc'd for C₁₃H₁₀N₂IO₅S⁻ [M−H]⁻, 432.9367; found, 432.9360; deviation: −1.5 ppm.

4-lodoanisole (4)

Under an ambient atmosphere, a 4 mL borosilicate vial equipped with magnetic stir bar was charged with molecular iodine (51.0 mg, 0.200 mmol, 1.00 equiv), AgOMs (40.6 mg, 0.200 mmol, 1.00 equiv), anisole (**S4**) (21.8 μ L, 21.6 mg, 0.200 mmol, 1.00 equiv), and MeCN (1.0 mL, c = 0.20 M). The vial was capped, and the

reaction mixture was stirred at 23 °C for 24 h. The reaction mixture was diluted with EtOAc (5 mL), and the resulting mixture was filtered through a short pad of silica gel using EtOAc (5 mL) as eluent. The filtrate was collected and concentrated by rotary evaporation to afford 42 mg of **4** as a mixture of constitutional isomers a pale yellow oil (90% yield).The ratio of isomers was determined by integration of the ¹H-NMR in CDCl₃ of the methoxy groups.

 \mathbf{R}_{f} (ethyl acetate:pentane, 05:95 (v:v)) = 0.63.

NMR Spectroscopy:

¹**H NMR** (500 MHz, CDCl₃, 25 °C, δ): 7.27 (d, *J* = 9.0 Hz, 2H), 6.40 (d, *J* = 9.0 Hz, 2H), 3.49 (s, 3H).

¹³**C NMR** (126 MHz, CDCl₃, 25 °C, δ): 159.6, 138.3, 116.5, 82.8, 55.5.

HRMS-EI- Ion trap (m/z) calc'd for C7H7OI [M]⁺, 233.9536; found, 233.9538; deviation: -0.8 ppm.

4-lodophenol (5)

Under an ambient atmosphere, a 4 mL borosilicate vial equipped with magnetic stir bar was charged with molecular iodine (51.0 mg, 0.200 mmol, 1.00 equiv), AgOMs (40.6 mg, 0.200 mmol, 1.00 equiv), phenol (**S5**) (18.8 mg, 0.200 mmol, 1.00 equiv), and MeCN (1.0 mL, c = 0.20 M). The vial was capped, and the reaction mixture was stirred at 23 °C for 24 h. The reaction mixture was diluted with EtOAc (5 mL), and the resulting mixture was filtered through a short pad of silica gel using EtOAc (5 mL) as eluent. The filtrate was collected and concentrated by rotary evaporation to afford 35 mg of **5** as a mixture of constitutional isomers as pale yellow solid (80% yield).The ratio of isomers was determined by integration of the ¹H-NMR in CDCl₃ of the aromatic –CH protons.

 \mathbf{R}_{f} (ethyl acetate:pentane, 20:80 (v:v)) = 0.22.

NMR Spectroscopy:

¹**H NMR** (500 MHz, CDCl₃, 25 °C, δ): 7.52 (d, J = 9.0 Hz, 2H), 6.63 (d, J = 9.0 Hz, 2H).

¹³C NMR (126 MHz, CDCl₃, 25 °C, δ): 155.4, 138.6, 117.9, 82.9.

HRMS-EI- Ion trap (m/z) calc'd for C₆H₅OI [M]⁺, 219.9380; found, 219.9380; deviation: -0.5 ppm.

4-lodoacetanilide (6)

Under an ambient atmosphere, a 4 mL borosilicate vial equipped with magnetic stir bar was charged with molecular iodine (51.0 mg, 0.200 mmol, 1.00 equiv), AgOMs (40.6 mg, 0.200 mmol, 1.00 equiv), acetanilide (**S6**) (27.0 mg, 0.200 mmol, 1.00 equiv), and MeCN (1.0 mL, c = 0.20 M). The vial was capped, and the reaction mixture was stirred at 23 °C for 24 h. The reaction mixture was diluted with EtOAc (5 mL), and the resulting mixture was filtered through a short pad of silica gel using EtOAc (5 mL) as eluent. The filtrate was collected and concentrated by rotary evaporation. The residue was purified by column chromatography on silica gel eluting with a solvent mixture of ethyl acetate:pentane (30:70 (v:v)) to afford 48 mg of **6** as a colorless solid (92% yield).

 \mathbf{R}_{f} (ethyl acetate:pentane, 40:60 (v:v)) = 0.24.

NMR Spectroscopy:

¹**H NMR** (300 MHz, CD₃CN, 25 °C, δ): 8.36 (s, 1H), 7.62 (d, *J* = 8.8 Hz, 2H), 7.37 (d, *J* = 8.8 Hz, 2H), 2.04 (s, 3H).

¹³C NMR (75 MHz, CD₃CN, 25 °C, δ): 169.7, 140.1, 138.6, 122.1, 86.6, 24.3.

HRMS-EI- Ion trap(m/z) calc'd for C₈H₈ONI [M]⁺, 260.9645; found, 260.9648; deviation: −1.1 ppm.

4-lodofluorobenzene (7)

Under an ambient atmosphere, a 4 mL borosilicate vial equipped with magnetic stir bar was charged with molecular iodine (51.0 mg, 0.200 mmol, 1.00 equiv), AgOTf (51.0 mg, 0.200 mmol, 1.00 equiv), fluorobenzene (S7) (18.8 μ L, 19.2 mg, 0.200 mmol, 1.00 equiv), and DCM (1.0 mL, c = 0.20 M). The vial was capped, and the reaction mixture was stirred at 23 °C for 24 h. The reaction mixture was diluted with EtOAc (5 mL), and the resulting mixture was filtered through a short pad of silica gel using EtOAc (5 mL) as eluent. The filtrate was collected and concentrated by rotary evaporation to afford 39 mg of 7 as a mixture of constitutional isomers as pale yellow liquid (87% yield).The ratio of isomers was determined by integration of the ¹H-NMR in CD₂Cl₂ of the aromatic –CH protons.

 \mathbf{R}_{f} (ethyl acetate:pentane, 20:80 (v:v)) = 0.21.

NMR Spectroscopy:

¹**H NMR** (500 MHz, CD₂Cl₂, 25 °C, δ): 7.66 (dd, J = 8.9 Hz, 2H), 6.87 (m, J = 8.9 Hz, 2H).

¹⁹**F NMR** (471 MHz, CD₂Cl₂, 25° C): −77.64 (s, ⁻OTf), 115.1(m, *J* = 5.16, 1F).

¹³**C NMR** (126 MHz, CD₃CN, 25 °C, δ): 163.7 (d, *J* = 245.1 Hz), 140.2 (d, *J* = 7.8 Hz), 118.7 (d, *J* = 22.2 Hz), 87.7 (d, *J* = 3.2 Hz).

HRMS-EI- Ion trap (m/z) calc'd for C₆H₄FI [M]⁺, 221.9335; found, 221.9336; deviation: -0.1 ppm.

4-lodonitrobenzene (8)

Under an ambient atmosphere, a 4 mL borosilicate vial equipped with magnetic stir bar was charged with

molecular iodine (51.0 mg, 0.200 mmol, 1.00 equiv), AgOTf (51.0 mg, 0.200 mmol, 1.00 equiv), nitrobenzene (**S8**) (20.5 μ L, 24.7 mg, 0.200 mmol, 1.00 equiv), and DCM (1.0 mL, c = 0.20 M). The vial was capped, and the reaction mixture was stirred at 23 °C for 24 h. The reaction mixture was diluted with EtOAc (5 mL), and the resulting mixture was filtered through a short pad of silica gel using EtOAc (5 mL) as eluent. The filtrate was collected and concentrated by rotary evaporation. No evidence of product was observed in ¹H NMR.

Under an ambient atmosphere, a 4 mL borosilicate vial equipped with magnetic stir bar was charged with molecular iodine (51.0 mg, 0.200 mmol, 1.00 equiv), AgOMs (40.6 mg, 0.200 mmol, 1.00 equiv), aniline (**S9**) (18.3 μ L, 18.6 mg, 0.200 mmol, 1.00 equiv), and MeCN (1.0 mL, c = 0.20 M). The vial was capped, and the reaction mixture was stirred at 23 °C for 24 h. The reaction mixture was diluted with EtOAc (5 mL), and the resulting mixture was filtered through a short pad of silica gel using EtOAc (5 mL) as eluent. The filtrate was collected and concentrated by rotary evaporation. No evidence of product was observed in ¹H NMR.

10, 83%

Under an ambient atmosphere, a 4 mL borosilicate vial equipped with magnetic stir bar was charged with molecular iodine (50.8 mg, 0.200 mmol, 1.00 equiv), AgOAc (33.4 mg, 0.200 mmol, 1.00 equiv), 2-acetyl-1-methylpyrrole (**S10**) (23.7 μ L, 24.6 mg, 0.200 mmol, 1.00 equiv), and MeCN (1.0 mL, c = 0.20 M). The vial was capped, and the reaction mixture was stirred at 23 °C for 7 h. The reaction mixture was diluted with EtOAc (5 mL), and the resulting mixture was filtered through a short pad of silica gel using EtOAc (5 mL) as eluent. The filtrate was collected and concentrated by rotary evaporation. The residue was purified by column chromatography on silica gel eluting with a solvent mixture of ethyl acetate:pentane (05:95 (v:v)) to afford 41.5 mg of **10** as a colorless solid (83% yield).

 \mathbf{R}_{f} (ethyl acetate:pentane, 10:90 (v:v)) = 0.29.

S10

NMR Spectroscopy:

¹**H NMR** (500 MHz, CDCl₃, 25 °C, δ): 7.00 (d, *J* = 1.8 Hz, 1H), 6.82 (d, *J* = 1.8 Hz, 1H), 3.91 (s, 3H), 2.39

(s, 3H).

¹³**C NMR** (126 MHz, CDCl₃, 25 °C, δ): 187.9, 135.1, 132.8, 126.1, 58.8, 37.8, 27.3.

HRMS-EI- Ion trap (m/z) calc'd for C₇H₈NOI [M]⁺, 248.9647; found, 248.9645; deviation: -0.7 ppm.

3-lodo-2,6-dimethoxypyridine (11)

Under an ambient atmosphere, a 4 mL borosilicate vial equipped with magnetic stir bar was charged with molecular iodine (50.8 mg, 0.200 mmol, 1.00 equiv), AgOAc (33.4 mg, 0.200 mmol, 1.00 equiv), 2,6-dimethoxypyridine (**S11**) (26.4 μ L, 27.8 mg, 0.200 mmol, 1.00 equiv), and MeCN (1.0 mL, c = 0.20 M). The vial was capped, and the reaction mixture was stirred at 23 °C for 30 min. The reaction mixture was diluted with EtOAc (5 mL), and the resulting mixture was filtered through a short pad of silica gel using EtOAc (5 mL) as eluent. The filtrate was collected and concentrated by rotary evaporation. The residue was purified by column chromatography on silica gel eluting with a solvent mixture of ethyl acetate:pentane (01:99 (v:v)) to afford 43 mg of **11** as a colorless solid (80% yield).

 \mathbf{R}_{f} (pentane, 100 (v)) = 0.53.

NMR Spectroscopy:

¹**H NMR** (500 MHz, CDCl₃, 25 °C, δ): 7.81 (d, *J* = 8.2 Hz, 1H), 6.16 (d, *J* = 8.2 Hz, 1H), 3.97 (s, 3H), 3.90 (s, 3H).

¹³C NMR (126 MHz, CDCl₃, 25 °C, δ): 144.0, 131.6, 127.8, 121.3, 73.9, 41.4, 19.0, 14.0.

HRMS-EI- Ion trap (m/z) calc'd for C₇H₈NO₂I [M]⁺, 264.9598; found, 264.9594; deviation: -1.5 ppm.

3-lodoazaindazole (12)

Under an ambient atmosphere, a 4 mL borosilicate vial equipped with magnetic stir bar was charged with molecular iodine (50.80 mg, 0.200 mmol, 1.00 equiv), AgOTs (56.0 mg, 0.200 mmol, 1.00 equiv), azaindazole (**S12**) (23.90 mg, 0.200 mmol, 1.00 equiv), K₂CO₃ (27.60 mg, 0.200 mmol, 1.00 equiv), and MeCN (1.0 mL, c = 0.20 M). The vial was capped, and the reaction mixture was stirred at 23 °C for 24 h. The reaction mixture was diluted with EtOAc (5 mL), and the resulting mixture was filtered through a short pad of silica gel using EtOAc (5 mL) as eluent. The filtrate was transferred to a separatory funnel and 1N HCl (5 mL) was added. The

resulting mixture was extracted with EtOAc ($3 \times 15 \text{ mL}$). The combined organic layers were dried over MgSO₄, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel eluting with a solvent mixture of ethyl acetate:pentane (25:75 (v:v)) to afford 23 mg of **12** as a colorless solid (47% yield).

 \mathbf{R}_{f} (ethyl acetate:pentane, 30:70 (v:v)) = 0.33.

NMR Spectroscopy:

¹**H NMR** (600 MHz, DMSO, 25 °C, δ): 14.08 (s, 1H), 8.57 (dd, *J* = 4.5, 1.5 Hz, 1H), 7.91 (ddd, *J* = 8.0, 1.6, 0.6 Hz, 1H), 7.25 (dd, *J* = 8.1, 4.5 Hz, 1H).

¹³**C NMR** (151 MHz, DMSO, 25 °C, δ): 151.7, 150.1, 129.9, 118.9, 117.7, 92.7.

HRMS-ESIpos- Ion trap (m/z) calc'd for C₆H₅N₃I⁺ [M+H]⁺, 245.9523; found, 245.9523; deviation: -0.2 ppm.

4-lodopyrazole-3-carboxylate (13)

Under an ambient atmosphere, a 4 mL borosilicate vial equipped with magnetic stir bar was charged with molecular iodine (66.0 mg, 0.260 mmol, 1.30 equiv), AgOMs (52.0 mg, 0.260 mmol, 1.30 equiv), 3-carboxylate pyrazole (**S13**) (25.20 mg, 0.200 mmol, 1.00 equiv), and MeCN (1.0 mL, c = 0.20 M). The vial was capped, and the reaction mixture was stirred at 23 °C for 13 h. The reaction mixture was diluted with EtOAc (5 mL), and the resulting mixture was filtered through a short pad of silica gel using EtOAc (5 mL) as eluent. The filtrate was collected and concentrated by rotary evaporation. The residue was purified by column chromatography on silica gel eluting with a solvent mixture of ethyl acetate:pentane (40:60 (v:v)) to afford 50.40 mg of **13** as a colorless solid (91% yield).

 \mathbf{R}_{f} (ethyl acetate:pentane, 40:60 (v:v)) = 0.33.

NMR Spectroscopy:

¹**H NMR** (500 MHz, CD₃CN, 25 °C, δ): δ 7.76 (s, 1H), 3.86 (s, 3H).

¹³C NMR (151 MHz, MeOD, 25 °C, δ): 163.2, 144.0, 138.4, 60.8, 52.4.

HRMS-EI- Ion trap (m/z) calc'd for C₅H₅N₂O₂I [M]⁺ 251.9390; found, 251.9392; deviation: –0.8 ppm.

Note: Tautomeric forms of pyrazole were observed in the ¹³C NMR spectrum.

2-lodo-5-bromothiazole (14)

Under an ambient atmosphere, a 4 mL borosilicate vial equipped with magnetic stir bar was charged with molecular iodine (76.0 mg, 0.300 mmol, 1.50 equiv), AgOTs (61.0 mg, 0.300 mmol, 1.50 equiv), 5-bromothiazole (**S14**) (44.10 mg, 0.200 mmol, 1.00 equiv), and MeCN (1.0 mL, c = 0.20 M). The vial was capped, and the reaction mixture was stirred at 23 °C for 24 h. The reaction mixture was diluted with EtOAc (5 mL), and the resulting mixture was filtered through a short pad of silica gel using EtOAc (5 mL) as eluent. The filtrate was collected and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel eluting with ethyl acetate:pentane (05:95 (v:v)) to afford 51 mg of **14** as a colorless liquid (74% yield).

 R_f (pentane) = 0.29.

NMR Spectroscopy:

¹**H NMR** (300 MHz, DMSO, 25 °C, δ): 1.43 (s, 9H).

¹³**C NMR** (75 MHz, DMSO, 25 °C, δ): 164.5, 137.3, 68.9, 36.2, 30.0.

HRMS-EI- Ion trap (m/z) calc'd for C₇H₉NISBr [M]⁺, 344.8682; found, 344.8678; deviation: -1.2 ppm.

6-Chloro-7-iododezapurine (15)

Under an ambient atmosphere, a 4 mL borosilicate vial equipped with magnetic stir bar was charged with molecular iodine (76.0 mg, 0.300 mmol, 1.50 equiv), AgOTs (61.0 mg, 0.300 mmol, 1.50 equiv), 6-chlorodezapurine (**S15**) (44.0 mg, 0.200 mmol, 1.00 equiv), K₂CO₃ (27.60 mg, 0.200 mmol, 1.00 equiv), and MeCN (1.0 mL, c = 0.20 M). The vial was capped, and the reaction mixture was stirred at 23 °C for 24 h. The reaction mixture was diluted with EtOAc (5 mL), and the resulting mixture was filtered through a short pad of silica gel using EtOAc (5 mL) as eluent. The filtrate was transferred to a separatory funnel and 1N HCl (5 mL) was added. The resulting mixture was extracted with EtOAc (3 × 15 mL). The combined organic layers were dried over MgSO₄, and concentrated under reduced pressure. The filtrate was collected and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel eluting with ethyl acetate:pentane (30:70 (v:v)) to afford 55.90 mg of **15** as a colorless solid (91% yield). \mathbf{R}_{f} (ethyl acetate:pentane, 40:60 (v:v)) = 0.35.

NMR Spectroscopy:

¹**H NMR** (500 MHz, DMSO, 25 °C, δ): 12.94 (s, 1H), 8.58 (s, 1H), 7.93 (s, 1H).

¹³C NMR (126 MHz, DMSO, 25 °C, δ): 151.5, 150.7, 150.5, 133.9, 115.8, 51.6.

HRMS-EI- Ion trap (m/z) calc'd for C₆H₃N₃ClI [M]⁺, 278.9058; found, 278.9055; deviation: -1.2 ppm.

2-(5-lodothiophene)-benzothiazole (16)

Under an ambient atmosphere, a 4 mL borosilicate vial equipped with magnetic stir bar was charged with molecular iodine (50.8 mg, 0.200 mmol, 1.00 equiv), AgOMs (40.6 mg, 0.200 mmol, 1.00 equiv), 2-(2-thienyl)benzothiazol (**S16**) (43.50 mg, 0.200 mmol, 1.00 equiv), and MeCN (1.0 mL, c = 0.20 M). The vial was capped, and the reaction mixture was stirred at 23° C for 16 h. The reaction mixture was diluted with EtOAc (5 mL), and the resulting mixture was filtered through a short pad of silica gel using EtOAc (5 mL) as eluent. The filtrate was collected and concentrated by rotary evaporation. The residue was purified by column chromatography on silica gel eluting with a solvent mixture of ethyl acetate:pentane (02:98 (v:v)) to afford 65 mg of **16** as a colorless solid (95% yield).

 \mathbf{R}_{f} (ethyl acetate:pentane, 10:90 (v:v)) = 0.65.

NMR Spectroscopy:

¹**H NMR** (500 MHz, CDCl₃, 25 °C, δ): 8.01 (dt, *J* = 8.2, 0.9 Hz, 1H), 7.84 (dt, *J* = 8.1, 1.0 Hz, 1H), 7.48 (dd, *J* = 8.3, 7.2, 1.3 Hz, 1H), 7.37 (ddd, *J* = 8.2, 7.2, 1.2 Hz, 1H), 7.30 – 7.27 (m, 2H).

¹³**C NMR** (126 MHz, CDCl₃, 25 °C, δ): 160.1, 153.7, 143.3, 138.0, 134.7, 129.6, 126.7, 125.6, 123.2, 121.6, 79.0.

HRMS-EI- Ion trap (m/z) calc'd for C₁₁H₆NS₂I [M]⁺, 342.8987; found, 342.8981; deviation: -1.8 ppm.

4-lodopyrazole-1-benzoic acid (17)

Under an ambient atmosphere, a 4 mL borosilicate vial equipped with magnetic stir bar was charged with

molecular iodine (66.0 mg, 0.260 mmol, 1.30 equiv), AgOTs (72.6 mg, 0.260 mmol, 1.30 equiv), 4-(1H-Pyrazol-1-yl)-benzoic acid (**S17**) (37.70 mg, 0.200 mmol, 1.00 equiv), and MeCN (1.0 mL, c = 0.20 M). The vial was capped, and the reaction mixture was stirred at 23 °C for 24 h. The reaction mixture was diluted with EtOAc (5 mL), and the resulting mixture was filtered through a short pad of silica gel using EtOAc (5 mL) as eluent. The filtrate was collected and concentrated by rotary evaporation. The residue was purified by column chromatography on silica gel eluting with a solvent mixture of ethyl acetate:pentane (10:90 (v:v)) to afford 51 mg of **17** as a colorless solid (81% yield).

 \mathbf{R}_{f} (ethyl acetate:pentane, 40:60 (v:v)) = 0.13.

NMR Spectroscopy:

¹H NMR (300 MHz, DMSO, 25 °C, δ): 13.07 (s, 1H), 8.83 (s, 1H), 8.10 – 8.01 (m, 2H), 7.99 – 7.89 (m, 3H).

¹³C NMR (75 MHz, DMSO, 25 °C, δ): 166.6, 146.3, 141.9, 132.5, 130.9, 128.9, 117.9, 61.7.

HRMS-EI- Ion trap (m/z) calc'd for C₁₀H₆N₂O₂I [M]⁺, 312.9483; found, 312.9480; deviation: −1.1 ppm.

Iodinated-ipriflavone (18)

Under an ambient atmosphere, a 4 mL borosilicate vial equipped with magnetic stir bar was charged with molecular iodine (76.0 mg, 0.300 mmol, 1.50 equiv), AgOTs (61.0 mg, 0.300 mmol, 1.50 equiv), ipriflavone (**S18**) (56.10 mg, 0.200 mmol, 1.00 equiv), and MeCN (1.0 mL, c = 0.20 M). The vial was capped, and the reaction mixture was stirred at 23 °C for 24 h. The reaction mixture was diluted with EtOAc (5 mL), and the resulting mixture was filtered through a short pad of silica gel using EtOAc (5 mL) as eluent. The filtrate was collected and concentrated by rotary evaporation. The residue was purified by column chromatography on silica gel eluting with a solvent mixture of ethyl acetate:pentane (40:60 (v:v)) to afford 72 mg of **18** as a colorless solid (89% yield).

 \mathbf{R}_{f} (ethyl acetate:pentane, 30:70 (v:v)) = 0.60.

NMR Spectroscopy:

¹**H NMR** (500 MHz, CDCl₃, 25 °C, δ): 8.26 (d, J = 8.9 Hz, 1H), 8.06 (s, 1H), 7.63 – 7.52 (m, 2H), 7.47 – 7.42 (m, 2H), 7.41 – 7.37 (m, 1H), 6.95 (d, J = 9.0 Hz, 1H), 4.79 (hept, J = 6.1 Hz, 1H), 1.47 (d, J = 6.1 Hz, 6H).

¹³**C NMR** (126 MHz, CDCl₃, 25 °C, δ): 175.7, 162.0, 157.0, 153.2, 131.8, 129.1, 128.5, 128.4, 128.2, 125.1, 119.38, 73.1, 22.2.

HRMS-ESIpos- Ion trap (m/z) calc'd for C₁₈H₁₆O₃INa⁺ [M+Na]⁺, 407.0138; found, 407.0139; deviation: 0.2

ppm.

Iodinated-coumarin1 (19)

Under an ambient atmosphere, a 4 mL borosilicate vial equipped with magnetic stir bar was charged with molecular iodine (51.0 mg, 0.200 mmol, 1.00 equiv), AgOMs (40.60 mg, 0.200 mmol, 1.00 equiv), coumarin1 (**S19**) (46.30 mg, 0.200 mmol, 1.00 equiv), K₂CO₃ (27.60 mg, 0.200 mmol, 1.00 equiv), and MeCN (1.0 mL, c = 0.20 M). The vial was capped, and the reaction mixture was stirred at 23 °C for 16 h. The reaction mixture was diluted with EtOAc (5 mL), and the resulting mixture was filtered through a short pad of silica gel using EtOAc (5 mL) as eluent. The filtrate was transferred to a separatory funnel and 1N HCl (5 mL) was added. The resulting mixture was extracted with EtOAc (3 × 15 mL). The combined organic layers were dried over MgSO₄, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel eluting with a solvent mixture of ethyl acetate:pentane (10:90 (v:v)) to afford 68 mg of **19** as a pale yellow solid (95% yield).

 \mathbf{R}_{f} (ethyl acetate:pentane, 20:80 (v:v)) = 0.43.

NMR Spectroscopy:

¹**H NMR** (500 MHz, CDCl₃, 25 °C, δ): 7.44 (d, J = 9.1 Hz, 1H), 6.56 (dd, J = 9.1, 2.6 Hz, 1H), 6.48 (d, J = 2.7 Hz, 1H), 3.41 (q, J = 7.1 Hz, 4H), 2.58 (s, 3H), 1.20 (t, J = 7.1 Hz, 6H).

¹³**C NMR** (126 MHz, CDCl₃, 25 °C, δ): 158.9, 156.8, 155.2, 150.9, 126.4, 108.9, 97.2, 83.8, 44.9, 25.0, 12.6.

HRMS-ESIpos- Ion trap (m/z) calc'd for C₁₄H₁₆NO₂INa⁺ [M+Na]⁺, 380.0118; found, 380.0115; deviation: 0.7 ppm.

Gram-scale synthesis: lodinated-coumarin1 (19)

Under an ambient atmosphere, a 50 mL round-bottom flask with a magnetic stir bar was charged with molecular iodine (1.09 g, 4.32 mmol, 1.00 equiv), AgOMs (0.880 g, 4.32 mmol, 1.00 equiv), coumarin1 (**S19**) (1.00 g, 4.32

mmol, 1.00 equiv), and K_2CO_3 (0.600 g, 4.32 mmol, 1.00 equiv), and MeCN (21.6 mL, c = 0.200 M). The round bottom flask was capped with a rubber septum, and the reaction mixture was stirred at 23° C for 24 h. The reaction mixture was diluted with EtOAc (20 mL), and the resulting mixture was filtered through a short pad of silica gel using EtOAc (20 mL) as eluent. The filtrate was transferred to a separatory funnel and 1N HCl (20 mL) was added. The layers were separated and the aqueous layer was extracted with EtOAc (3 × 30 mL). The combined organic layers were washed with brine (15 mL), dried over MgSO₄, and concentrated under reduced pressure to afford 1.4 g of **19** as a pale brown solid (90% yield).

 \mathbf{R}_{f} (ethyl acetate: pentane, 20:80 (v:v)) = 0.43.

NMR Spectroscopy:

¹**H NMR** (500 MHz, CDCl₃, 25 °C, δ): 7.44 (d, J = 9.1 Hz, 1H), 6.56 (dd, J = 9.1, 2.6 Hz, 1H), 6.48 (d, J = 2.7 Hz, 1H), 3.41 (q, J = 7.1 Hz, 4H), 2.58 (s, 3H), 1.20 (t, J = 7.1 Hz, 6H).

¹³**C NMR** (126 MHz, CDCl₃, 25 °C, δ): 158.9, 156.8, 155.2, 150.9, 126.4, 108.9, 97.2, 83.8, 44.9, 25.0, 12.6.

HRMS-EI- Ion trap (m/z) calc'd for C₁₄H₁₆NIO₂⁺ [M] ⁺, 357.0220; found, 357.0229; deviation: -2.5 ppm.

Iodinated-procymidone (20)

Under an ambient atmosphere, a 4 mL borosilicate vial equipped with magnetic stir bar was charged with molecular iodine (61.0 mg, 0.240 mmol, 1.20 equiv), AgOTf (62.0 mg, 0.240 mmol, 1.20 equiv), procymidone (**S20**) (57.80 mg, 0.200 mmol, 1.00 equiv), and DCM (1.0 mL, c = 0.20 M). The vial was capped, and the reaction mixture was stirred at 23 °C for 24 h. The reaction mixture was diluted with EtOAc (5 mL), and the resulting mixture was filtered through a short pad of silica gel using EtOAc (5 mL) as eluent. H₂O (10 mL) was added and the resulting mixture was transferred to a separation funnel. The layers were separated and the aqueous layer was extracted with EtOAc (3 × 15 mL). The combined organic layers were washed with brine (10 mL), dried over Na₂SO₄, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel eluting with a solvent mixture of ethyl acetate:pentane (10:90 (v:v)) to afford 51 mg of **20** as a colorless liquid (82% yield).

 \mathbf{R}_{f} (ethyl acetate:pentane, 10:90 (v:v)) = 0.41.

NMR Spectroscopy:

¹**H NMR** (500 MHz, CDCl₃, 25 °C, δ): 7.35 (s, 2H), 1.73 (d, *J* = 4.7 Hz, 1H), 1.49 (s, 6H), 1.20 (d, *J* = 4.7

Hz, 1H).

¹³**C NMR** (126 MHz, CDCl₃, 25 °C, δ): 175.7, 140.9, 133.3, 124.7, 103.1, 32.9, 30.3, 10.1.

HRMS-EI- Ion trap (m/z) calc'd for C₁₃H₀NCl₂ONal [M+Na]⁺, 431.9057; found, 431.9025; deviation: -0.3 ppm.

Iodinated-boscalid triflate salt (21)

Under an ambient atmosphere, a 4 mL borosilicate vial equipped with magnetic stir bar was charged with molecular iodine (61.0 mg, 0.240 mmol, 1.00 equiv), AgOTf (62.0 mg, 0.240 mmol, 1.20 equiv), boscalid (**S21**) (68.70 mg, 0.200 mmol, 1.00 equiv), and DCM (1.0 mL, c = 0.20 M). The vial was capped, and the reaction mixture was stirred at 23 °C for 24 h. The reaction mixture was diluted with EtOAc (5 mL), and the resulting mixture was filtered through a short pad of silica gel using EtOAc (5 mL) as eluent. The residue was purified by column chromatography on silica gel eluting with a solvent mixture of ethyl acetate:pentane (20:80 (v:v)) to afford 119 mg of **21** as a colorless triflate salt (96% yield).

 \mathbf{R}_{f} (ethyl acetate:pentane, 30:70 (v:v)) = 0.20.

NMR Spectroscopy:

¹**H NMR** (500 MHz, DMSO, 25 °C, δ): 10.17 (s, 1H), 8.47 (dd, *J* = 4.8, 1.9 Hz, 1H), 7.88 (dd, *J* = 7.6, 2.0 Hz, 1H), 7.81 (dd, *J* = 8.4, 2.1 Hz, 1H), 7.72 (d, *J* = 2.1 Hz, 1H), 7.53 – 7.42 (m, 6H).

¹⁹F NMR (471 MHz, DMSO, 25° C): -77.73.

¹³**C NMR** (151 MHz, DMSO, 25 °C, δ): 164.1, 150.4, 146.4, 138.4, 138.3, 137.9, 137.0, 136.2, 133.9, 132.8, 132.6, 130.7, 129.2, 128.4, 123.0, 120.7 (q, *J* = 322.3 Hz), 91.9.

HRMS-ESIpos- Ion trap (m/z) calc'd for C₁₈H₁₂N₂IO₁Cl₂Na⁺ [M+Na]⁺, 468.9366; found, 468.9367; deviation: –0.2 ppm.

lodinated-diclofenac (22)

22, 96%

Under an ambient atmosphere, a 4 mL borosilicate vial equipped with magnetic stir bar was charged with molecular iodine (66.0 mg, 0.260 mmol, 1.00 equiv), AgOTs (67.0 mg, 0.260 mmol, 1.00 equiv), diclofenac (**S22**) (59.0 mg, 0.200 mmol, 1.00 equiv), and CH₃CN (1.0 mL, c = 0.20 M). The vial was capped, and the reaction mixture was stirred at 23 °C for 24 h. The reaction mixture was diluted with EtOAc (10 mL), and the resulting mixture was filtered through a short pad of silica gel using EtOAc (10 mL) as eluent. The residue was purified by column chromatography on silica gel eluting with a solvent mixture of ethyl acetate:pentane (30:70 (v:v)) to afford 101 mg of **22** as a pale yellow solid (96% yield).

 \mathbf{R}_{f} (ethyl acetate:pentane, 40:60 (v:v)) = 0.56.

NMR Spectroscopy:

¹**H NMR** (300 MHz, DMSO, 25 °C, δ): 12.67 (s, 1H), 7.59 – 7.47 (m, 3H), 7.35 (dd, *J* = 8.5, 2.2 Hz, 1H), 7.29 (s, 1H), 7.22 (dd, *J* = 8.5, 7.7 Hz, 1H), 6.04 (d, *J* = 8.5 Hz, 1H), 3.69 (s, 2H).

¹³**C NMR** (75 MHz, DMSO, 25 °C, δ): 172.7, 142.9, 138.9, 136.4, 135.9, 131.0, 129.2, 126.4, 126.0, 117.5, 82.5, 36.8.

HRMS-ESIneg- Ion trap (m/z) calc'd for C₁₄H₉O₂Cl₂NI [M–H]⁻, 419.9065; found, 419.9060; deviation: -1.0 ppm.

Iodinated-napropamid (23)

Under an ambient atmosphere, a 4 mL borosilicate vial equipped with magnetic stir bar was charged with molecular iodine (51.0 mg, 0.200 mmol, 1.00 equiv), AgOTs (56.0 mg, 0.200 mmol, 1.00 equiv), napropamid (**S23**) (54.30 mg, 0.200 mmol, 1.00 equiv), K₂CO₃ (27.70 mg, 0.200 mmol, 1.00 equiv), and CH₃CN (1.0 mL, c = 0.20 M). The vial was capped, and the reaction mixture was stirred at 23 °C for 20 h. The reaction mixture was diluted with EtOAc (5 mL), and the resulting mixture was filtered through a short pad of silica gel using EtOAc (5 mL) as eluent. The filtrate was transferred to a separatory funnel and 1N HCl (5 mL) was added. The layers were separated and the aqueous layer was extracted with EtOAc (3 × 15 mL). The combined organic layers were washed with brine (10 mL), dried over MgSO₄, and concentrated under reduced pressure to afford 79 mg of **23** as a colorless solid (99% yield).

 \mathbf{R}_{f} (ethyl acetate:pentane, 40:60 (v:v)) = 0.35.

NMR Spectroscopy:

¹H NMR (500 MHz, CD₃CN, 25 °C, δ): 8.30 – 8.27 (m, 1H), 7.98 (dt, *J* = 8.6, 0.9 Hz, 1H), 7.94 (d, *J* = 8.2

Hz, 1H), 7.63 (ddd, J = 8.4, 6.8, 1.4 Hz, 1H), 7.56 (ddd, J = 8.2, 6.9, 1.2 Hz, 1H), 6.55 (d, J = 8.2 Hz, 1H), 5.19 (q, J = 6.5 Hz, 1H), 3.43 (qd, J = 7.2, 2.5 Hz, 2H), 3.32 (ddt, J = 16.8, 13.6, 6.7 Hz, 2H), 1.61 (d, J = 6.5 Hz, 3H), 1.11 (t, J = 7.1 Hz, 3H), 1.04 (t, J = 7.1 Hz, 3H).

¹³**C NMR** (126 MHz, CD₃CN, 25 °C, δ): 170.2, 155.3, 138.1, 135.6, 132.4, 129.4, 127.6, 127.3, 123.6, 108.7, 88.6, 73.2, 42.1, 40.9, 18.5, 14.6, 13.0.

HRMS-ESIpos- Ion trap (m/z) calc'd for C₁₇H₂₀NIO₂Na⁺ [M+Na]⁺, 420.0429; found, 420.0430; deviation: 0.4 ppm.

Iodinated-fenobirinacid (24)

Under an ambient atmosphere, a 4 mL borosilicate vial equipped with magnetic stir bar was charged with molecular iodine (51.0 mg, 0.200 mmol, 1.00 equiv), AgOTf (51.0 mg, 0.200 mmol, 1.00 equiv), fenobirinacid (**24**) (63.7 mg, 0.200 mmol, 1.00 equiv), and DCM (1.0 mL, c = 0.20 M). The vial was capped, and the reaction mixture was stirred at 23 °C for 24 h. The reaction mixture was diluted with EtOAc (5 mL), and the resulting mixture was filtered through a short pad of silica gel using EtOAc (5 mL) as eluent. H₂O (10 mL) was added and the resulting mixture was transferred to a separation funnel. The layers were separated and the aqueous layer was extracted with EtOAc (3 × 15 mL). The combined organic layers were washed with brine (10 mL), dried over Na₂SO₄, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel eluting with a solvent mixture of ethyl acetate:pentane (30:70 (v:v)) to afford 61 mg of **24** as a colorless solid (98% yield).

 \mathbf{R}_{f} (ethyl acetate:pentane, 40:60 (v:v)) = 0.54.

NMR Spectroscopy:

¹**H NMR** (500 MHz, CD₂Cl₂, 25 °C, δ): 8.25 (d, *J* = 2.1 Hz, 1H), 7.70 (d, *J* = 8.5 Hz, 3H), 7.49 (d, *J* = 8.5 Hz, 2H), 6.89 (d, *J* = 8.6 Hz, 1H), 1.76 (s, 6H).

¹³**C NMR** (126 MHz, CD₂Cl₂, 25 °C, δ): 193.1, 176.5, 158.4, 142.1, 139.14, 136.1, 133.1, 131.9, 131.6, 129.1, 116.5, 90.1, 81.7, 25.5.

HRMS-ESIpos- Ion trap (m/z) calc'd for C₁₇H₁₅O₄Cll⁺ [M+H]⁺, 444.9698; found, 444.9698; deviation: -0.1 ppm.

Iodinated-strychnine triflate salt (25)

Under an ambient atmosphere, a 4 mL borosilicate vial equipped with magnetic stir bar was charged with molecular iodine (61.0 mg, 0.240 mmol, 1.20 equiv), AgOTf (62.0 mg, 0.240 mmol, 1.20 equiv), strychnine (**S25**) (67.0 mg, 0.200 mmol, 1.00 equiv, and DCM (1.0 mL, c = 0.20 M). The vial was capped, and the reaction mixture was stirred at 23 °C for 24 h. The reaction mixture was diluted with EtOAc (5 mL), and the resulting mixture was filtered through a short pad of silica gel using EtOAc (5 mL) as eluent. The filtrate was collected and concentrated under reduced pressure. The product was dissolved in 5 mL DCM and precipitated with 10 mL Et₂O. The suspension was decanted, and the solid was dried in vacuo to afford 117 mg of **25** as an off-white solid (96% yield).

NMR Spectroscopy:

¹**H NMR** (600 MHz, DMSO, 25 °C, δ): 10.32 (t, J = 6.3 Hz, 1H), 7.85 (d, J = 1.8 Hz, 1H), 7.65 (dd, J = 8.4, 1.8 Hz, 1H), 6.33 (td, J = 6.6, 5.8, 3.3 Hz, 1H), 4.35 (dt, J = 8.3, 3.5 Hz, 1H), 4.08 (d, J = 10.9 Hz, 1H), 3.77 – 3.69 (m, 1H), 3.52 (d, J = 13.7 Hz, 1H), 3.32 (s, 1H), 3.14 (tt, J = 12.8, 6.3 Hz, 1H), 2.96 (dd, J = 17.1, 8.3 Hz, 1H), 2.65 – 2.59 (m, 1H), 2.48 (t, J = 4.2 Hz, 1H), 2.18 (dd, J = 13.1, 6.0 Hz, 1H), 1.95 (td, J = 13.2, 7.8 Hz, 1H), 1.63 (dt, J = 15.4, 2.2 Hz, 1H), 1.47 (dt, J = 10.9, 3.2 Hz, 1H).

¹⁹**F NMR** (471 MHz, DMSO, 25° C): –77.73.

¹³**C NMR** (151 MHz, DMSO, 25 °C, δ): 169.0, 141.7, 137.9, 134.9, 132.7, 132.5, 131.7, 120.7 (q, *J* = 322.3 Hz), 117.4, 87.3, 75.8, 63.1, 61.3, 58.8, 51.7, 51.2, 50.9, 45.9, 41.1, 40.2, 29.5, 24.3.

HRMS-ESIpos- Ion trap (m/z) calc'd for C₂₁H₂₂N₂IO₂⁺ [M+H]⁺, 461.0720; found, 461.0718; deviation: 0.5 ppm.

Formation of acetyl hypoiodite

AgOAc +
$$I_2$$

23 °C, CD₃CN I equiv. 1 equiv.

Under an ambient atmosphere, a 4 mL borosilicate vial equipped with magnetic stir bar was charged with molecular iodine (25.0 mg, 0.100 mmol, 1.00 equiv), AgOAc (16.7 mg, 0.100 mmol, 1.00 equiv), and CD₃CN (0.5 mL, c = 0.20 M). The vial was capped, and the reaction mixture was stirred at 23 °C for 10 minutes. The reaction mixture was then filtered through a short pad of silica gel using CD₃CN (0.5 mL) as eluent. The filtrate was collected directly in the NMR tube. A ¹H-NMR spectrum of the crude reaction mixture shows signal of IOAc, matches with the reported literature.²

Figure S1. ¹H NMR spectra of iodine in presence of AgOAc in CD₃CN.

Comparison to NIS method

In comparison to modern C–H iodination methods, that use NIS as an iodinating reagent; our method is applicable to a broader electronic scope of aromatic (hetero) arenes and avoids double iodination (Table S1).

Table S1. Comparison of hypoiodites method with NIS.

Electrochemical data

Cyclic Voltammograms

Cyclic voltammograms were recorded using an Autolab PGSTAT204 potentiostat and a Pt working electrode, a Ag/AgCl reference electrode and a Pt sheet auxiliary electrode. The voltammograms were recorded at a Ag/AgCl reference electrode and a Pt sheet auxiliary electrode. The voltammograms were recorded at room temperature in 0.1 M tetrabutylammonium hexafluorophosphate in MeCN (3 mL) containing Ag(I) salts and molecular iodine (I₂). AgI was filtered off before measuring the redox potentional of the corresponding hypoiodites. The scan rate was 100 mV s–1.

Figure S2. Cyclic voltammetry of hypoiodites in MeCN.

Note: CV of AgOTf and I_2 was measured in DCM.

Table S2. Value of E^{red} vs Ag/AgCl in MeCN.

Entry	Hypoiodites	E ^{red} (V vs Ag/AgCl)
1	AgOAc + I ₂	0.16
2	AgOMs + I ₂	0.23
3	AgOTs + I ₂	0.31
4	AgOTf + I ₂	0.36

Table S3. Modulation of sulfonyl based hypoiodites.

SPECTROSCOPIC DATA

¹H NMR of 2-lodo-tetrahydrobenzofuranone (2)

--- 6.82

CDCI3, 500 MHz, 25 °C

¹³C NMR of 2-lodo-tetrahydrobenzofuranone (2)

CDCl₃, 126 MHz, 23 °C

					· · · · ·	· · · · ·	· · · ·					· · · · ·	· · · ·		· · · ·							'		
30	220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-
												f1 (ppm)											

¹H NMR of lodinated-nimesulide (3)

¹³C NMR of lodinated-nimesulide (3)

(CD₃)₂SO, 126 MHz, 25 °C

¹H NMR of 4-lodoanisole (4)

-C

¹³C NMR of 4-lodoanisole (4)

CDCI₃, 126 MHz, 25 °C

OMe OMe	 138.33	— 116.50	82.82 77.16 CDCl3	55.45	
45:1					

	i i	

			- · ·		- · ·					1	· · · ·				- · ·							
10	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-:
f1 (ppm)																						

¹H NMR of 4-lodophenol (5)

CDCl₃, 500 MHz, 25 °C

¹³C NMR of 4-lodophenol (5)

CDCI₃, 126 MHz, 25 °C

¹H NMR of 4-lodoacetanilide (6)

9.5

.o

8.5

9.0

7.5

8.0

0.0 -0
¹³C NMR of 4-lodoacetanilide (6)

CDCl₃, 75 MHz, 25 °C

¹H NMR of 4-lodofluorobenzene (7)

CD₂Cl₂, 500 MHz, 25 °C

¹⁹F NMR of 4-lodofluorobenzene (7)

CDCl₃, 471 MHz, 25 °C

¹³C NMR of 4-lodofluorobenzene (7)

¹H NMR of 2-Acetyl-4-iodo-1-methylpyrrole (10)

CDCl₃, 500 MHz, 25 °C

¹³C NMR of 2-Acetyl-4-iodo-1-methylpyrrole (10)

CDCl₃, 126 MHz, 23 °C

							·												·				1	· · · ·
30	220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-3
											1	f1 (ppm)											

¹H NMR of 3-lodo-2,6-dimethoxypyridine (11)

CDCl₃, 500 MHz, 25 °C

MeO OMe

3.02 1.00-≖ 1.03-≖ 5.0 4.5 f1 (ppm) 4.0 3.5 2.0 8.0 7.0 6.5 4.5 3.0 2.5 0.5 .0).0 9.5 9.0 8.5 7.5 6.0 5.5 1.5 1.0 0.0

¹³C NMR of 3-lodo-2,6-dimethoxypyridine (11)

CDCl₃, 126 MHz, 23 °C

¹H NMR of 3-lodoazaindazole (12)

(CD₃)₂SO, 600 MHz, 25 °C

2.50 DMSO-d6

¹³C NMR of 3-lodoazaindazole (12)

(CD₃)₂SO, 151 MHz, 25 °C

	151.70 150.13	— 129.96	 		

¹H NMR of 4-lodopyrazole-3-carboxylate (13)

CD₃CN, 500 MHz, 25 °C

¹³C NMR of 4-lodopyrazole-3-carboxylate (13)

CD₃OD, 151 MHz, 25 °C

210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	
-10	200	100	100	1,0	100	100	1.0	100	100	110	100	50	00	, 0	00	50		50	20	10	
										13C (ppm)										

¹H NMR of 2-lodo-5-bromothiazole (14)

(CD₃)₂SO, 300 MHz, 25 °C

¹³C NMR of 2-lodo-5-bromothiazole (14)

¹H NMR of 6-Chloro-7-iododezapurine (15)

(CD₃)₂SO, 500 MHz, 25 °C

¹³C NMR of 6-Chloro-7-iododezapurine (15)

(CD₃)₂SO, 126 MHz, 25 °C

¹H NMR of 2-(5-lodothiophene)-benzothiazole (16)

--- 6.82

CDCl₃, 500 MHz, 25 °C

¹³C NMR of 2-(5-lodothiophene)-benzothiazole (16)

CDCI₃, 126 MHz, 25 °C

¹H NMR of 4-lodopyrazol-1-benzoic acid (17)

(CD₃)₂SO, 300 MHz, 25 °C

¹³C NMR of 4-lodopyrazol-1-benzoic acid (17)

(CD₃)₂SO, 75 MHz, 25 °C

¹H NMR of lodinated-ipriflavone (18)

CDCl₃, 500 MHz, 25 °C

¹³C NMR of lodinated-ipriflavone (18)

¹H NMR of lodinated-coumarin1 (19)

7.26 CDCl3

CDCl₃, 500 MHz, 25 °C

¹³C NMR of lodinated-coumarin1 (19)

¹H NMR of lodinated-procymidone (20)

CDCl₃, 500 MHz, 25 °C

¹³C NMR of lodinated-procymidone (20)

CDCI₃, 126 MHz, 25 °C

¹H NMR of lodinated-boscalid triflate salt (21)

(CD₃)₂SO, 500 MHz, 25 °C

¹³C NMR of lodinated-boscalid triflate salt (21)

	· · · · ·	· · · · ·				· · · ·		· · · · ·	· · ·	· · ·	· · ·	· · ·	· · · ·		· · ·	· · ·	· · · ·	
80	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	1
									13C (ppm	ı)								

¹⁹F NMR of lodinated-boscalid triflate salt (21)

(CD₃)₂SO, 471 MHz, 25 °C

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 f1 (ppm)

¹H NMR of lodinated-diclofenac (22)

(CD₃)₂SO, 300 MHz, 25 °C

¹³C NMR of lodinated-diclofenac (22)

(CD₃)₂SO, 75 MHz, 25 °C

¹H NMR of lodinated-napropamid (23)

CD₃CN, 500 MHz, 25 °C

¹³C NMR of lodinated-napropamid (23)

¹H NMR of lodinated-fenobirinacid (24)

CD₂Cl₂, 500 MHz, 25 °C

¹³C NMR of lodinated-fenobirinacid (24)

¹H NMR of lodinated-strychnine triflate salt (25)

(CD₃)₂SO, 600 MHz, 25 °C

¹³C NMR of lodinated-strychnine triflate salt (25)

(CD₃)₂SO, 151 MHz, 25 °C

¹⁹F NMR of lodinated-strychnine triflate salt (25)

(CD₃)₂SO, 471 MHz, 25 °C

.50 130 110 90 70 50 30 10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230 -2! 19F (ppm)

-77.73

REFERENCES

- Fulmer, G. R.; Miller, A. J. M.; Sherden, N. H.; Gottlieb, H. E.; Nudelman, A.; Stoltz, B. M.; Bercaw, J. E.; Goldberg, K. I. NMR Chemical Shifts of Trace Impurities: Common Laboratory Solvents, Organics, and Gases in Deuterated Solvents Relevant to the Organometallic Chemist. *Organometallics* **2010**, *29*, 2176–2179.
- Guzmán Santiago, Alexis J.; Brown, Caleb A.; Sommer, Roger D.; and Ison, Elon A. Identification of key functionalization species in the Cp*Ir(III)-catalyzed- ortho halogenation of benzamides. *Dalton Trans* 2020, 49, 16166– 16174.