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1 Kaplan–Meier plots of therapy-based and secondary

stratifications

1.1 Therapy-based stratification
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Figure 1: Stratification by therapy class (RAD, CHE, HOR) yes-no-yes.
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Figure 2: Stratification by therapy class (RAD, CHE, HOR) no-no-yes.
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Figure 3: Stratification by therapy class (RAD, CHE, HOR) no-no-no.
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Figure 4: Stratification by therapy class (RAD, CHE, HOR) yes-no-no.
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Figure 5: Stratification by therapy class (RAD, CHE, HOR) yes-yes-yes.
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1.2 Secondary stratifications

1.2.1 Intrinsic type
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Figure 6: Stratification by intrinsic type: basal.
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Figure 7: Stratification by intrinsic type: her2.
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Figure 8: Stratification by intrinsic type: claudin low.

0 50 100 150 200 250
timeline

0.0

0.2

0.4

0.6

0.8

1.0 low risk LumA
high risk LumA

high risk LumA   6
low risk LumA   35

5
30

3
24

3
10

1
8

0
2

0
0

LumA: log rank test p-value 0.11761574004280394

Figure 9: Stratification by intrinsic type: Luminal A.
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Figure 10: Stratification by intrinsic type: Luminal B.

8



1.2.2 Hormonal type
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Figure 11: Stratification by hormonal type: Her2+.
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Figure 12: Stratification by hormonal type: ER+/Her2-.
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Figure 13: Stratification by hormonal type: ER-/Her2-.
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1.2.3 Hormonal ER by IHC

0 25 50 75 100 125 150 175 200
timeline

0.0

0.2

0.4

0.6

0.8

1.0 low risk ER-neg
high risk ER-neg

high risk ER-neg   14
low risk ER-neg   7

9
7

4
6

2
5

1
5

1
4

1
4

1
3

0
1

0
0

ER-neg: log rank test p-value 0.015250543020271854

Figure 14: Stratification by IHC ER type: ER-.
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Figure 15: Stratification by IHC ER type: ER+.
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1.2.4 Lymph node status
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Figure 16: Stratification lymph node status: positive.
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Figure 17: Stratification lymph node status: negative.
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1.2.5 Tumor grade status
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Figure 18: Stratification tumor grade: 2
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Figure 19: Stratification tumor grade: 3
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1.2.6 Tumor stage status
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Figure 20: Stratification tumor stage: 1
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Figure 21: Stratification tumor stage: 2
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Figure 22: Stratification tumor stage: 3
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2 Overlap of our fingerprints with previously published

multi-gene fingerprints

A comparison of our gene panel and the known 33 multigene panels listed in [1] shows a
minimal overlap of our fingerprints with previously described fingerprints for breast cancer.
We have 1 overlap over 70 genes for Mammaprint fingerprint (Mamma), and 1 overlap for
the 16 genes in the Oncotype DX fingerprint (RS).

Therapy class gene Fingerprints
’YES’, ’NO’, ’YES’ G1 [’MBC’]

G2 [’p53’]
’NO’, ’NO’, ’YES’ G3 [’GGI97’, ’Pawitan’, ’Robust’]

G4 [’Novel2’]
G5 [’GGI97’, ’Wang’]

’NO’, ’NO’, ’NO’ G6 [’IGS’, ’MBC’]
G7 [’Olaf’]
G8 [’MBC’]
G9 [’Mamma’]

’YES’, ’NO’, ’NO’ G10 [’MBC’]
G11 [’HDPP’, ’PAM50’, ’RS’]

’YES’, ’YES’, ’NO’ - -
’YES’, ’YES’, ’YES’ - -
’NO’, ’YES’, ’NO’ G12 [’Chang’]

G13 [’LM’, ’MBC’]
’NO’, ’YES’, ’YES’ G14 [’Wang’]

G15 [’BCI’, ’GGI97’, ’PAM50’, ’Pawitan’, ’Robust’]

Table 1: Overlap of CVN-based fingerprints and published fingerprints. Fingerprints are
indicated with the label used in [1].Common genes are indicated as G1..G15.
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3 Features of independent cohorts

Many BC data set are available on the NCBI GEO repository. We have selected 4 data
sets using the following criteria. The data set should have a sufficient number of patients
(at least 30 patients overall). The data set should have survival data (preferably Overalls
survival) recorded explicitly for each patient. The data set should have an explicit adjuvant
therapy record for each patient, or the same treatment should be declared common to all
patients in the data set. We excluded data set for which the treatment record for each patient
could be inferred in principle from other records (e.g. hormonal status) but are not declared
explicitly. Data from TCGA (The Cancer Genome Atlas) is not used since the treatment
status is known only for few patients, and the TCGA (https://www.cancer.gov/about-n
ci/organization/ccg/research/structural-genomics/tcga) records do not follow the
same taxonomy of the Metabric records.
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4 Measures of performance

Evaluation of prediction performance. For a set of patients whose survival data is known,
and a prediction has been computed we have a confusion matrix with entries:

1. TP is the number of patients with actual short survival whose prediction is short
survival.

2. TN is the number of patients with actual long survival whose prediction is long survival.

3. FP is the number of patients with actual long survival whose prediction is short sur-
vival.

4. FN is the number of patients with actual short survival whose prediction is long sur-
vival.

5. NR is the number of patients for which the method does not produce a prediction (no
response).

Note that patients for which no prediction is given are not counted in any of the four
categories standard categories (TP, TN, FP, FN), thus the number of ”no response” (NR) is
a further performance parameter to be considered. For the total number of patients examined
TOT it hods:

TOT = NR + TP + TN + FP + FN

Slackness (s).

s =
NR

NR + TP + TN + FP + FN
=

NR

TOT

The following performance functions are considered:
(Relative) Accuracy (Acc)

Acc =
TP + TN

TP + TN + FP + FN

In situations where the number of patients is fixed and the number of ”no answers” is within
a small range, we can use also use directly the absolute accuracy (TP+TN) as a figure of
merit for ranking solutions.
Positive predictive value (PPV)

PPV =
TP

TP + FP

Negative predictive value (NPV)
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NPV =
TN

TN + FN

Sensitivity (Sen.)

Sen =
TP

TP + FN

Specificity (Spe.)

Spe =
TN

TN + FP

Odds ratio (OR):

OR =
TP · TN

max{1, FP} ·max{1, FN}

Note that this formulation is always well defined even when FP or FN is zero. For OR
we also report the 95% confidence interval and the corresponding Fisher’s exact test p-value.
Cohen’s Kappa (κ).

κ =
po − pe
1− pe

where po is the observed relative accuracy of the method, and pe is the expected relative
accuracy of a random predictor that uses the marginal probabilities. Specifically,

po =
TP + TN

TP + TN + FP + FN
= ACC

pe =
(TP + FN)(TP + FP ) + (TN + FN)(TN + FP )

(TP + TN + FP + FN)2

Note that the value is undefined when pe = 1, but this case can be attained only trivially when
the set of patients has only one class of survival. Cohen’s Kappa when positive measures the
gain in performance of the proposed classifier against the performance of a random classifier
using the marginal probabilities, as measured by its expected accuracy.
The AUC ROC (Area under the curve of the receiver characteristic curve) (https://it
.wikipedia.org/wiki/Receiver\ operating\ characteristic) measures the average
capability of a classifier to discriminate two populations by a scalar value. It can be computed
via equivalence to the Wilcoxon Mann Whitney test (https://en.wikipedia.org/wiki/
Mann\ Whitney\ U\ test).
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5 Method in detail: Construction of Coherent Voting

Networks

5.1 Definition of the problem, and objectives

We give her details of the methodology for building, training, and using a novel classifier
methodology, which we name ”Coherent Voting Networks”. For concreteness, we describe
the technique in the context of the prognostic problem for post-surgery breast cancer patients
although its description and scope can be cast in more generic terms.
Given a set of n patients P = {p1, ..pn}, and a set of k genes (mRNA) G = {g1, ...gk},
we have at our disposal gene expression measurements (typically via high throughput tran-
scriptomics) for each gene and in each patient organized as a n × k matrix M(P,G). For
simplicity, we assume a full matrix, however imputation of missing values in the matrix
is not needed, as missing entries are just missing edges in the graph representation of the
matrix. For each patient we have also the survival function S : P → {low-risk, high-risk}
where high-risk indicates survival below five years, and low-risk indicates survival above five
years. The classification problem we solve is as follows: use the matrix M and the survival
function S to train a classifier, so that for a new patient p′ for which gene expression levels
for a fingerprint G′ ⊂ G of the genes is known, we can infer the value of the survival function
S(p′) with high accuracy.
Our objective is to obtain simultaneously (a) a fingerprint G′ of small size, and (b) a good
performance of the classifier as measured in a train-validation-test evaluation pipeline. A
train-validation-test, although different from ours, is used as an evaluation protocol of the
Sage Bionetworks-DREAM Breast Cancer Prognosis Challenge (BCC) conducted between
July 2012 and December 2012.

5.2 Coherent voting networks

The new classification method relies on the hypothesis that the input data (P ,G,M ,S) admits
a combinatorial construction called a ”coherent voting network”, such construction is in gen-
eral not unique, thus among the possible constructions we will perform several optimizations
and filtering steps for attaining goals (a) and (b).
Definition of a voting network. A ”voting network” is composed of (I) a collection C of
subsets of P , C = {C1, ...Ch} where Ci ⊂ P for each i ∈ [1, h] and (II) a pair F = (F1, F2)
composed of a first level voting function F1 that maps any restriction of S to a value in
{low-risk, high-risk,⊥}, where ⊥ stands for an undefined label, and a secondary voting func-
tion F2, applied to the output of F1.
For a patient p ∈ P , let C(p) be the sub-collection of sets in C that contain p (i.e. C(p) =
{C ∈ C|p ∈ C}). Given p, for each set C ∈ C(p), the voting function F1 is evaluated on the
restriction of S on C \ {p} (we do not consider p in the input as a patient cannot vote for
herself).
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The prediction Pr(p) for p is obtained with the secondary voting function F2, applied to the
values of F1(C) for all C ∈ C(p).
The simplest implementation has both F1 and F2 as the majority function (returning ⊥ in
case of tie). However, more complex voting schemes will be discussed below.
The voting network (C, F ) is coherent for p if Pr(p) = S(p). We have a fully coherent voting
network when (C, F ) is coherent for each p ∈ P . We have a α-coherent voting network when
(C, F ) is coherent for at least a fraction α of the |P | patients.
The reason why this construction is of interest is that, since the vote for a patient p does
not depend on S(p), we can take Pr(p) as the prediction for p when S(p) is not know (or
not disclosed to the algorithm). A voting network that is coherent, for a high value of α, on
its labeled nodes has a good chance of being coherent also for its unlabeled nodes (there will
be only one unlabeled node only at any time).

5.3 Construction of a Voting network from the input matrix

The first task is to remove from the matrix M genes that do not have sufficient discrimi-
native power since for these genes random fluctuations and experimental noise (technical or
biological) cover the main signal we wish to exploit.
Initial statistical filter on the Gene set. For a gene gi in G consider the vector Vi(low-risk) of
entries of M(gi, p) when S(p) = low-risk, and Vi(high-risk) of entries of M(gi, p) when S(p) =
high-risk. We apply to Vi(high-risk) and Vi(low-risk) a combination of three elementary
statistical tests (t-test, Kolmogorov–Smirnov test, and Mann-Whitney U test), and a fold
change test, with given fold change and p-value thresholds. Genes passing the tests are
retained in the filtered set G′ ⊂ G and a reduced matrix M(P,G′) is obtained. This phase
requires the setting of a few parameters, including the type of test performed, the maximum
p-value for accepting the test, and the threshold for the accepted on the fold change. Here
techniques for Differential Gene Expression analysis could be used, such as ANOVA, or tools
like DSeq2 [2], edgeR [3]. However, this initial screening phase is in our intention quite light,
as subsequent phases should take care of further refining the gene set to attain the final
fingerprint.
Gene expression level quantization. Gene expression measurements have a large dynamic
range of values, and it is unlikely that two patients have the same expression level of a gene,
also due to measuring errors. To define a discrete structure, we quantize the dynamic range
of values of each gene into intervals and we replace each entry in M with the corresponding
interval. Intervals are induced by cut-points on the real line. We set a minimum and a
maximum number of cut points, and a minimum and maximum percentage of patients in
each partition induced by the cut-point. We recursively apply cut-point selection methods
derived from [4, 5] until the limit of cut points is reached, or some internal stopping criterion
is reached. This phase requires the setting of a few parameters, including the type of quan-
tization objective function, the minimum and thee maximum number of cut points selected,
and the minimum and maximum percentage of values in either interval generated by a split
point, and the number of significant digits to be considered in the gene expression measure-
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ments. Also, such quantization functions need to be able to handle patients for which the
survival function is undefined.
Patient-gene-interval bipartite graph. After the quantization phase, each entry of the matrix
M(P,G) is a pair (gene, interval on the real line). We thus build a bipartite graph in which
there is a first class of vertices VP , labeled with the patient’s id. The second class of vertices
is VG,I where we have a node labeled with a pair of identifier: the first identifier indicates a
gene in G, the second identifier is an interval I. We set an arc from node p ∈ VP to node
(g, i) ∈ VG,I if and only if M [p, g] = i. We call this bipartite graph BG(P,G, I).
Dense Community detection in bipartite graphs. Similarly to [6], we define a partial dense
cover of radius 2 for the bipartite graph G(V1, V2) = BG(P,G, I). A partial dense cover is
a collection of dense subgraphs of G with density above a threshold δ and with a number
of nodes of type 1 above a minimum threshold q1 and a number of nodes of type 2 above
a minimum threshold q2. We compute this dense cover using a variant of the Core & peel
algorithm in [6]. The Core & peel algorithm is described in [6] for a graph G, thus we adapt
it to handle properly bipartite graph B = (V1, V2, E ⊂ V1×V2), by changing accordingly the
notion of density, and imposing a that a set in the cover has a minimum number of nodes
in class V1 and a minimum number of nodes in class V2. In our application we will have
V1 = VP and V2 = VG,I in the bipartite graph BG(P,G, I) Note that each set of vertices
in the cover will have both patients and intervals-gene nodes. Let D = {D1, .., Dm} be this
dense cover. This phase requires the setting of the density threshold (as the percentage of
required edges over the maximum possible number of edges on a bipartite complete graph
with the same nodes. Typical values range from 0.6 to 0.9. as well as minimum thresholds
q1 and q2 (usually set to 3).
Determination of a voting network from the partial dense cover. We can obtain from D a
voting network by removing from eachDi ∈ D the non-patient nodes (equivalently, projecting
the sets in D on the patient component).

5.4 Sparsification of a partial dense cover

Community sparsification. Our objective in this phase of the algorithm is to obtain from
BG a bipartite graph BG′ for which we have partial dense cover D′ which is similar to D
for the patient component, but uses a much smaller set G′ of genes. Thus we obtain from D
a gene set system GSS by removing from each set in D the patient-nodes and removing the
interval component of the remaining nodes. Next we select a covering threshold c and apply
a greedy set multi-cover algorithm [7] to GSS, this algorithm will produce a set of genes G′

with the property that for each g ∈ GSS, either g ⊆ G′, or |g ∩ G′| ≥ c. Moreover, it has
been proved that the number of genes in |G′| is within a logarithmic factor of the smallest
subset of G with this property. This phase requires the setting of one main parameter that
is the covering number c, typically will be a small number chosen between 3 and 7.
Reduced Patient-gene expression interval bipartite graph. We now compute a reduced bi-
partite graph BG(P,G′, I) using the previously described procedure on the reduced set G′,
and we re-apply the community detection procedure to obtain the dense cover D′ and the
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corresponding voting network. We then test the coherence of the voting network to assess
its property of being a α-coherent voting network (for one of the voting functions). If this is
verified this voting network can be used for classification purposes.
How to turn a α-coherent voting network into a classifier. Intuitively, we assume that the
algorithm A that produces (C, F ) starting from (P ,G,M ,S) and a fixed vector of parameters
is sufficiently stable under small perturbations of the input. We apply the same construction
to (P ∪ {p}, G′, M(P ∪ {p}, G′), S ∪ {p → ⊥}). When we control the coherence of the
resulting output (C ′, F ), the level of coherence α’ can be computed for all patients in P . We
check that α′ ≈ α to accept Pr(p) as the prediction for the new patient p, based on the
coherence of the network on the primitive set of patients.

6 Extending the repertoire of voting schemes

The primary voting function F1 is chosen among one of the following standard voting func-
tions:

a) ”unanimity”: the voting function returns label X ∈ {low-risk, high-risk} if there is at
least one patient with label X and all patient for which the label is not undefined have
the same label X.

b) ”qualified majority at threshold t:

c) ”simple majority”: the voting function returns label X ∈ {low-risk, high-risk} if there
is at least one patient with label X and the number of patients with the same label X
is larger than for the number of patients with any other defined label.

d) ”more than expected”: the voting function returns label X ∈ {low-risk, high-risk} if
the number of patients with label X is larger than the expected number of patients
with label X in a random sample of patients from P , of the same size, with p-value
p ≤ 0.05. This voting function is important when the Training data has unbalanced
classes.

e) given the survival function S : P ′ → {low-risk, high-risk} we compute a weighting
function on the elements of {low-risk, high-risk} by counting the number of patients
with a given label. Formally the wight of label X is |{p ∈ P ′|S(p) = X}|

The secondary voting function F2 is chosen among:

f) ”simple majority”, when the primary voting function is one of a), b), c), d).

g) ”weighted majority”: when the primary voting function is e), we sum the weights for
each label, and return the label with the highest cumulative weight.
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h) ”unanimity plus weighted majority”: We apply the simple majority on the primary
vote done with the ”unanimity” function, if the result is defined we return it, otherwise
we apply the ”weighted majority” and we return this value.

This phase requires the setting of one main parameter that is the voting policy.

7 Method in detail: Training and optimization of Co-

herent Voting Networks

Train-validation-test evaluation pipeline. The cohort METABTRIC of roughly 2000 patients
is split randomly into three sets with proportions (1/2, 1/4, 1/4): training set (roughly 1000
patients), validating set (roughly 500 patients, and testing set (roughly 500 patients). We
remove patients for which the survival class cannot be determined. We further stratify
each set of patients by the available therapy information. The adjuvant therapy informa-
tion is whether the patient has received endocrine therapy (YES/NO), radiation therapy
(YES/NO), or chemotherapy (YES/NO). This stratification produces eight subclasses of
patients. In each subclass of patients, we check the ratio of the size of the two survival
classes {high-risk, low-risk}. When the ratio of the largest to the smallest class was greater
than 2.5, we use the equalized version of the data.
The train-validation pipeline is applied for each class separately on the corresponding three
sets of patients. Let us denote the tree sets of patients for a class as Train, V al, and Test.
We aim at finding a small fingerprint, optimizing the CVN hyperparameters, and evaluating
the performance of the chosen classifier. A configuration C is a pair (G′, Par) where G′ is a
set of genes (as obtained by the sparsification procedure) and Par is a vector of parameters
that are given as part of the input to the several phases of the algorithm. Each field of Par
takes values in a domain of small discrete size. The vector space of all possible parameters
is denoted by PAR.
Generation of fingerprints. For a given fixed vector of parameters Par ∈ PAR, we obtain
from the input (Train, G, M(Train,G), S(Train) a voting network and a panel of genes
G′ after sparsification. Repeating this operation for all the vectors of parameters in vector
space of parameters (PAR) we obtain a pool of candidate gene panels G′ (and corresponding
vector of parameters and voting networks).
Post-training selection of fingerprints. We aim at reducing the number of candidate gene
panels by retaining only a few high-quality candidate gene panels. We discard a candidate
panel G′ if it is too large (we apply a cutoff value of 20 genes). We discard a candidate
panel G′ if the quality parameter (α) is below a factor 0.85 of the top value for α among
all the generated voting networks. We sort the so filtered fingerprints by their value of α
for the associated voting network and we take at most the top ranking 30 fingerprints, after
removing eventual duplicate candidate panels.
Validation and Testing. In this phase, we aim at finding a configuration (fingerprint and
parameters) the balances the performance on the LOOCV (leave-one-out-cross-validation)
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measures for the Train set, on the train-test evaluations of the Validation data, and on the
train-test evaluations of the Test data, with minimal usage of Test data (as quantified by
the lookahead number).
A straightforward sorting by just one of the quality measure does not give the desired
outcome, therefore we use a more complex schema that uses in intermediate steps Pareto
frontiers https://en.wikipedia.org/wiki/Multi-objective\ optimization and Pareto
stratifications of the (multidimensional) performance data vectors, and lower bound filters
to discard outliers. For this part of the method by score we intend either the kappa statistic
or the OR statistic. A configuration is represented by a point in 3D space corresponding to
the coordinates (accuracy, score, antislack). Antislack is 1 minus the slack factor.

a) Automatic lower bound computations. Based on Validation data only we compute
Pareto strata (iterated the Pareto fronts) up to collecting at least 8 unique points we
compute for these points the minimum number of hits (accuracy) and the minimum
score, subject to slack below 0.2. These two values (accuracy and score) form the
filtering values and are computed on all the Validation data.

b) For each candidate fingerprint separately, we retain the points (accuracy, score, antis-
lack) on Validation data that satisfy the lower bounds, and we compute the principal
Pareto frontier of this subset of points.

c) We collect all such Pareto frontiers in a single set, removing duplicate points (i.e. if
two configurations correspond to the same point only one is retained).

d) This reduced set is then re-split into Pareto strata but the point associated with a
configuration is now based on the LOOCV of Train data of the corresponding config-
urations and each stratum is sorted by the LOOCV score value. In a variant of this
phase, the points may be constructed as coordinate-wise arithmetic mean (or geometric
mean) of the LOOCV of Train points, and the corresponding points for the Validation
data.

e) In the order of the strata and the internal order of each stratum, we check the stopping
criterion. The number of these checks is the lookahead number since the stopping
criterion involves both Validation and Test data.

f) We stop the lookahead procedure if the Test score value is larger than the Validation
score value, or if the Test score value is smaller but within a relative displacement of
less than 0.2 from the Validation score value.

8 Manual fingerprint and hyperparameter optimiza-

tion

For some of the therapy classes, the Validation and Testing method outlined above fails to
produce a significant result, either because the lower bounding procedure a) is too aggressive,

25



or the stopping criterion in f) does not succeed. For these cases, we resort to a manual
selection, by choosing via visual inspection a pool of high-performance configurations on the
Validation data. We then regularize this set of configurations by taking the Cartesian product
of the projections of the configurations on its components. This new set of configurations
is then checked on the Test data, and the best performing result on test data is reported.
Note that, in this case, the lookahead number is relatively large, in the order of a few tens.
However such manually selected fingerprints are of interest since they did perform well on
some of the independent sets in LOOCV tests.

9 Avoiding overfitting

When using minimization of cross-validation error to perform hyper-parameter optimization
(hypothesis selection), we may incur in a form of ”overfitting”. With a large number of
hypothesis and in the presence of noisy data, the minimum of cross-validation error may
be attained by fitting the noise in the data, rather than the underlying signal [8]. This
phenomenon is discussed by A. Y. Ng [8] who also proposes a principled way of choosing
an alternative (non-minimal) hypothesis from the cross-validation error data that has more
chances of a better generalization error. Here we do not implement the method by A. Y.
Ng, but we observe that in our specific problem a hypothesis that balances well the cross-
validation error and the generalization error is found very close to the top of the ranking we
build, so that it can be identified with just a few lookahead operations.
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10 Data, software, and tools used

The code is written in python 2.7. Kaplan–Meier plots and log-rank tests are produced with
the python package lifelines (lifelines.readthedocs.io/en/latest/). The ROC AUC and the
Odds ratio functions are computed with the python package scipy.stats (www.scipy.org/).
Autoweka code has been downloaded from github.com/automl/autoweka.
Data pre-processing and post-processing has been done on a Intel Core i7 (2.8 GHz) pro-
cessor with 6GB RAM and 240 GB HD with Windows 10 Pro (64 bits). Generation and
optimization of CVN have been run on Linux server with 8 Intel Xeon E5-4620 v2 @ 2.60GHz
(total 64 cores) and 500 Gb RAM with CentOS Linux 7 (Core).
Metabric BC data has been downloaded from cBioPortal (www.cbioportal.org). Data on in-
dependent cohorts has been downloaded from the NCBI-GEO portal (www.ncbi.nlm.nih.gov/geo/).
Input data files used in train-validate-testing are available at:
https://github.com/MarcoPellegriniCNR/Coherent-Voting-Network-for-BC-prognosis.
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