
REVIEWER COMMENTS 

Reviewer #1 (Remarks to the Author): 

Zhang et al present a new method where they use a deep neural network model to predict reading 

depth. The use an approach based on recurrent neural networks. The article is well written and 

does present an interesting contribution to the field of using ML in biological sequence context. I 

think it is suitable for publication in Nature Communications, as long as authors address the issues 

raised below: 

1) In my understanding, when the authors validated the model, they used all data in the cross-

validation, by using 95% for training and 5% for validation, is that correct? Ideally , they should 

leave out a fraction of the original data completely out of the model, not even use it in the cross-

validation, and then report the model performance already left out. Otherwise, I am concerned it 

might bias them for example in choosing the model hyperparameters to optimize for their dataset. 

I would be interested to see how the model performs on synthetic panel when only trained on the 

SNP panel (and vice versa). In a similar fashion, how does the model perform on predicting strand 

displacement kinetics if it is only trained on the NGS dataset, and how does it perform on the NGS 

dataset if it is only trained on the strand displacement kinetics? 

2) Following up on the comparison with strand displacement, the authors hypothesize the the 

physical effect that causes different NGS depths is the k_on of the probe hybridization. It would be 

helpful to explore in more detail this hypothesis. 

Authors have previously published a model (Predicting DNA hybridization kinetics from sequence, 

Zhang et al, Nat Chem 2017) where they used a weighted feature model to predict hybridization 

kinetics. How does the k_on prediction based on the weighted kinetics model correlate with the 

NGS depth prediction? And, how does the network trained on NGS perform on the hybridization 

dataset from the Nature Chem paper? Does its prediction correlated with k_on? 

3)In Figure 2d, there are couple of outliers that have much lower observed depth than predicted. 

Have the authors checked if these sequences have some particular features in common (GC 

content, length, etc?) 

4) What was the length distribution of the sequences used in this work? Does the model perform 

differently for short vs long sequences in terms of accuracy of prediction? 

Reviewer #2 (Remarks to the Author): 

Zhang et al have proposed a Deep Learning Model for Predicting NGS Sequencing Depth from DNA 

Sequence. NGS based assays are now widely used in genomics in both germline and somatic 

areas. Multiple clinical assays have been deployed by vendors. Laboratories have also developed 

their own lab developed assays (LDT) using tools available from vendors. Over the last 10 years, 

NGS has improved significantly but problems areas such as high GC, repeat regions and complex 

sequence region cannot be sequenced at a high depth. Sequence/ strand bias can also significantly 

impact the ability interpret data. The authors have developed a DLM which utilizes both the 

sequence and the target information to predict the sequencing depth from a DNA sequence. The 

data produced from the two datasets is encouraging but it is not clear if it will be useful for clinical 

laboratories as the issues specifically described here above have not been addressed. It is 

important to see specific examples of different pathogenic - simple and complex variants to 

demonstrate the effectiveness of the DLM prediction tool when designing NGS assays. Data 

presented is on SNP panels. Lastly, the application of DLM to AT rich non- coding regions will be 

useful for the reader as more and more intronic pathogenic variants are being identified by Whole 

Genome Sequencing and RNA sequencing. 

Reviewer #3 (Remarks to the Author): 



In this paper, Zhang et al. proposed a deep learning model for predicting NGS sequencing depth. 

This problem is very important as empirical optimization is time consuming. The writing of this 

paper should be improved. Most of the text in the results section should belong to methods 

section. 

Comments. 

1. Most of the text in the Design of the Deep Learning Model section should be put in the methods 

section. This paper right now has no methods section, which makes it very difficult to follow. 

2. Fig 2a and Fig 2b are not particularly interesting since they are common observations in most 

machine learning models. 

3. Fig 2b is mentioned after Fig 2e. Authors should reorder figure panels. 

4. No comparison approaches. The only comparison approach is an expert system based on 

weighted neighbor voting and the ablation studies in fig 5. However, since the proposed model is a 

deep learning model, it is important to compare it with other classic ML models. It is also 

important to know if any component of the proposed DL model is not helpful and can be excluded 

for simplicity. 

5. Potential overfitting of the deep learning model. Is it possible to perform cross-dataset 

validation? Train on NGS depth human and test on NGS depth synthetic? 

6. Running time of the proposed DL model is missing. Is the training/test time of such model time-

consuming?



Reviewer #1 (Remarks to the Author): 
 

Zhang et al present a new method where they use a deep neural network model to predict 

reading depth. The use an approach based on recurrent neural networks. The article is well 

written and does present an interesting contribution to the field of using ML in biological 

sequence context. I think it is suitable for publication in Nature Communications, as long as 

authors address the issues raised below: 

 

1) In my understanding, when the authors validated the model, they used all data in the cross-

validation, by using 95% for training and 5% for validation, is that correct? Ideally , they should 

leave out a fraction of the original data completely out of the model, not even use it in the cross-

validation, and then report the model performance already left out. Otherwise, I am concerned it 

might bias them for example in choosing the model hyperparameters to optimize for their 

dataset. 

Yes, this is correct. We did 20-fold cross validation and in each fold 95% of the entire dataset 

was used for training and 5% for validation. We thank the reviewer for their recommendation to 

use an independent test set. To address this, we have designed and experimentally tested a 

new panel using the same library preparation method as the SNP panel. We first trained the 

model on the SNP dataset and then used it to predict the read depth of the new panel. The 

model predicted read depth to within a factor of 3 with 89% accuracy on the new panel (Fig. 2d). 

Therefore, we believe that the model is generalizable to completely new datasets.  

We have updated the main text as follows (starting at page 5 bottom right):  

“To validate our DLM in the practical scenario of optimizing new panels with a model trained on existing 

panels, we designed and tested the lncRNA panel comprising 2,000 DNA probes synthesized by Twist 

Biosciences. The lncRNA panel has the same library preparation method (experimental workflow, probe 

length, hybridization temperature, sample type, etc.) as the SNP panel, but differs in probe sequences, 

experimental operator, donor of DNA sample, sequencing instrument and batch of reagents. Fig. 2d 

shows the predictions of lncRNA panel produced by a DLM trained on SNP panel with early-stop at epoch 

250. Read depth of the lncRNA panel is scaled so that the average read depth is the same as the SNP 

panel. Despite the RMSE, F2err and F3err of lncRNA panel being slightly worse than the SNP panel 

(0.326 vs. 0.301, 30.4% vs. 20.9% and 11.04% vs. 7.31%), the performance decrease may be attributed 

to experimental variations that are not related to the library preparation method. It is important to point out 

that the DLM was trained on read depth measured with only one NGS library of SNP panel, which greatly 

reduced the cost of training such a model. The results from lncRNA panel indicate that the DLM is 

capable of generalizing different panels with the same library preparation method while being robust 

against experimental variations.” 

 

I would be interested to see how the model performs on synthetic panel when only trained on 

the SNP panel (and vice versa).  

We have performed this analysis as recommended by the reviewer and the results can be 

found in Supplementary Section S3 (starting at page 35 bottom). In short, we saw a weak 

correlation between the predicted and observed read depth when the model was trained on 

either the SNP panel or the synthetic panel and tested on the other one. The correlation was 

higher when the model was trained on the SNP panel and tested on the lncRNA panel since 



these two panels used the same library preparation method. Below is the quoted text from the 

supplementary:  

“Note that if a probe P is fed to a DLM trained on a NGS panel A, the prediction is the expected read 

depth of probe P in the context of panel A, which does not have to correlate with the observed read depth 

of probe P in panel B. Such correlation depends on the library preparation methods of panel A and B. For 

the DLM trained on the SNP panel, the Pearson correlation coefficient between the predicted and 

observed log10(NormDepth) of the lncRNA panel is 0.728, while the Pearson correlation coefficient of the 

synthetic panel is only 0.319. This is because the SNP panel and the lncRNA panel use the same library 

preparation method. We noticed that the predicted read depth of probes in the synthetic panel is above 

average (zero log10(NormDepth) correspond to average read depth), which might be because those 

probes are specially designed to have high hybridization yield instead of chosen from human genome.” 

 

In a similar fashion, how does the model perform on predicting strand displacement kinetics if it 

is only trained on the NGS dataset, and how does it perform on the NGS dataset if it is only 

trained on the strand displacement kinetics? 

To address these questions, we have compared the predicted read depth and the observed 

rate constant for the strand displacement dataset, using models trained on the two NGS panels. 

We have also compared the predicted strand displacement rate constant and the observed read 

depth of the two NGS panels, using the model trained simultaneously on both the hybridization 

and strand displacement datasets. However, we did not see a significant correlation in either 

case.  

The results can be found in Supplementary Section S3 (starting at page 35 bottom), which we 

have updated with the following text:  

“Although the true values of hybridization rate constants for our NGS probes are not known, we could 

predict the rate constants of those probes with the DLM trained simultaneously on our hybridization (HYB) 

and strand displacement (DSP) dataset. On the contrary, we could predict the read depth of the probes in 

the HYB or DSP dataset with a DLM trained on one of the NGS dataset. However, we did not see a 

significant correlation in either case. There should be two possible explanations, 1) the wide difference of 

probe length between NGS panels and kinetics experiments makes the predictions of the hybridization 

rate constant of NGS probes inaccurate, 2) there is only a weak correlation between the NGS read depth 

and the hybridization rate constant of a certain probe. Note that the features of the DSP dataset are 

calculated not only based on the sequences of the probes, but also the sequences of the protectors that 

greatly reduce open base probabilities, resulting in low predicted read depth of the DSP dataset.” 

 

2) Following up on the comparison with strand displacement, the authors hypothesize the the 

physical effect that causes different NGS depths is the k_on of the probe hybridization. It would 

be helpful to explore in more detail this hypothesis. 

To address this comment, we have predicted the k_on of the probes in both NGS panels 

using the model trained simultaneously on both the hybridization and strand displacement 

datasets and we did not see a correlation between the predicted k_on and the observed read 

depth. A possible explanation is that the wide difference in probe length between the kinetics 

dataset (36nt) and the two NGS datasets (80nt and 110nt) makes the predicted k_on 

inaccurate.  

The results can also be found in Supplementary Section S3 (starting at page 35 bottom).   

 



Authors have previously published a model (Predicting DNA hybridization kinetics from 

sequence, Zhang et al, Nat Chem 2017) where they used a weighted feature model to predict 

hybridization kinetics. How does the k_on prediction based on the weighted kinetics model 

correlate with the NGS depth prediction?  

And, how does the network trained on NGS perform on the hybridization dataset from the 

Nature Chem paper? Does its prediction correlated with k_on? 

We mentioned in the main text that the experimental hybridization rate constants used in this 

paper are taken from the previous Nat Chem 2017 paper (page 7 middle left). Fig. 4e shows 

that the predictions of the weighted neighbor model and the DLM are very similar, so we did not 

try the weighted neighbor model on the NGS datasets. We did use the models trained on the 

NGS datasets to predict the read depth of the probes in the hybridization dataset. However, we 

did not see a significant correlation.  

The results can also be found in Supplementary Section S3 (starting at page 35 bottom).  

 

3)In Figure 2d, there are couple of outliers that have much lower observed depth than predicted. 

Have the authors checked if these sequences have some particular features in common (GC 

content, length, etc?) 

Following the reviewer's suggestion, we observed that the outliers with low observed read 

depth tend to have lower GC content, which directly correlates with hybridization energy. The 

possible reason why the read depth is overestimated can be found in the main text (starting at 

page 4 bottom right): 

“From this figure, we see that a significant contributor to our DLM’s RMSE is a subset of DNA 

sequences that are observed to have very low log10(Depth) (e.g., 0.3, corresponding to a depth of 2), but 

predicted to have log10(Depth) between 1 and 3.3. Further investigating the probe sequences, we found 

that most of the probes have low G/C content. Our interpretation of this phenomenon is that probes with 

lower expected read depth (e.g. probes with low G/C content) are more sensitive to random fluctuations 

(probe synthesis yield, hybridization yield, binding to plasticware, bridge PCR efficiency during Illumina 

NGS, etc.), which would bias the observed log10(Depth). For example, suppose the expected read depth 

for a certain probe is 50 and the random fluctuation is ±45 with uniform distribution, then the observed 

depth ranges from 5 to 95 while the observed log10(Depth) ranges from 0.70 to 1.98. Note that the 

expected log10(Depth) is 1.70; thus there is a higher probability of log10(Depth) being lower than 

expected than being higher than expected (1.70 - 0.7 < 1.98 - 1.70). If the DLM predicts the expected 

log10(Depth), then there would be more probes whose observed log10(Depth) is lower than the predicted 

log10(Depth). However, the DLM cannot explain those random fluctuations solely based on probe 

sequences.” 

 

4) What was the length distribution of the sequences used in this work? Does the model perform 

differently for short vs long sequences in terms of accuracy of prediction? 

    All the probes in the same NGS panel have the same length. Probe length of the SNP panel 

is 80nt (page 3 bottom right) and the synthetic panel is 110nt (page 6 bottom left). Probe length 

in the kinetics dataset is 36nt and the length of protectors varies (page 7 middle left).  We 

believe that a systematic training and assessment of the model for many different lengths is 

beyond the scope of this paper. 

 

 



Reviewer #2 (Remarks to the Author): 
 

Zhang et al have proposed a Deep Learning Model for Predicting NGS Sequencing Depth from 

DNA Sequence. NGS based assays are now widely used in genomics in both germline and 

somatic areas. Multiple clinical assays have been deployed by vendors. Laboratories have also 

developed their own lab developed assays (LDT) using tools available from vendors. Over the 

last 10 years, NGS has improved significantly but problems areas such as high GC, repeat 

regions and complex sequence region cannot be sequenced at a high depth. Sequence/ strand 

bias can also significantly impact the ability interpret data. The authors have developed a DLM 

which utilizes both the sequence and the target information to predict the sequencing depth 

from a DNA sequence. The data produced from the two datasets is encouraging but it is not 

clear if it will be useful for clinical laboratories as the issues specifically described here above 

have not been addressed. It is important to see specific examples of different pathogenic - 

simple and complex variants to demonstrate the effectiveness of the DLM prediction tool when 

designing NGS assays. Data presented is on SNP panels. Lastly, the application of DLM to AT 

rich non- coding regions will be useful for the reader as more and more intronic pathogenic 

variants are being identified by Whole Genome Sequencing and RNA sequencing. 

 

    To further show the applicability of our prediction algorithms, we have added new 

experimental NGS data on a human long non-coding RNA (lncRNA) panel.  Our lncRNA panel 

includes some probes with low AT fractions down to 20%, to address the reviewer's concern.  

The observed read depth, predicted read depth and GC content of the lncRNA probes can be 

found in the Excel file accompanying the manuscript. We have also updated the main text as 

follows (starting at page 5 bottom right):  

“To validate our DLM in the practical scenario of optimizing new panels with a model trained on existing 

panels, we designed and tested the lncRNA panel comprising 2,000 DNA probes synthesized by Twist 

Biosciences. The lncRNA panel has the same library preparation method (experimental workflow, probe 

length, hybridization temperature, sample type, etc.) as the SNP panel, but differs in probe sequences, 

experimental operator, donor of DNA sample, sequencing instrument and batch of reagents. Fig. 2d 

shows the predictions of lncRNA panel produced by a DLM trained on SNP panel with early-stop at epoch 

250. Read depth of the lncRNA panel is scaled so that the average read depth is the same as the SNP 

panel. Despite the RMSE, F2err and F3err of lncRNA panel being slightly worse than the SNP panel 

(0.326 vs. 0.301, 30.4% vs. 20.9% and 11.04% vs. 7.31%), the performance decrease may be attributed 

to experimental variations that are not related to the library preparation method. It is important to point out 

that the DLM was trained on read depth measured with only one NGS library of SNP panel, which greatly 

reduced the cost of training such a model. The results from lncRNA panel indicate that the DLM is 

capable of generalizing different panels with the same library preparation method while being robust 

against experimental variations.” 

    Complex variants such as microsatellites and telomeres are scientifically interesting but likely 

beyond the scope of an initial study on prediction of NGS depth from DNA sequence, partially 

because we currently lack even good experimental methods for accurately aligning/mapping 

these sequences.  As with all supervised machine learning approaches, we require high quality 

labeled data for training of the machine learning model. 

 

 



Reviewer #3 (Remarks to the Author): 
 

In this paper, Zhang et al. proposed a deep learning model for predicting NGS sequencing 

depth. This problem is very important as empirical optimization is time consuming. The writing of 

this paper should be improved. Most of the text in the results section should belong to methods 

section. 

 

Comments. 

1. Most of the text in the Design of the Deep Learning Model section should be put in the 

methods section. This paper right now has no methods section, which makes it very difficult to 

follow. 

    We created a new Methods section including the design of the DLM and the method of 

training and validation of the DLM.  

 

2. Fig 2a and Fig 2b are not particularly interesting since they are common observations in most 

machine learning models. 

    Fig. 2a would be helpful for readers not familiar with machine learning and the NGS data 

analysis pipeline, and Fig. 2b compares the GC content distribution of the NGS panels, which 

clarifies the differences between the three panels. To be on the safe side we have kept these 

figures in the main text, but we are happy to move them to the supplement if required.  

 

3. Fig 2b is mentioned after Fig 2e. Authors should reorder figure panels. 

    We moved Fig. 2b to the last.  

 

4. No comparison approaches. The only comparison approach is an expert system based on 

weighted neighbor voting and the ablation studies in fig 5. However, since the proposed model 

is a deep learning model, it is important to compare it with other classic ML models. It is also 

important to know if any component of the proposed DL model is not helpful and can be 

excluded for simplicity. 

We have compared the DLMs with a linear regression model and the results can be found in 

Fig. 2b and Supplementary Section S3 (page 35 top). The DLMs outperformed linear regression 

models in all cases.  

In the first submission, we have evaluated different features of the DLM by removing each 

single feature and compared the prediction accuracies (Fig. 5). We concluded that 3 of the 

global features can be removed with only a small decrease in accuracy.  

 

5. Potential overfitting of the deep learning model. Is it possible to perform cross-dataset 

validation? Train on NGS depth human and test on NGS depth synthetic? 

In the first submission, we applied early-stop based on the loss of validation set in each epoch 

(Fig. 3a) to prevent overfitting. We further validated the model by designing and experimentally 

testing a new human panel and predicted the read depth with the model trained on the SNP 

panel. The model predicted read depth to within a factor of 3 with 89% accuracy on the new 

panel. Therefore, we believe that we are not overfitting the model and it is generalizable to 



completely new datasets. For the new panel, we have updated the main text as follows (starting 

at page 5 bottom right):  

“To validate our DLM in the practical scenario of optimizing new panels with a model trained on existing 

panels, we designed and tested the lncRNA panel comprising 2,000 DNA probes synthesized by Twist 

Biosciences. The lncRNA panel has the same library preparation method (experimental workflow, probe 

length, hybridization temperature, sample type, etc.) as the SNP panel, but differs in probe sequences, 

experimental operator, donor of DNA sample, sequencing instrument and batch of reagents. Fig. 2d 

shows the predictions of lncRNA panel produced by a DLM trained on SNP panel with early-stop at epoch 

250. Read depth of the lncRNA panel is scaled so that the average read depth is the same as the SNP 

panel. Despite the RMSE, F2err and F3err of lncRNA panel being slightly worse than the SNP panel 

(0.326 vs. 0.301, 30.4% vs. 20.9% and 11.04% vs. 7.31%), the performance decrease may be attributed 

to experimental variations that are not related to the library preparation method. It is important to point out 

that the DLM was trained on read depth measured with only one NGS library of SNP panel, which greatly 

reduced the cost of training such a model. The results from lncRNA panel indicate that the DLM is 

capable of generalizing different panels with the same library preparation method while being robust 

against experimental variations.” 

We performed cross-dataset validation and the results can be found in Supplementary 

Section S3 (page 35 bottom):  

“Note that if a probe P is fed to a DLM trained on a NGS panel A, the prediction is the expected read 

depth of probe P in the context of panel A, which does not have to correlate with the observed read depth 

of probe P in panel B. Such correlation depends on the library preparation methods of panel A and B. For 

the DLM trained on the SNP panel, the Pearson correlation coefficient between the predicted and 

observed log10(NormDepth) of the lncRNA panel is 0.728, while the Pearson correlation coefficient of the 

synthetic panel is only 0.319. This is because the SNP panel and the lncRNA panel use the same library 

preparation method. We noticed that the predicted read depth of probes in the synthetic panel is above 

average (zero log10(NormDepth) correspond to average read depth), which might be because those 

probes are specially designed to have high hybridization yield instead of chosen from human genome.” 

 

6. Running time of the proposed DL model is missing. Is the training/test time of such model 

time-consuming? 

    For the SNP panel (38,040 probes), training stops at epoch 250 and the training time for each 

epoch is roughly 10 seconds while taking less than 3 gigabytes memory of a graphics 

processing unit (batch size of 999), and feature generation using Nupack takes about 0.5 

second per probe sequence on a conventional desktop computer. This is also mentioned at the 

end of Methods section (page 3).  



REVIEWER COMMENTS 

Reviewer #1 (Remarks to the Author): 

The authors have addressed my comments to a satisfactory degree. While I would have wished for 

them to more carefully explore the accuracy of their k_on prediction and the sensitivity of the model 

to the probe lengths, authors consider this to be beyond the scope of their paper, and I tend to 

agree. 

Reviewer #2 (Remarks to the Author): 

The revised manuscript has addressed the questions raised by reviewers in a step by step manner. 

The authors have also added more data to show the efficiency of their DLM model to predict NGS 

sequencing depth. Though some questions such as complex molecular events as mentioned by the 

authors are not within the scope of their manuscript. Taking that into consideration the current 

trend on of moving towards whole genome sequencing it will be useful for the reader to get side by 

side comparison of a 

1. Full exome modeled using the DLM to predict sequence depth 

2. or a chromosome with high GC rich sequences modeled 

3. Take a panel such as Autism which has a large number of genes and model it. 

This is necessary for several reasons- 

1. WGS affords more uniformity in sequencing at a lower depth than exome / panel sequencing . If 

the DLM can facilitate better prediction of the design it will be very useful for clinical labs 

2. Not all labs can switch to genome sequencing due to cost 

3. a small portion of the genome cannot be sequenced. 

Reviewer #3 (Remarks to the Author): 

The authors have addressed all of my questions. 



Reviewer #1 (Remarks to the Author): 
 

The authors have addressed my comments to a satisfactory degree. While I would have wished 

for them to more carefully explore the accuracy of their k_on prediction and the sensitivity of the 

model to the probe lengths, authors consider this to be beyond the scope of their paper, and I 

tend to agree. 

    We thank the reviewer for all the comments. We will further explore the relationship between 

reads depth, k_on and probe length in future studies.  

 

 

Reviewer #2 (Remarks to the Author): 
 

The revised manuscript has addressed the questions raised by reviewers in a step by step 

manner. The authors have also added more data to show the efficiency of their DLM model to 

predict NGS sequencing depth. Though some questions such as complex molecular events as 

mentioned by the authors are not within the scope of their manuscript. Taking that into 

consideration the current trend on of moving towards whole genome sequencing it will be useful 

for the reader to get side by side comparison of a 

1. Full exome modeled using the DLM to predict sequence depth 

2. or a chromosome with high GC rich sequences modeled 

3. Take a panel such as Autism which has a large number of genes and model it. 

 

This is necessary for several reasons- 

1. WGS affords more uniformity in sequencing at a lower depth than exome / panel 

sequencing . If the DLM can facilitate better prediction of the design it will be very useful for 

clinical labs 

2. Not all labs can switch to genome sequencing due to cost 

3. a small portion of the genome cannot be sequenced. 

 

    We thank the reviewer’s suggestion of applying the DLM to existing panels. Two commercial 

panels were modeled with the DLM trained on the SNP panel: xGen Exome Research Panel v2 

and xGen Acute Myeloid Leukemia Cancer Panel. The former covered human whole exome 

and the latter targeted more than 260 genes. We chose these two panels since they had public 

probe sequences and library preparation methods. The results can be found in Supplementary 

Section S3 (starting at page 36 bottom), which we have updated with the following text and 

figure: 

“We further applied the DLM trained on the SNP panel to two commercial NGS panels with public 

probe sequences: xGen Exome Research Panel v2 (Integrated DNA Technologies), abbreviated as the 

exome panel, and xGen Acute Myeloid Leukemia Cancer Panel (Integrated DNA Technologies), 

abbreviated as the AML panel. These two panels have the same library preparation method (120nt probe 

length and 65°C hybridization temperature) but different probe sequences: the exome panel has 415,115 

probes covering human whole exome and the AML panel has 11,731 probes targeting more than 260 

human genes. The prediction results are shown in Fig. S35. The exome panel and the AML panel have 

higher median predicted read depth than the SNP panel and the lncRNA panel, which might be attributed 



to longer probe length (120nt vs. 80nt). The synthetic panel has the highest median predicted read depth 

and the lowest variation since its probe sequences are artificially designed for hybridization.” 

 
 

 

Reviewer #3 (Remarks to the Author): 
 

The authors have addressed all of my questions. 

    We thank the reviewer for all the comments. 



REVIEWERS' COMMENTS 

Reviewer #2 (Remarks to the Author): 

The authors have addressed my comments. 



Reviewer #2 (Remarks to the Author): 
 

The authors have addressed my comments. 

    We thank the reviewer for all the comments. 


