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Abstract 16 

Background: Uncovering the genetic architecture of economic traits in pigs is important 17 

for agricultural breeding. Two difficulties limiting the genetic analysis of complex traits 18 

are the unavailability of high-density markers for large population in most agricultural 19 

species which are lack of good reference panel, and the association signals tend to be 20 

spread across most of the genome, i.e., the infinitesimal model of quantitative traits. 21 

Findings: Here, we discovered a Tn5-based highly accurate, cost- and time-efficient, 22 

low coverage sequencing (LCS) method to obtain whole genome markers and 23 

performed whole-genome sequencing on 2,869 Duroc boars at an average depth of 24 

0.73× to identify 11.3 M SNPs. Based on these SNPs, the genome-wide association 25 

study (GWAS) detected 14 quantitative trait loci (QTLs) in 7 of 21 important 26 

agricultural traits in pigs and provided a starting point for further investigation such as 27 

ABCD4 for total teat number and HMGA1 for back fat thickness. The inheritance 28 

models of different traits were found to vary greatly. Most obey the minor-polygene 29 

model but can be attributed to different reasons, such as the shaping of genetic 30 

architecture by artificial selection for this population and sufficiently interconnected 31 

minor gene regulatory networks. Conclusions: GWAS results for 21 important 32 

agricultural traits identified tens of important QTLs/genes and showed their various 33 

genetic architectures, providing promising guidance for genetic improvement 34 

harnessing genomic feature. The Tn5-based LCS method can be applied to large-scale 35 

genome studies for any species without good reference panel and widely used for 36 

agricultural breeding. 37 

 38 

KEYWORDS: Low coverage sequencing; GWAS; Genotyping; Pig; Genetic 39 

architecture; Agricultural traits 40 
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Introduction 42 

Genome-wide association studies (GWAS) have identified thousands of genetic 43 

variants associated with complex traits in humans and agricultural species [1, 2]. The 44 

mapping resolution lies on the density of genetic markers which perceive linkage 45 

disequilibrium (LD) in sufficiently large populations [3, 4]. Despite the declining cost 46 

of sequencing, it is still expensive for agricultural breeding studies to apply whole-47 

genome sequencing to all individuals in a large cohort (thousands of levels). In many 48 

scenarios, imputation-based strategies, which impute low-density panels to higher 49 

densities, offer an alternative to systematic genotyping or sequencing [5, 6]. To date, 50 

array-based genotype imputation has been widely used in agricultural species [7, 8]. 51 

The imputation accuracy of this strategy crucially depends on the reference panel sizes 52 

and genetic distances between the reference and target populations. However, the 53 

unavailability of large reference panels and array designs for target populations in 54 

agricultural species limits the improvement of array-based genotype imputation [9, 10]. 55 

Inaccurate imputations influence the results of follow-up population genetic analyses. 56 

In terms of recently developed methods, low-coverage sequencing (LCS) of a large 57 

cohort has been proposed to be more informative than sequencing fewer individuals at 58 

a higher coverage rate [11-13]. Sample sizes and haplotype diversity could be more 59 

critical than sequencing depth in determining the genotype accuracy of most 60 

segregating sites and increasing the power of association studies. Overall, LCS has been 61 

proven to have greater power for trait mapping compared to the array-based genotyping 62 

method in human studies [14]. To date, LCS-based genotype imputation has been 63 

employed in many studies using various populations and genotyping algorithms [15-64 

19]. In particular, the STITCH imputation algorithm overcomes the barrier of the lack 65 

of good reference panels in non-human species and is even applicable in studies with 66 

extremely low sequencing depths [15, 20]. This is a promising approach for agricultural 67 

animals without large reference panels and can be used in the areas of functional genetic 68 

mapping and genomic breeding. However, thus far, no reports on this field have been 69 

done. 70 
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Several large-scale whole-genome sequencing projects have been completed [21]. 71 

These projects were designed to identify the underlying mechanisms that drive 72 

hereditary diseases in human as well as for use in genomic selection in the breeding of 73 

agricultural species [22-24]. The infinitesimal model, which describe the inheritance 74 

patterns of human quantitative traits appears to be successful [25, 26]; however, it is 75 

unclear how many genes play important roles in driving different kinds of complex 76 

traits. In addition, artificial selection provides a driving force to make agricultural 77 

species evolve fast, which further brings about the fixation of selection regions and 78 

differentials in the inheritance model. This process might process a very different result 79 

for the same trait between studies due to different genetic backgrounds of the research 80 

population. Therefore, care should be taken when determining the GWAS result for a 81 

specific population. Such information which might be helpful for understanding the 82 

genetic mechanism for a complex trait and could be informative for further application 83 

of genomic selection in animal breeding. 84 

In this study, we developed a new highly accurate, cost- and time-efficient LCS 85 

method to obtain high-density SNP markers for a large Duroc population [27]. By 86 

assessing 21 important agricultural traits in commercial pig herds, we performed 87 

genome-wide association and fine-mapping analyses with high resolution and 88 

compared the results of the inheritance model in depth. We also proved that artificial 89 

selection plays a significant role in altering the genetic architecture of agricultural 90 

animals, especially for those loci that affect economic traits. The LCS strategy provides 91 

a powerful method for further agricultural breeding. 92 

Results 93 

Genome sequencing and data acquisition 94 

A Tn5-based protocol was used to prepare sequencing libraries of each pig at a low cost 95 

(reagent cost: $2.60 /library) as described in the Materials and Methods section. The 96 

libraries were sequenced on the Illumina (PE 150 model, 2 libraries) and the BGI 97 

platform (PE 100 model, 28 libraries) (Supplementary Table S1). The results generated 98 
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by the BGI platform had lower PCR duplicates (2.23%), higher good index reads 99 

(97.10%), and higher genome coverage (98.55%) than the Illumina dataset (10.82% 100 

PCR duplicates, 93.64% good index reads, and 98.50% genome coverage). Overall, the 101 

total output of the 2,869 boars approached 5.32 TB, and the majority (96.74%) of reads 102 

were successfully mapped to the pig reference genome Sscrofa11.1. Each animal was 103 

sequenced at an average of depth of 0.73±0.17×. Moreover, both high depth 104 

resequencing (average 15.15×/sample) and SNP Array (GeneSeek Genomic Profiler 105 

Porcine 80K SNP Array, GGP-80) genotyping were done on the selected Duroc core 106 

boars of this population, and the results were used for downstream accuracy evaluation. 107 

Processing pipeline of the low-coverage strategy and accuracy evaluation 108 

Traditional standard methods for SNP calling, such as those implemented in GATK and 109 

Samtools, were mainly used in high-depth resequencing methods. However, due to the 110 

low depth of each base, erroneous SNPs and genotypes could be called using such 111 

methods, especially for the GATK HaplotypeCaller algorithm (single sample local de 112 

novo assembly) [28]. In this study, we applied the BaseVar algorithm [29] to identify 113 

polymorphic sites and infer allele frequencies, and we used STITCH [15] to impute 114 

SNPs. We first used chromosome 18 (SSC18) to test the BaseVar-STITCH and GATK 115 

(UnifiedGenotypeCaller)-Beagle algorithms with genotypes from 1,985 pigs. The 37 116 

verified individuals were genotyped by GATK best practice using HaplotypeCaller for 117 

15.15× sequencing data (Fig. 1 and Supplementary Table S2). Correlations (R2) [30] 118 

between genotypes and imputed dosages and the genotypic concordance (GC) were 119 

calculated to evaluate the genotyping accuracy. The initial screening of SSC18 with 120 

BaseVar identified 506,452 and 414,160 bi-allelic candidate polymorphic sites before 121 

and after quality control, respectively. These sites were imputed using STITCH, and 122 

322,386 SNPs were retained with a high average call rate (98.89% ± 0.59%) after 123 

quality control (imputation info score > 0.4 and Hardy Weinberg Equilibrium P value > 124 

1e−6). The SNPs detected by BaseVar/STITCH were mostly included (99.32%) in the 125 

GATK-Beagle set, which included 570,919 sites and contained 320,199 SNPs 126 

overlapping with the BaseVar/STITCH dataset. As a result, a relatively high-quality 127 
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genotype set was acquired with less time consumption when K = 10 (the number of 128 

founders or ancestral haplotypes, Fig. S1). Fig. 2 shows that highly accurate genotypes 129 

were obtained using the BaseVar-STITCH pipeline (R2 = 0.919 and GC = 0.970) across 130 

all allele frequencies, which excelled far beyond the method using GATK-Beagle (R2 131 

= 0.484 and GC = 0.709). Moreover, we also compared BaseVar-STITCH results with 132 

the genotypes in GGP-80. The results showed even higher GC concordance and R2 133 

values (R2 = 0.997 and GC = 0.990) when all 2,797 samples were used, which further 134 

validated BaseVar-STITCH with a high level of confidence. Therefore, we conclude 135 

that the BaseVar-STITCH pipeline is a suitable variant discovery and imputation 136 

method for the LCS strategy (Fig. 1). 137 

Previous studies have demonstrated that sequencing a large number of samples at a 138 

low depth generally provides a better representation of population genetic variations 139 

compared to sequencing a limited number of individuals at a higher depth. Here, we 140 

examined the consequences of altering the sample size and sequence coverage in this 141 

population. For the 0.5× coverage using STITCH, a sample size above 500 had little 142 

impact on performance, while at an 0.1× down-sampled coverage, increasing the 143 

sample size to 1,985 led to a substantially improved performance (Fig. 2C and 2D). At 144 

0.2× for 1,000 individuals, it was noteworthy that the results were only marginally 145 

poorer (R2 = 0.908 and GC = 0.962) than using all sequencing data (Fig. 2C and 2D). 146 

In general, the total sequencing depth (population category) for one locus > 200× was 147 

shown to guarantee the credibility of genotyping within the scope of this study, although 148 

the results did consistently improve as the sequencing depth/sample size increased. 149 

Genetic architecture of the Duroc population 150 

After strict parameter filtering in the pipeline (BaseVar-STITCH, Fig. 1), we retained 151 

11,348,460 SNPs in all 2,797 Duroc pigs with high genotype accuracy, and the density 152 

corresponded to 1 SNP per 200 bp in the pig genome (Fig. 3A and Supplementary Table 153 

S3). Finally, the majority of identified SNPs were located in intergenic regions (51.98%) 154 

and intronic regions (36.85%). The exonic regions contained 1.37% of the SNPs, 155 

including 0.14% missense SNPs. Among the discovered SNPs, 1,524,015 (accounting 156 
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for 13.43% of all SNPs) were novel to the pig dbSNP database (data from NCBI: 157 

GCA_000003025.6 on June, 2017). Both novel and known variants were found to have 158 

very similar minor allele frequency distributions across the whole genome and the 159 

average minor allele frequency (MAF) was 0.225 (Fig. 3B). A principal component 160 

analysis (PCA) of all pigs showed that there was no distinct population stratification 161 

(Fig. 3C). The decay of LD with increasing distance was different among the 162 

chromosomes, of which the fastest and slowest decay rates occurred for SSC10 and 163 

SSC6, respectively. Average pairwise LD r2 values fell to 0.20 at 500 Kb and to 0.14 at 164 

1 Mb (Fig. 3D), providing an indication of the expected mapping resolution obtainable 165 

with this population. 166 

We further studied the high level of LD and found that it could be a consequence of 167 

long-term strong natural or artificial selection. Tajima’s D and diversity Pi was 168 

implemented to analyze selective sweep regions simultaneously and only windows with 169 

an interquartile range of Tajima’s D and diversity Pi of 1.5-fold in the whole genome 170 

were regarded as putative selection regions. In total, 24 putative fixed selective regions 171 

harboring 281 genes were obtained (Fig. S2). The regions displayed significant 172 

overrepresentation of genes involved in the sensory perception of smell (P = 6.41e-10) 173 

(Supplementary Table S4), reflecting the importance of smell when scavenging for food 174 

during long periods of environmental adaptation. This result is consistent with a 175 

previous study that reported that genes associated with olfaction exhibit fast evolution 176 

in pigs. We also observed a significant enrichment of genes involved in the neurological 177 

system process (P = 8.64e-5). These genes may be associated with behavior and 178 

increased tameness and thus were under selection during early domestication. In 179 

addition, the hair cycle process (P = 0.004) and bone mineralization (P = 0.040) were 180 

also detected to be significantly enriched, which may represent the phenotypic changes 181 

of coat and body composition during pig domestication. 182 

GWAS and identification of high-resolution mapping of QTLs 183 

The 21 associated phenotypes used in this study are shown in Table 1 and Fig. S3. We 184 

identified a subset of 258,662 SNPs that tagged all other SNPs with MAF >1% at LD 185 
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r2 <0.98 for the first-round of GWAS (Supplementary Table S3). Fine-mapping was 186 

performed within 10 Mb of the SNPs to reach 5% FDR significance threshold genome-187 

wide. Overall, we discovered a total of 14 non-overlapping QTLs for the seven traits at 188 

a significance threshold of 5% (Fig. 4, Table 1, Fig. S4, and Fig. S5). The widths of all 189 

QTL intervals ranged from ~66 Kb to ~3.9 Mb. The intervals of five QTLs were more 190 

than 2 Mb in width (Supplementary Table S5). These QTLs were strongly influenced 191 

by the local linkage disequilibrium level of this population.  192 

On average, each QTL covered 13 protein-coding genes (range of 0–48) with a 193 

median of eight genes. The distribution of the number of genes in a QTL is shown in 194 

Supplementary Table S5. We first focused on QTLs that could be narrowed, since these 195 

loci could provide a starting point for functional investigations. Of the 14 non-196 

overlapping loci identified in this study, seven QTLs could be further narrowed to a 197 

small number of genes (1 to 9 genes) (Fig. 5 and Fig. S6). Here, we highlight two 198 

important QTLs on SSC7.  199 

The QTL on SSC7 with a major effect on the total teat number (TTN) has been 200 

widely identified in several commercial breeding lines and hybrids. Our GWAS results 201 

show a strong QTL for TTN in the same region, explaining most of the phenotypic 202 

variance compared with other QTLs (Supplementary Table S5), reflecting the major 203 

effect of this locus. (Fig. 4). Fine-mapping discovered two narrow LD blocks 204 

(SSC7:97.56–97.65 Mb and 98.06–98.10 Mb) containing four candidate genes (ABCD4, 205 

VRTN, PROX2, and DLST) (Fig. 5 and Fig. S6). It is worth noting that four missense 206 

variants were discovered in PROX2, one of which was the vertebrate homolog of the 207 

Drosophila melanogaster homeodomain-containing protein Prospero, which may be 208 

involved in the determination of cell fate and the establishment of the body plan [31], 209 

and former studies reported that PROX2 could be the causal gene. Besides, although 210 

there is no direct evidence supporting the involvement of ABCD4 in the development 211 

process of the mammary gland, we noticed that the most significant locus 212 

(SSC7:97,581,669, P = 3.29e-22) was detected in the region of this gene, suggesting that 213 

ABCD4 may be the most likely causal gene. 214 
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For the carcass traits, we identified six QTLs (Table 1 and Supplementary Table 215 

S5), in which a common narrowed QTL region on SSC7 of 30.24–30.52 Mb was 216 

identified to be significantly associated with back fat thickness (BF) and loin muscle 217 

depth (LMD) (Fig. 5 and Fig. S6). Among the QTLs associated with BF and LMD, the 218 

narrowed QTL on SSC7 was found to make the greatest contribution to the heritability, 219 

so this would be the location of the major genes in the region (Table 1 and Fig. 5). In 220 

this region (Supplementary Table S5), HMGA1 is a promising candidate gene 221 

associated with growth, carcass, organ weights, and fat metabolism, as it has been 222 

reported to be involved in a variety of genetic pathways regulating cell growth and 223 

differentiation, glucose uptake, and white and brown adipogenesis [32-36]. 224 

Nudt3 belongs to the Nudix hydrolase family, which is involved in diverse metabolic 225 

processes, including the regulation of important signaling nucleotides and their 226 

metabolites. It is an obesity-linked gene that is associated with insulin signaling and 227 

may be another candidate causal gene of BF and LMD. Other genes, including 228 

PACSIN1 and SPDEF, have also been reported to be candidate genes with functions in 229 

glutathione metabolism, adipose and muscle tissue development, and lipid metabolism 230 

for LMD. 231 

Heritability and pattern of QTL effects 232 

To assess how much of the heritability can be explained by the detected QTLs, we 233 

estimated the effect size of the overall decreased proportion of heritability by using 234 

significant SNPs distributed in these QTLs as fixed effects. As reported in Table 1, we 235 

detected a larger number of contributions to heritability by major QTLs for the teat 236 

number (3.16~8.86), which indicates that the teat number is mainly controlled by a 237 

small number of loci. We also distributed the effects and significance (-Log10 P value) 238 

of SNPs for all 21 traits. Again, the result showed that TTN had the most discrete 239 

distribution (Fig. 6).  240 

We detected six non-overlapping major QTLs for BF, LMD, and LMP, and the 241 

proportion of explained variation by these QTLs reached 1.19–2.40% which is lower 242 

than that for the teat number. The results reveal that although major QTLs are associated 243 
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with carcass traits, the effect is relatively limited and there could be a larger number of 244 

minor gene effects. 245 

Few QTL were detected for other traits, and most of them could be attributed to the 246 

typically small effect sizes of individual mutations, thousands of which contribute to 247 

the total observed genetic variation for a typical complex trait (such as BH, body length 248 

(BL), and cannon bone (CC)). However, two types of interesting genetic architecture 249 

have caught our attention. In terms of the first one, previous studies reported that growth 250 

traits (such as the average daily gain 30-100 kg (ADG100) and age to 100 kg daily 251 

weight (AGE100)) all have medium or high heritability, and several QTLs have been 252 

detected. However, low heritability traits (ADG100:0.187, AGE100: 0.181) with no 253 

significant QTL were detected in this study. To account for this, we hypothesize that 254 

the major QTL effect may be obscured by rare mutations under strong artificial 255 

selection. We searched the candidate loci of growth traits in the pig QTL database 256 

(https://www.animalgenome.org/cgi-bin/QTLdb/SS/index) as well as corresponding 257 

previous reports and identified 51 sites associated with growth traits distributed on 18 258 

chromosomes with a low minor allele frequency (MAF < 0.05) in our population. 259 

Moreover, 151 previously-reported candidate sites were not identified as SNPs in this 260 

study (Supplementary Table S6). We checked the sequencing depths of these sites, all 261 

of which exceeded 2,100×, proving that these sites were completely fixed in our 262 

population with the same alleles as in the reference genome. This result reflects the 263 

long-term artificial selection history of this commercial Duroc population for growth 264 

traits and also explains the lost heritability and major QTLs. 265 

Second, for the feed intake traits (including average daily feed intake (ADFI), 266 

number of visits to feeder per day (NVD), time spent eating per day (TPD), time spent 267 

eating per visit (TPV), and feed intake per visit (FPV)), the heritability was at a medium 268 

or high level (Fig. 6) but we did not obtain any significant QTL (except one QTL for 269 

TPD). The results showed the distribution of SNP were scattered across the whole 270 

genome (Fig. S7) and the effects was more even (Fig. 6), suggesting that these traits are 271 

controlled by the regulatory effect of multiple minor genes and may have highly 272 
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complex interactions. In order to clarify the biological functions of these minor 273 

candidate genes, we combined related genes obtained from the top 100 loci from the 274 

GWAS of the six feed intake traits according to the GWAS analysis. The gene-set 275 

enrichment analysis based on the obtained 281 genes showed that neural development 276 

or neural activity related functions, such as astrocyte differentiation (P = 8.61e-5), 277 

cognition (P = 0.002), learning (P = 0.002), and glial cell differentiation (P = 0.003), 278 

were significantly enriched (Fig. S7 and Supplementary Table S7). The KEGG pathway 279 

analysis also showed there were significantly enriched nervous system processes (Fig. 280 

S8 and Supplementary Table S8), including the neurotrophin signaling pathway (P = 281 

0.015) and the GABAergic synapse (P = 0.021). This result shows that pig feeding 282 

behavior involves complex traits that are affected by the regulation of the nervous 283 

system, leading to the stimulation of appetite. 284 

Discussion 285 

To our knowledge, we have generated the largest WGS genotyping dataset for the 286 

Duroc population so far. It contains 11 million markers from 2,797 pigs. We expanded 287 

the candidate causal mutations for multiple pig traits and demonstrated the efficacy of 288 

genetic fine-mapping utilizing low-coverage sequencing in animal populations without 289 

reference panels. Further, we compared the heritability and inheritance model of each 290 

trait, providing a starting point for functional investigations. Our study indicates that 291 

the LC method could have widespread usage in high resolution genome-wide 292 

association studies for any genetic or breeding population or even for application in 293 

genomic prediction. 294 

This study identified an optimal design, taking into account the imputation 295 

algorithm, the number of samples, and the sequencing depth. The BaseVar-STITCH 296 

pipeline allows the GC to be higher than 0.96 when the sample size is 1000 at a 297 

sequencing depth of 0.2× (200× at the population level) without large reference panels. 298 

This GC value is significantly higher than that found in other studies with small sample 299 

sizes with a high sequencing depth or array-based genotype imputation. We also found 300 
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that the genotype accuracy is more sensitive to the sample size than the sequencing 301 

depth. In other words, the results demonstrated that low-coverage designs are more 302 

powerful than the deep sequencing of fewer individuals for animal sequencing studies, 303 

since a large sample size can cover all local haplotypes of the study population more 304 

effectively. This method has amazing accuracy, even in large-scale human studies with 305 

the most complex population structure [29], which further shows that a sufficient 306 

sample size will ensure that the method has a broad spectrum of applicability in all 307 

agricultural species or any breeding population. Therefore, using the low-coverage 308 

sequencing strategy, we were able to consider both the high-density SNP map and a 309 

large population. 310 

Increasing the marker density has been proposed to have the potential to improve 311 

the power of GWAS and the accuracy of genomic selection (GS) for quantitative traits 312 

[37]. First, the whole-genome low-coverage sequencing data gave the best accuracy for 313 

GWAS, since it can catch more recombinations than SNP chips or target sequencing 314 

methods such as genotyping by sequencing (GBS), and most causal or causal-linked 315 

mutations that underlie a trait are expected to be included. Second, lots of studies have 316 

reported the impact of whole genome sequence data on the accuracy of genomic 317 

predictions [37-39]; however, the conclusions have been quite divergent. The limited 318 

improvement of the genetic relationship matrices for WGS data compared with the SNP 319 

chip is the major reason for the lack of improvement in genomic prediction. In addition, 320 

most researchers may prefer to impute SNP chip genotypes using limited WGS data; 321 

however, some erroneous SNPs may be introduced and further adversely affect the 322 

performance of genomic prediction, since limited haplotype architecture would be 323 

obtained using small-scale WGS data. Our method improves the accuracy of imputation, 324 

especially in a large studies without a good reference panel and multibreed genomic 325 

predictions, which will make the application of genome selection wider. Third, 326 

significantly improved GS results have been observed when SNPs were preselected 327 

from the sequenced data using GWAS and a nonlinear genomic prediction method (e.g., 328 

Bayes model [40] or TABLUP [41]). Thus, we could select different useful tag-SNPs 329 
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for various traits with different genetic architectures using the high-density genetic map 330 

built by LCS data to optimize the genomic selection model in the future. Fourth, in 331 

practical application, the haplotype reference panel can accommodate new haplotypes 332 

due to recombination at any time, thus solving the issue of a decrease in prediction 333 

accuracy over generations. Our data can cover the sites of various SNP chips well 334 

because the genome coverage exceeds 98.36%, and it is competitive with arrays in 335 

terms of the cost and SNP density. Last, we applied GTX, which is an FPGA-based 336 

hardware accelerator platform [42], to do the alignments, and ~3,000 alignments were 337 

accomplished in two days. Then, the genotyping and imputation could be achieved on 338 

the cluster server or even a cloud server in a single day, thus resolving the accuracy and 339 

timeliness issue for genomic prediction. 340 

Previous studies demonstrated that pigs have differentiated into a variety of local 341 

populations due to environmental adaptation, and they were domesticated around 342 

~10,000 years ago. Since then, natural and artificial selection have both contributed to 343 

the further speciation of pigs [43, 44]. Recent swine breeding has prompted the 344 

accumulation of beneficial genetic variations at a more rapid rate, especially for some 345 

economic trait loci [45, 46]. The purebred Duroc population studied in this research 346 

was selected for meat production mainly due to its growth-related index. A large 347 

number of fixed loci have been found to be associated with ADG, AGE, and FCR, 348 

which reflects this selection process exactly. We also detected 24 putative fixed 349 

selective regions. For example, in these regions, MC5R was detected to be a possible 350 

candidate gene for fatness in pigs [47], major QTLs for pig growth and carcass traits 351 

were identified to be centered in the regions of OGN and ASPN [48], and AKIRIN1 was 352 

found to be involved in the regulation of muscle development by playing important 353 

roles in maintaining the muscle fiber type and regulating skeletal muscle metabolic 354 

activity [49]. CRTC3 encodes a member of the CRTC protein family and plays an 355 

important role in energy metabolism [50, 51]. It was found to be associated with lipid 356 

accumulation in pigs [51]. In addition, a series of genes enriched for sensory perception 357 

and neurological system processes were also detected in selective regions. It has been 358 
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widely reported that olfactory receptor genes may not only reflect adaptation to 359 

different environments [43] but also might have acted as a species barrier by affecting 360 

mate choice [52]. Several studies have reported an overrepresentation of genes with GO 361 

(gene ontology) terms related to neuronal development and neurological regulation [43, 362 

53], and this could be related to the complex genetic background of traits such as 363 

behavior and increased tameness. It should be noted that the results may be due to a 364 

mixture of natural and artificial selection causes. The complex genetic background and 365 

single population analyses may limit the precision of exploration of selection signatures 366 

exploration, so analyses of population genetics in multiple breeds in a large population 367 

and multi-omics may be needed. 368 

In this study, we detected 14 non-overlapping QTLs in 7 of 21 traits (Table 1 and 369 

Supplementary Table S5). There were big differences of loci and QTL effects among 370 

these traits, which may represent the inheritance models of different traits, including 371 

phenotypes that are mainly affected by several major genes (teat number) or multiple 372 

minor genes (such as carcass traits). Above all, seven non-overlapped QTLs with 373 

narrowed intervals were identified, which emphasizes the potential for identifying new 374 

mutations in QTLs using the low-coverage sequencing method. Some candidate genes 375 

may reside within these regions. For the teat number, we first focused on the QTL 376 

interval on SSC7 which explained most of the phenotypic variance. It should be noted 377 

that six missense SNPs were identified to be extremely significant (Supplementary 378 

Table S9). We estimated the effects of the variants and found one located in ABCD4 379 

had the most severe impact with the largest decrease of protein stability. Moreover, the 380 

most extremely significant locus was located in the intron region of ABCD4 (P = 3.29e-381 

22). We therefore suggest that ABCD4 is one of the most promising causal genes 382 

affecting the teat number in pigs. For the carcass traits (LMD and BF), several candidate 383 

genes were detected in the narrowed QTLs, especially for the QTL with major effects 384 

on SSC7, including Grm4, Hmga1, NUDT3, RPS10, PACSIN1, and SPDEF, which 385 

have also been widely identified. Moreover, there were three QTLs that had not been 386 

identified in previous studies as far as we know: those detected in TTN 387 
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(SSC1:34,657,653-36,881,340), LMP (SSC13:83,054,253-84,673,400), and TPD 388 

(SSC1:157,891,084-161,827,351). For TTN and LMP, the newly discovered QTLs 389 

explained the limited phenotypic variance, indicating the minor effects of these loci. 390 

For TPD, we noted that the same QTL was also identified in BF, which suggests that 391 

the intervals may contain genes that control appetite. Apart from the QTLs identified in 392 

high-resolution discussed above, we also detected several loci, though their intervals 393 

could not be narrowed further based on the LD information. Several candidate genes 394 

may affect the regulation or development process which may be worth researching 395 

further (detail in Supplementary Table S10). 396 

The GWAS results indicate that the Duroc population delivers fewer loci for fewer 397 

phenotypes. We conclude that the low yield of QTLs can be predominantly explained 398 

by the fixed QTLs for growth traits caused by artificial selection and the infinitesimal 399 

model for high heritability but the lack of major QTL traits. This result shows that the 400 

breeding of this commercial population has been successful, especially in terms of the 401 

improvement of growth traits. The next stage should focus on the use of genomic 402 

selection strategies for “infinitesimal traits” with high heritability but no major QTL, 403 

such as feeding behavior traits. We note that the feeding behavior traits had high or 404 

moderate heritability (Table 1) but a flat SNP distribution compared with TTN (Fig. 6), 405 

which [54] suggests that these traits may rely on a highly polygenic and complex 406 

genetic architecture. According to the GO and KEGG enrichment analyses, mostly 407 

neural activity process related functions or pathways were found to be enriched, 408 

especially the neurotrophin signaling pathway (P = 0.015) (Fig. S9). For example, NT3 409 

and TrkB were reported to be involved in the regulation of the nervous system, affecting 410 

the stimulation of appetite [54, 55]. In all, we compared the inheritance models of 21 411 

traits, and the results showed the difference between traits mainly affected by a limited 412 

number of loci and those affected by multiple loci with a small, widely distributed effect. 413 

Moreover, human selection could be a determining factor for the inheritance models of 414 

some specific traits in a specific population, making their genetic mechanism more 415 

complex. For further application of genomic selection, based on the QTL effect and the 416 
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inheritance model, a suitable prediction model should be designed for breeding to 417 

improve and optimize the accuracy of genomic prediction in animal breeding. 418 

Conclusions 419 

In conclusion, we discovered a Tn5-based, highly accurate, cost- and time-efficient 420 

LCS method to obtain whole genome SNP markers in a large Duroc population. We 421 

expect that our method could be applied to large-scale genome studies for any species 422 

without a good reference panel. GWAS results for 21 important agricultural traits 423 

identified tens of important QTLs/genes and showed their various genetic architectures, 424 

providing promising guidance for further genetic improvement harnessing genomic 425 

feature. 426 

Methods 427 

Animals, phenotyping, and DNA Extraction 428 

The Duroc boars used for this study were born from September 2011 to September 2013. 429 

All boars were managed on a single nucleus farm in a commercial company, which 430 

enduring strong artificial selection for many years. The associated phenotype data used 431 

in this study included back fat thickness at 100 kg (BF), loin muscle area at 100 kg 432 

(LMA), loin muscle depth at 100 kg (LMD), lean meat percentage at 100 kg (LMP), 433 

average daily gain (0-30 kg and 30-100 kg) (ADG30 and ADG100), age to 30 kg and 434 

100 kg daily weight (AGE30 and AGE100), body length (BL), body height (BH), 435 

circumference of cannon bone (CC), feed conversion ratio (FCR), average daily feed 436 

intake (ADFI), number of visits to feeder per day (NVD), time spent to eat per day 437 

(TPD), time spent to eat per visit (TPV), feed intake per visit (FPV), feed intake rate 438 

(FR), left teat number (LTN), right teat number (RTN), and total teat number (TTN). 439 

The phenotype TTN data were acquired from Tan’s study [27]. In detail, the number of 440 

left and right teats of each pig were recorded within 48 h after birth, and only normal 441 

teats were counted. The total teat number in this study was the sum of normal left and 442 

right teats. Body weights were recorded at birth and at the beginning (30 ± 5 Kg) and 443 
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the end (100 ± 5 Kg) of the experiment. The ADG was calculated as the total weight 444 

gain over this time, divided by the number of days. The ages at which the pig reached 445 

30 Kg and 100 Kg were recorded as AGE30 and AGE100 respectively. BF, LMD, LMA, 446 

and LMP were measured over the last three to four ribs using b-ultrasound-scan 447 

equipment when the weight of pigs reached 100 ± 5 Kg (Aloka SSD-500). Feeding 448 

behaviors including the time taken, duration, feed consumption, and weight of each pig 449 

were recorded at every visit by the Osborne FIRE Pig Performance Testing System 450 

(Kansas, American). The ADFI of each animal was obtained by dividing the total feed 451 

intake during the test by the number of days of the test period. The following feeding 452 

behavior and eating efficiency traits were defined and calculated for each boar: ADFI 453 

(Kg/day), TPD (min), NVD, TPV (= TPD/NVD, %), FPV (Kg), FR (= DFI/TPD, 454 

g/min), and FCR (=ADFI/ADG). The phenotypic values nearly all followed a normal 455 

distribution (Fig. S3).  456 

Genomic DNA was extracted from the ear tissue using a DNeasy Blood & Tissue 457 

Kit (Qiagen 69506), assessed using a NanoDrop, and checked in 1% agarose gel. All 458 

samples were quantified using a Qubit 2.0 Fluorometer and then diluted to 40 ng/ml in 459 

96-well plates. 460 

Tn5 Library generation and sequencing 461 

Equal amounts of Tn5ME-A/Tn5MErev and Tn5ME-B/Tn5MErev were incubated at 462 

72 ℃ for 2 minutes and then placed on ice immediately. Tn5 (Karolinska Institute, 463 

Sweden) was loaded with Tn5ME-A+rev and Tn5ME-B+rev in 2× Tn5 dialysis buffer 464 

at 25 ℃ for 2 h. All linker oligonucleotides were the same as in a previous report [56]. 465 

Tagmentation were carried out at 55 ℃ for 10 minutes by mixing 4 μl 5×TAPS-466 

MgCl2, 2 μl of dimethylformamide (DMF) (Sigma Aldrich), 1 μl of the Tn5 pre-diluted 467 

to 16.5 ng/μl, 50 ng of DNA, and nuclease-free water. The total volume of the reaction 468 

was 20 μl. Then, 3.5 μl of 0.2% SDS was added, and Tn5 was inactivated for another 469 

10 min at 55 ℃. 470 

KAPA HiFi HotStart ReadyMix (Roche) was used for PCR amplification. The 471 

primers were designed for MGI sequencers, with the reverse primers containing 96 472 
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different index adaptors to distinguish individual libraries. The PCR program was as 473 

follows: 9 min at 72 ℃, 30 sec at 98 ℃, and then 9 cycles of 30 sec at 98 ℃, 30 sec at 474 

63 ℃, followed by 3 min at 72 ℃. The products were quantified by Qubit Fluorometric 475 

Quantitation (Invitrogen) Then, the groups of 96 indexed samples were pooled with 476 

equal amounts. 477 

Size selection was performed using AMPure XP beads (Beckmann), with a left side 478 

size selection ratio of 0.55× and a right side size selection ratio of 0.1×. The final 479 

libraries were sequenced on 2 lanes of MGISEQ-2000 to generate 2×100 bp paired-end 480 

reads or on 1 lane of BGISEQ-500 to generate 2×100 bp paired-end reads. 481 

Genotype data obtained using high depth sequencing and SNP chip 482 

We sequenced 37 out of the total 2,869 pigs using the Hiseq X Ten system at a high 483 

depth of 15.15×. GTX by the Genetalks company, a commercially available FPGA-484 

based hardware accelerator platform, was used in this study for both mapping clean 485 

reads to the Sscrofa11.1 reference genome (ftp://ftp.ensembl.org/pub/release-486 

99/fasta/sus_scrofa/dna/) and variant calling. The alignment process was accelerated by 487 

FPGA implementation of a parallel seed-and-extend approach based on the Smith–488 

Waterman algorithm, while the variant calling process was accelerated by FPGA 489 

implementation of GATK HaplotypeCaller (PairHMM) [57]. GATK multi-sample best 490 

practice was used to call and genotype SNPs for the 37 pigs, and the SNPs were hard 491 

filtered with a relatively strict option “QD < 10.0 || ReadPosRankSum < -8.0 || FS > 492 

10.0 || MQ<40.0”. The average running time from a fastq file to a bam file was about 3 493 

min for each sample in this study. 494 

We also selected 42 individuals who were included in the LCS dataset and 495 

genotyped using the GeneSeek Genomic Profiler Porcine 80K SNP Array and obtained 496 

68,528 SNPs across the whole genome. The genotypes of the sex chromosomes were 497 

excluded from this study, and after quality control (genotype call rate > 0.95), 47,946 498 

SNPs remained. We retained 45,308 SNPs that overlapped with the LCS dataset to 499 

evaluate the genotypes from the LCS strategy. 500 
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Low coverage sequencing data analyses 501 

Sequencing reads from the low coverage samples were mapped to the Sscrofa11.1 502 

reference genome using GTX-align, which includes a step that involves marking PCR 503 

duplicates. The indel realignment and base quality recalibration modules in GATK 504 

were applied to realign the reads around indel candidate loci and to recalibrate the base 505 

quality. Variant calling was done using the BaseVar and hard filtered with EAF >= 0.01 506 

and a depth greater than or equal to 1.5 times the interquartile range. The detailed 507 

BaseVar algorithm that was used to call SNP variants and estimate allele frequency was 508 

described in a previous report [29]. We used STITCH [15] to impute genotype 509 

probabilities for all individuals. The key parameter K (number of ancestral haplotypes) 510 

was decided based on the tests in SSC18. Results were filtered with an imputation info 511 

score > 0.4 and a Hardy Weinberg Equilibrium (HWE) P value > 1e−6. After quality 512 

control, 2,797 individuals with genotype data were obtained. Two validation actions 513 

were taken to calculate the accuracy of imputation. The first parameter was genotypic 514 

concordance (GC), which was calculated as the number of correctly-imputed genotypes 515 

divided by the total number of sites. Another parameter was the allele dosage R2, which 516 

was described in a previous report [30]. The SNPEff program [58] was used to annotate 517 

the variants.  518 

Population genetics analysis 519 

A subset of 258,662 SNPs that tagged all other SNPs with MAF > 1% at LD r2 < 0.98 520 

and a call rate of >95% were retained for downstream analysis. PCA clustering analyses 521 

were performed with GCTA software [59]. The average heterozygosity rate and MAF 522 

were obtained using the vcftools program [60]. Tajima’s D [61] and diversity Pi was 523 

implemented to analyze selective sweep regions simultaneously with the window size 524 

set to 1 Mb, and only windows with an interquartile range for Tajima’D and diversity 525 

Pi of 1.5 fold in the whole genome were regarded as putative selection regions. Gene 526 

Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway 527 

enrichment analyses were performed using the OmicShare tools 528 

(http://www.omicshare.com/tools). 529 
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Genome-wide association and Heritability estimation 530 

A mixed linear model (MLM) approach was used for the genome-wide association 531 

analyses, as implemented in the GCTA package [59]. The statistical model included the 532 

year and month as discrete covariates. For BF, LMA, LMD, and LMP, the year and 533 

season were included as discrete covariates, and the weights at the beginning and end 534 

of the test were used as quantitative covariates. To correct for multiple testing across 535 

the genome, the FDR correction obtained using FDRtool R package [62] was applied 536 

to determine the genome-wide significance threshold (FDR < 0.05). The SNP effect 537 

was estimated using the GREML_CE program in the GVCBLUP package [63], where 538 

the result was absoluted and normalized. 539 

Heritability was estimated using a mixed model as follows: 540 

    y = Xbb + Za + e 541 

with Var(y) = ZAaZ’ơa
2 + Iơe

2, where Z is an incidence matrix allocating phenotypic 542 

observations to each animal; b is the vector of the fixed year-month effects for BF, 543 

LMA, LMD, and LMP that also includes the weights at the beginning and end of the 544 

test as covariance; Xb is the incidence matrix for b; a is the vector of additive values 545 

based on the genotype data; Aa is a genomic additive relationship matrix; ơa
2 is the 546 

additive variance; and ơe
2 is the residual variance. Variance components were estimated 547 

by genomic restricted maximum likelihood estimation (GREML) using the 548 

GREML_CE program in the GVCBLUP package. The additive heritability was defined 549 

as: ha
2 = ơa

2 /(ơa
2 + ơe

2). SNP effects were defined by the GREML_CE program and 550 

then normalized using R script. 551 

The heritability of the detected QTL was estimated as follows: 552 

y = X’bb’ + Za + e 553 

with Var(y) = ZAaZ’ơa
2 + Iơe

2, where Z is an incidence matrix allocating phenotypic 554 

observations to each animal; b’ is the vector of the fixed year-month effects and 555 

significant SNPs identified in the QTL region using GWAS analysis for BF, LMA, 556 

LMD and LMP; b also includes the weights at the beginning and end of the test as 557 

covariance; X’b is the incidence matrix for b; a is the vector of additive values based on 558 
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the genotype data; Aa is a genomic additive relationship matrix; ơa
2 is the additive 559 

variance; and ơe
2 is the residual variance. The QTL heritability was defined as hqtl

2
 = 560 

ha
2 - ơa

2 /(ơa
2 + ơe

2). 561 

Functional Consequence of the Missense Mutations associated with TN 562 

The effect of the missense SNPs associated with TN on the stability of pig ABCD4, 563 

PROX2, and DLST proteins was assessed using I-Mutant adaptation 2.0 [64]. A 564 

potential surge or reduction in the DDG was predicted, along with a reliability index 565 

(RI), where the lowest and highest reliability levels were 0 and 10, respectively. 566 

Data availability 567 

All of the sequencing raw data in this study have been deposited into NCBI with 568 

accession number PRJNA681437, and the variance data as VCF file will be available 569 

via GIGADB. 570 
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Figure legends 

 

Figure 1 The low coverage sequencing (LCS) study design  

The flow chart summarizes the steps used to identify and impute polymorphic sites, 

where the green block (left) represents the highly accurate pipeline used for the Tn5-

based LCS analysis (BaseVar-STITCH). We also generated SNP results using the 

GATK-Beagle pipeline (right) and compared them with those found with the BaseVar-

STITCH method. The data generated from the high-coverage sequencing analyses 

(middle) were used to assess the accuracy of the above results. The BaseVar-STITCH 

pipeline was used in the further GWAS presented in this study. 
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Figure 2 Performance of BaseVar-STITCH on different minor allele frequencies 

(MAFs) and sample sizes 

The validation dataset is the high coverage sequencing results of 37 individuals 

genotyped by GATK best practices (HaplotypeCaller model). (a) and (b) show a 

comparison of the dosage R2 and genotypic concordance values (%) between the 

BaseVar-STITCH for low-coverage sequencing (LCS) (blue) and the GATK-Beagle 

(orange) pipelines, and (c) and (d) show the comparison of the dosage R2 and genotypic 

concordance values (%) among different sequencing depths. 
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Figure 3 Genetic diversity of the Duroc population 

(a) The distribution of SNPs in 1 Mb windows across the genome. (b) Histogram of 

allele counts by each 1% MAF bin. Novel (red) and known SNP sets (blue) were 

defined by comparing them to the pig dbSNP database. (c) Principal component 1 and 

2 distribution in the Duroc population. (d) The extent of linkage disequilibrium (LD), 

in which the LD on chromosomes 6 (SSC6) and 10 (SSC10) represent the highest and 

lowest levels across the whole genome, respectively. 
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Figure 4 Summary Manhattan plot of seven phenotypes with significant SNPs  

Genome-wide representation of all quantitative trait loci (QTLs) identified in this study. 

Light and dark grey dots show associations from the seven measures where at least one 

QTL was detected at the tagging SNP positions (n = 258,662). The most significant 

SNP positions at each QTL are marked with a color dot. 



 

35 

 

 

Figure 5 Manhattan plots and fine-mapping of the total teat number (TTN) and 

back fat thickness (BF)  

(a) and (b) Depict the TTN and BF association signals on the whole genome. (c) Fine-

mapping of the TTN using the entire set of SNPs, in which two isolated regions on 

chromosome 7 with lengths of 113 and 66 Kb were detected as QTLs. (d) Fine-mapping 

of BF using the entire set of SNPs. A narrow QTL with a length of 280 Kb was detected 

on chromosome 7. The association genes within QTLs are displayed below. 



 

36 

 

 

Figure 6 Heritability and SNP significance and normalized effect of 21 traits  

The SNP effect was estimated and normalized and is displayed in the black boxplot. 

The gray boxplot represents the distribution of -log10 P values of all SNPs. Heritability 

estimates are represented by red dots, and black lines represent standard deviations. 

 



 

37 

 

Table 1. QTLs mapping and contribution to heritability 

Phenotype Number Mean ± standard deviation Significant 

thresholda 

QTL 

number 

Variance 

explained(%)b 

Gene numberc 

Total teat number (TTN) 2797 10.73 ± 1.07 4.55 6 8.86 52 

Left teat number (LTN) 2797 5.35 ± 0.66 4.81 2 3.16 14 

Right teat number (RTN) 2797 5.38 ± 0.64 4.79 5 6.03 56 

Back fat thickness at 100 Kg (BF, mm) 2796 10.99 ± 2.66 4.67 4 2.40 55 

Loin muscle depth at 100 Kg (LMD, mm) 2796 46.15 ± 3.93 5.36 2 1.27 15 

Loin muscle area at 100 Kg (LMA, mm2) 2795 36.25 ± 3.60 - 0 0 0 

Lean meat percentage at 100 Kg (LMP, %) 2795 54.02 ± 1.58 5.50 1 1.19 48 

Time spent to eat per day (TPD, min) 2602 63.02 ± 9.85 6.10 1 1.08 28 

Average daily feed intake (ADFI, Kg) 2602 2.00 ± 0.20 - 0 0 0 

Number of visits to feeder per day (NVD) 2602 7.30 ± 1.83 - 0 0 0 

Time spent to eat per visit (TPV, min) 2602 10.06 ± 2.79 - 0 0 0 

Feed intake rate (FR, g/min) 2602 32.37 ± 5.19 - 0 0 0 

Feed intake per visit (FPV, Kg) 2602 290.6 ± 75.87 - 0 0 0 

Feed conversion rate (FCR) 2691 2.19 ± 0.19 - 0 0 0 

Average daily gain (0-30 Kg) (ADG30, g) 2795 354.8 ± 38.72 - 0 0 0 

Age to 30 kg live weight (AGE30, day) 2796 80.49 ± 8.57 - 0 0 0 

Average daily gain (30-100 Kg) (ADG100, g) 2795 633.8 ± 37.12 - 0 0 0 

Age to 100 kg live weight (AGE100, day) 2796 155.5 ± 9.20 - 0 0 0 

Body length (BL, cm) 1844 117.60 ± 2.91 - 0 0 0 

Body height (BH, cm) 1844 62.19 ± 1.55 - 0 0 0 

Circumference of cannon bone (CC, cm) 1844 17.81 ± 0.54 - 0 0 0 

a. –Log10(p) value when FDR < 0.05; b. total phenotypic variance explained by QTLs; c. Total gene number included in QTLs.
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Additional Files 

Supplementary Figure 1 Dosage R2 and cost time (minute) among different K 

values 

Accuracy and cost time of genotyping from K = 5 to K = 25, where the blue and black 

lines represent the dosage R2 and cost time (minute) respectively.  

Supplementary Figure 2 Purifying selection regions in the whole genome 

Purifying selection signals were detected on SSC2, SSC3, SSC6, SSC7, SSC9 and 

SSC15, where blue and red lines represent –Log10 Pi and Tajima’s D respectively, and 

the grey regions depict the purifying selected regions. 

Supplementary Figure 3 Phenotypic distribution of 21 traits 

Supplementary Figure 4 Manhattan plots of phenotypes with no significant SNPs 

Manhattan plots of ADFT, NVD, TPV, FPV, FR, FCR, BH, BL, CC, ADG100, AGE100, 

ADG30, AGE30 and LMA, where no significant SNPs were detected in these traits. 

Supplementary Figure 5 QQ plot of 21 phenotypes 

Supplementary Figure 6 Summary plots of fine mapping 

Supplementary Figure 7 Distribution of top 100 SNPs based on P value using 

GWAS analysis 

Supplementary Figure 8 GO and KEGG enrichment of genes identified to be 

associated with feeding behavior traits 

Supplementary Figure 9 Neurotrophin signaling pathway enrichment 

The red tangles represent detected pathways in this study, which including Bcl-2, NT3, 

TrkB and p75NTF. 

Supplementary Table S1 LC data set 

Supplementary Table S2 Resequencing Duroc samples list 

Supplementary Table S3 Number and density of SNPs imputed by STITCH and 

Tag SNP 
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Supplementary Table S4 GO enrichment of genes located in the selected regions 

Supplementary Table S5 Summary of detected QTLs 

Supplementary Table S6 Summary table of markers identified significantly 

associated with ADG, AGE or FCR in previous studies 

Supplementary Table S7 GO enrichment of genes located in the selected regions 

Supplementary Table S8 KEGG enrichment of genes located in the selected 

regions 

Supplementary Table S9 Missense SNPs in the narrowed QTL region of TN 

Supplementary Table S10 Gathered information of candidate genes 
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Dear Editor, 

We would like to resubmit to GigaScience the modified manuscript entitled 

“Accelerated Deciphering of the Genetic Architecture of Agricultural Economic Traits 

in Pigs Using the Low Coverage Whole-genome Sequencing Strategy”. We believe that 

this manuscript will make it interesting to general readers of your journal. 

Domestication not only modified the economic important traits but also left a genetic 

signature that affects both the population diversity and genomic structure of 

domesticated farm animals. Fully elucidating the phenotypic diversity, revealing the 

genetic structure of the breeding population is the basis for precision breeding. Large-

scale WGS and GWAS strategies had enable us to gain different perspectives which 

was not possible before. However, high depth sequencing in large cohorts is still 

prohibitively expensive, to develop a massively parallel low coverage sequencing 

method has become imperative.  

Here, we report a Tn5-based, highly accurate, cost and time-efficient, low coverage 

sequencing (LCS) approach to perform sequencing on 2,869 Duroc boars at an average 

depth of 0.73×, which identify 11.3 M SNPs throughout the genome. Base on the whole 

genome sequencing strategy, the high-resolution genome-wide association study 

(GWAS) detected 14 candidate quantitative trait loci (QTLs) in 7 of 21 important traits 

and provided a lot of worth points for further investigation. We also showed that the 

artificial selection alters genomes that affect important growth traits. Moreover, we 

explored the different traits with varies genetic architecture in depth, providing 

guidance for subsequent genetic improvement by genomic selection. The LCS strategy, 

together with the unprecedented capacity of NGS allows the cost-effective and large-

scale genome analysis with industrial-scale efficiency, and we are also confident that it 

will be a universal strategy to meet the needs for the genomic study and breeding of 

both animals and plants.  

All of the sequencing raw data in this study have been deposited into NCBI with 

accession number PRJNA681437, the variance data as VCF file will be available via 

GIGADB. The data will be shared publicly without restrictions in case of acceptance. 
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