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Abstract 

Background: Uncovering the genetic architecture of economic traits in pigs is 

important for agricultural breeding. However, high-density haplotype reference panels 

are unavailable in most agricultural species, limiting accurate genotype imputation in 

large populations. Moreover, the infinitesimal model of quantitative traits implies that 

weak association signals tend to be spread across most of the genome, further 

complicating the genetic analysis. Hence, there is a need to develop new methods for 

sequencing large cohorts without large reference panels.  

Results: We describe a Tn5-based highly accurate, cost- and time-efficient, low 

coverage sequencing (LCS) method to obtain 11.3 M whole genome SNPs in 2,869 

Duroc boars at an average depth of 0.73×. Based on these SNPs, a genome-wide 

association study (GWAS) was performed resulting in 14 quantitative trait loci (QTLs) 

for seven of 21 important agricultural traits in pigs. These QTLs harbour genes, such 

as ABCD4 for total teat number and HMGA1 for back fat thickness and provided a 

starting point for further investigation. The inheritance models of the different traits 

varied greatly. Most follow the minor-polygene model, but this can be attributed to 

different reasons, such as the shaping of genetic architecture by artificial selection for 

this population and sufficiently interconnected minor gene regulatory networks.  

Conclusions: GWAS results for 21 important agricultural traits identified 14 

QTLs/genes and showed their various genetic architectures, providing promising 

guidance for genetic improvement harnessing genomic features. The Tn5-based LCS 

method can be applied to large-scale genome studies for any species without good 

reference panel and can be widely used for agricultural breeding. 

 

Keywords: Low coverage sequencing; GWAS; genotyping; pig; genetic architecture; 

agricultural traits 
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Background 

Genome-wide association studies (GWAS) have identified thousands of genetic 

variants associated with complex traits in humans and agricultural species [1, 2]. The 

mapping resolution relies on the density of genetic markers that can reveal linkage 

disequilibrium (LD) patterns in sufficiently large populations [3, 4]. Despite the 

declining cost of sequencing, it is still expensive for agricultural breeding studies to 

perform whole-genome sequencing of all individuals in a large cohort (thousands of 

individuals). In many scenarios, imputation-based strategies, which impute low-density 

panels to higher densities, offer an alternative to systematic genotyping or sequencing 

[5, 6]. Array-based genotype imputation is widely used in agricultural species [7, 8]. 

However, the imputation accuracy of this strategy depends crucially on the reference 

panel sizes and genetic distances between the reference and target populations. Hence, 

the unavailability of large reference panels and array designs for target populations in 

agricultural species limits the improvement offered by array-based genotype imputation 

[9, 10]. Inaccurate imputations influence the results of follow-up population genetic 

analyses. 

Low-coverage sequencing (LCS) of a large cohort has been proposed to be more 

informative than sequencing fewer individuals at a higher coverage rate [11-13]. 

Sample sizes and haplotype diversity could be more critical than sequencing depth in 

determining the genotype accuracy of most segregating sites and increasing the power 

of association studies. Overall, LCS has been proven to have greater power for trait 

mapping than the array-based genotyping method in human studies [14]. To date, LCS-

based genotype imputation has been employed in many studies using various 

populations and genotyping algorithms [15-19]. In particular, the STITCH imputation 

algorithm overcomes the barrier of the lack of good reference panels in non-human 

species and is even applicable in studies with extremely low sequencing depths [15, 20]. 

This is a promising approach for agricultural animals without large reference panels 
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and can be used in the areas of functional genetic mapping and genomic breeding. 

However, to date, no reports have been published on this. 

Several large-scale whole-genome sequencing projects have been completed [21-

25]. These projects were designed to identify the underlying mechanisms that drive 

hereditary diseases in humans, as well as for use in genomic selection in the breeding 

of agricultural species [26-28]. The infinitesimal model, which describes the 

inheritance patterns of quantitative traits appears to be successful [29, 30]; however, it 

is unclear how many genes play important roles in driving different kinds of complex 

traits. In addition, artificial selection provides a driving force for the rapid evolution of 

agricultural species, which further brings about the fixation of selection regions and 

differentials in the inheritance model. This process might produce a very different result 

for the same trait between studies due to the different genetic backgrounds of the 

research population. Therefore, care should be taken when determining the GWAS 

results for a specific population. Such information, which might be helpful for 

understanding the genetic mechanism of a complex trait, could be informative for 

further application of genomic selection in animal breeding. 

In this study, we developed a new highly accurate, cost- and time-efficient LCS 

method to obtain high-density SNP markers for a large Duroc pig population [31]. By 

assessing 21 important agricultural traits in commercial pig herds, we performed 

genome-wide association and fine-mapping analyses with high resolution and 

compared the results of the inheritance model in depth. We also proved that artificial 

selection plays a significant role in altering the genetic architecture of agricultural 

animals, especially for loci that affect economic traits. The LCS strategy offers a 

powerful method for further agricultural breeding. 

Data Description 

A Tn5-based protocol was used to prepare sequencing libraries of each pig at a low cost 

(reagent cost: $2.60 /library) as described in the Materials and Methods section. The 

libraries were sequenced on the Illumina (PE 150 model, two libraries) and the BGI 
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platform (PE 100 model, 28 libraries) (Supplementary Table S1). The results generated 

by the BGI platform had a smaller number of PCR duplicates (2.23%), a higher number 

of good index reads (97.10%), and higher genome coverage (98.55%) than the Illumina 

dataset (10.82% PCR duplicates, 93.64% good index reads, and 98.50% genome 

coverage). Overall, the total output of the 2,869 boars approached 5.32 TB, and the 

majority (96.74%) of the reads were successfully mapped to the pig reference genome 

Sscrofa11.1. Each animal was sequenced at an average depth of 0.73 ± 0.17×. Moreover, 

high depth resequencing (n=37, selected from the 2,869 boars, average 15.15×/sample), 

SNP Array (n=42, GeneSeek Genomic Profiler Porcine 80K SNP Array, GGP-80) 

genotyping and Fluidigm IFC direct genotyping (n=191 for 16 SNP loci) were 

performed on the selected Duroc core boars of this population, and the results were 

used for downstream accuracy evaluation. The 21 associated phenotypes used in this 

study are shown in Table 1 and Fig. S1. 

Analyses 

Processing pipeline of the low-coverage strategy and accuracy evaluation 

Traditional standard methods for SNP calling, such as those implemented in GATK and 

SAMtools, are mainly used in high-depth resequencing methods. However, due to the 

low depth of each base, erroneous SNPs and genotypes could be called using such 

methods, especially for the GATK HaplotypeCaller algorithm (single sample local de 

novo assembly) [32]. Hence, in this study, we mainly applied the BaseVar algorithm 

[33] to identify polymorphic sites and infer allele frequencies, and STITCH  to impute 

SNPs. We also tested the performance of GATK (UnifiedGenotypeCaller)-Beagle 

algorithms in LCS data. The high-depth sequencing data and SNP chip (GGP-80) 

results on SSC18 were used as the gold standard for accuracy evaluation (Fig. 1 and 

Supplementary Table S2). Correlations (R2) [34] between genotypes and imputed 

dosages and genotypic concordance (GC) were calculated to evaluate the genotyping 

accuracy. The initial screening of SSC18 with BaseVar identified 506,452 and 414,160 

bi-allelic candidate polymorphic sites before and after quality control, respectively. 
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These sites were imputed using STITCH, and 322,386 SNPs were retained with a high 

average call rate (98.89% ± 0.59%) after quality control (imputation info score > 0.4, 

Hardy Weinberg Equilibrium P value > 1e−6). The SNPs detected by BaseVar/STITCH 

were mostly included (99.32%) in the GATK-Beagle set, which included 570,919 sites 

and contained 320,199 SNPs overlapping with the BaseVar/STITCH dataset. As a 

result, a relatively high-quality genotype set was acquired with less time consumption 

when K = 10 (the number of founders or ancestral haplotypes, Fig. S2). Fig. 2 shows 

that highly accurate genotypes were obtained using the BaseVar-STITCH pipeline 

compared with the high-depth sequencing result (R2 = 0.919 and GC = 0.970) across all 

allele frequencies, which exceeded the method using GATK-Beagle (R2 = 0.484 and 

GC = 0.709). Moreover, the BaseVar-STITCH results showed even higher GC 

concordance and R2 values compared with the GGP-80 data (R2 = 0.997 and GC = 

0.990). Furthermore, direct genotyping (16 loci, 191 individuals) was carried out using 

the Fluidigm dynamic array IFC. The average GC was 0.991 compared with the 

BaseVar-STITCH data (Supplementary Table S3), which is as high as the 

aforementioned results. Taken together, these results suggest that BaseVar-STITCH 

pipeline is a suitable variant discovery and imputation method for the LCS strategy (Fig. 

1). 

Previous studies have demonstrated that low-depth sequencing of a large number 

of samples generally provides a better representation of population genetic variations 

compared to high-depth sequencing of a limited number of individuals. In this study, 

we examined the consequences of altering the sample size and sequence coverage in 

this population. For the 0.5× coverage using STITCH, a sample size above 500 had 

little impact on performance. At a 0.1× downsampled coverage, increasing the sample 

size to 1,985 led to a substantially improved performance (Fig. 2C and 2D). At 0.2× for 

1,000 individuals, it was noteworthy that the results were only marginally poorer (R2 = 

0.908 and GC = 0.962) than using all sequencing data (Fig. 2C and 2D). In general, the 

total sequencing depth (population category) for one locus > 200× was shown to 
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guarantee the credibility of genotyping within the scope of this study, although the 

results consistently improved as sequencing depth/sample size increased. 

Genetic architecture of the Duroc population 

After strict parameter filtering in the pipeline (BaseVar-STITCH, Fig. 1), we retained 

11,348,460 SNPs for all 2,797 Duroc pigs with high genotype accuracy, and the density 

corresponded to one SNP per 200 bp in the pig genome (Fig. 3A and Supplementary 

Table S4). Finally, the majority of the identified SNPs were located in intergenic 

regions (51.98%) and intronic regions (36.85%). The exonic regions contained 1.37% 

of the SNPs, including 0.14% missense SNPs. Among the discovered SNPs, 1,524,015 

(accounting for 13.43% of all SNPs) were novel to the pig dbSNP database (data from 

NCBI: GCA_000003025.6 in June 2017). Both novel and known variants were found 

to have very similar minor allele frequency distributions across the whole genome, with 

an average minor allele frequency (MAF) of 0.225 (Fig. 3B). A principal component 

analysis (PCA) of all pigs showed that there was no distinct population stratification 

(Fig. 3C). The decay of LD with increasing distance was different among the 

chromosomes, of which the fastest and slowest decay rates occurred for SSC10 and 

SSC6, respectively. The average pairwise LD r2 values fell to 0.20 at 500 Kb and to 

0.14 at 1 Mb (Fig. 3D), providing the expected mapping resolution obtainable with this 

population. 

. Tajima’s D and diversity Pi were implemented to analyse selective sweep regions 

simultaneously, and only windows with an interquartile range of Tajima’s D and 

diversity Pi of 1.5-fold in the whole genome were regarded as putative selection regions. 

In total, 24 putative fixed selective regions harbouring 281 genes were identified (Fig. 

S3). The regions displayed significant overrepresentation of genes involved in the 

sensory perception of smell (P = 6.41e-10) (Supplementary Table S5), reflecting the 

importance of smell when scavenging for food during long periods of environmental 

adaptation. This result is consistent with a previous study that reported that genes 

associated with olfaction exhibit fast evolution in pigs [35]. We also observed a 
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significant enrichment of genes involved in the neurological system process (P = 8.64e-

5), hair cycle process (P = 0.004), and bone mineralisation (P = 0.040). 

GWAS and identification of high-resolution mapping of QTLs 

The 21 phenotypes used in this study are shown in Table 1. There was high correlation 

between traits of the same type (such as LMD, LMA and LMP; BH, BL and CC, 

Supplementary Table S6). We identified a subset of 258,662 SNPs that tagged all other 

SNPs with MAF >1% at LD r2 <0.98 for the first round of GWAS (Supplementary 

Table S4). Fine-mapping was performed within 10 Mb of the SNPs to reach 5 genome-

wide false discovery rate (FDR) significance threshold of 5%. Overall, we discovered 

14 non-overlapping QTLs for the seven traits at a significance threshold of 5% (Fig. 4, 

Table 1, Fig. S4, and Fig. S5). The widths of all QTL intervals ranged from ~66 Kb to 

~3.9 Mb. The intervals of five QTLs were more than 2 Mb in width (Supplementary 

Table S7). These QTLs were strongly influenced by the local LD levels of this 

population.  

On average, individual QTL covered 13 protein-coding genes (ranging from zero–

48) with a median of eight genes. The distribution of the number of genes in a QTL is 

shown in Supplementary Table S7. We first focused on QTLs that could be narrowed, 

since these loci could provide a starting point for functional investigations.  Of the 14 

non-overlapping loci identified in this study, seven QTLs could be further narrowed to 

a small number of genes (one to nine genes) (Fig. 5 and Fig. S6). Here, we highlight 

two important QTLs on SSC7.  

The QTL on SSC7 with a major effect on the total teat number (TTN) has been 

widely identified in several commercial breeding lines and hybrids [36-38]. Our GWAS 

results show a strong QTL for TTN in the same region, explaining most of the 

phenotypic variance compared with other QTLs (Supplementary Table S7), reflecting 

the major effect of this locus. (Fig. 4). Fine-mapping revealed two narrow LD blocks 

(SSC7:97.56–97.65 Mb and 98.06–98.10 Mb), containing four candidate genes 

(ABCD4, VRTN, PROX2, and DLST) (Fig. 5 and Fig. S6). We noticed that the most 

significant locus (SSC7:97,581,669, P = 3.29e-22) was detected in the region of ABCD4 



 

9 

 

gene, and one missense SNP in ABCD4 had the most severe impact with the largest 

decrease in protein stability (Supplementary Table S9), suggesting that ABCD4 may be 

the most likely causal gene. In addition, four missense variants were discovered in 

PROX2, which was the vertebrate homolog of the homeodomain-containing protein, 

Prospero, that may be involved in cell fate determination and body plan establishment 

in Drosophila melanogaster[39]. Previous studies have reported that PROX2 could be 

the causal gene [31, 40].  

For the carcass traits, we identified six QTLs (Table 1 and Supplementary Table 

S7), in which a common narrowed QTL region on SSC7 of 30.24–30.52 Mb was 

identified to be significantly associated with back fat thickness (BF) and loin muscle 

depth (LMD) (Fig. 5 and Fig. S6). Among the QTLs associated with BF and LMD, the 

narrowed QTL on SSC7 was found to make the greatest contribution to heritability, 

indicating that this was the location of the major genes in the region (Table 1 and Fig. 

5). In this region (Supplementary Table S7), HMGA1 is a promising candidate gene 

associated with growth, carcass, organ weight, and fat metabolism, as it has been 

reported to be involved in a variety of genetic pathways regulating cell growth and 

differentiation, glucose uptake, and white and brown adipogenesis [41-45].  

Heritability and pattern of QTL effects 

To assess how much of the heritability can be explained by the detected QTLs, we 

estimated the effect size of the overall decreased proportion of heritability by using 

significant SNPs distributed in these QTLs as fixed effects. Seven of the 21 traits (TTN, 

LTN, RTN, BF, LMD, LMP, and TPD) exhibited medium to high heritability-major 

QTL effect (1.08 to 8.86%) profile (Table 1 and Figure 6). Among them, TTN showed 

the highest single-QTL effect and the most discrete distribution. The other six traits 

were explained by multiple QTLs, but the total effect was significantly lower than that 

of TTN. These results showed the differential genetic architecture of the gradual 

transition from qualitative-like traits to quantitative traits. 

Few QTLs were detected for other traits, and most of them could be attributed to 

the typically small effect sizes of individual mutations, thousands of which contribute 
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to the total observed genetic variation but did not reach the significant level for a typical 

complex trait (such as body size measurement and feed intake traits). It is noteworthy 

that the heritability of growth traits, such as the average daily gain 30-100 kg (ADG100) 

and age to 100 kg daily weight (AGE100) were lower than those of other populations 

[46, 47] which in turn resulted in no significant QTL. To account for this, we 

hypothesized that the major QTL effect may be obscured by rare mutations under strong 

artificial selection. We searched the candidate loci of growth traits in the pig QTL 

database (https://www.animalgenome.org/cgi-bin/QTLdb/SS/index) as well as the 

corresponding previous reports [46, 48-51].We identified 51 sites associated with 

growth traits distributed on 18 chromosomes with low MAF (< 0.05) in our population. 

However, 151 previously-reported candidate sites were not identified as polymorphism 

in this study (Supplementary Table S8). The sequencing depths of these sites exceeded 

2,100×, proving that these sites were completely fixed in our population with the same 

alleles as in the reference genome. This result reflected the long-term artificial selection 

history for growth traits of this commercial Duroc population, and explained the 

decreased heritability and major QTLs. 

Discussion 

To our knowledge, we have generated the largest whole genome sequencing (WGS) 

genotyping dataset for the Duroc population to date, containing 11 million markers 

from 2,797 pigs. We expanded the candidate causal mutations for multiple pig traits, 

and demonstrated the efficacy of genetic fine-mapping utilizing low-coverage 

sequencing in animal populations without reference panels. Further, we compared the 

heritability and inheritance models for each trait, providing a starting point for 

functional investigations. Our study indicated that the LCS method could have 

widespread usage in high-resolution GWAS for any genetic or breeding population, or 

even for applications in genomic prediction. 

Our study identified an optimal design, taking into account the imputation algorithm, 

number of samples, and sequencing depth. The BaseVar-STITCH pipeline allows the 
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GC to be higher than 0.96 when the sample size is 1000 at a sequencing depth of 0.2× 

(200× at the population level) without large reference panels. This GC value is 

significantly higher than that in other studies with small sample sizes with a high 

sequencing depth or array-based genotype imputation [7, 9] We also found that 

genotype accuracy was more sensitive to the sample size than the sequencing depth. 

Hence, the results demonstrated that low-coverage designs are more powerful than deep 

sequencing of fewer individuals for animal sequencing studies, since a large sample 

size can cover all local haplotypes of the study population more effectively. This 

method has high accuracy, even in large-scale human studies with the most complex 

population structure [33], further showing that a sufficient sample size will ensure that 

the method has a broad spectrum of applicability in all agricultural species or breeding 

populations.  

Increasing marker density has been proposed to have the potential to improve the 

power of GWAS and the accuracy of genomic selection (GS) for quantitative traits [52]. 

First, the whole-genome LCS data gave the best accuracy for GWAS, as it can capture 

more recombination events than SNP chips or target sequencing methods such as 

genotyping by sequencing (GBS) [31], and most causal or causal-linked mutations that 

underlie a trait are expected to be included. Second, many studies have reported the 

impact of WGS data on the accuracy of genomic predictions [52-54]; however, the 

conclusions have been quite divergent. The limited improvement of the genetic 

relationship matrices for WGS data compared with the SNP chip is the major reason 

for the lack of improvement in genomic prediction. In addition, while most researchers 

may prefer to impute SNP chip genotypes using limited WGS data, some erroneous 

SNPs may be introduced and further adversely affect the performance of genomic 

prediction, since limited haplotype architecture would be obtained using small-scale 

WGS data. Our method improved the accuracy of imputation, especially in large studies 

without a good reference panel and multibreed genomic predictions, widening make 

the application of genome selection. Third, significantly improved GS results were 

observed when SNPs were preselected from the sequenced data with prior information 
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and an optimized genomic prediction method considering genomic features (e.g. 

GFBLUP [55, 56]. Thus, we could select different useful tag-SNPs for various traits 

with different genetic architectures using the high-density genetic map built by LCS 

data to optimize the genomic selection model in the future. Fourth, in practical 

applications, the haplotype reference panel can accommodate new haplotypes due to 

recombination at any time, thus solving the issue of a decrease in prediction accuracy 

over generations. Our data cover the sites of various SNP chips well because the 

genome coverage exceeds 98.36%, and it is competitive with arrays in terms of cost 

and SNP density. In addition, we applied GTX, which is an FPGA-based hardware 

accelerator platform [57], to perform the alignments, and ~3,000 alignments were 

accomplished in two days. Then, genotyping and imputation could be achieved on the 

cluster server or even on a cloud server in a single day, thus resolving the accuracy and 

timeliness of genomic prediction. 

Recent swine breeding has prompted the accumulation of beneficial genetic 

variations at a more rapid rate, especially for some economic trait loci [58, 59]. This 

study used a typical commercial population, that exhibits a high level of LD and number 

of selective regions under strong artificial selection. Thus, we presented a joint analysis 

of GWAS and selective sweep of this Duroc population to comprehensively extract 

more functional genes and genomic features. We detected 136 candidate genes 

(Supplementary Table S10) in 14 QTLs associated with seven traits, and highlighted 

important roles, such as ABCD4 for total teat number and HMGA1 for back fat thickness. 

A large number of fixed or nearly-fixed loci have been found to be associated with 

ADG, AGE, and FCR, which explained the missing QTL by GWAS, and reflected the 

growth-related selection index process exactly. We also detected 24 putative fixed 

selective regions harbouring a series of genes enriched for sensory perception and 

neurological system processes. It has been widely reported that olfactory receptor genes 

may not only reflect adaptation to different environments [60] but might also act as a 

species barrier by affecting mate choice [61]. Several studies have reported an 

overrepresentation of genes with gene ontology (GO) terms related to neuronal 
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development and neurological regulation [60, 62], which could be related to the 

complex genetic background of traits such as behaviour and increased tameness. 

Fewer QTLs with significant SNPs were detected in feeding behaviour traits and 

body size measurements than in teat number and carcass traits. These observations are 

interpreted in a paradigm in which complex traits are driven by an accumulation of 

weak regulatory effects on the large genes and regulatory pathways [63-65], i.e. 

‘infinitesimal model’. This model motivated us to aggregate hits to identify key 

pathways and processes. In particular, the feeding behaviour traits exhibited high 

heritability-few QTL effect profiles. We combined related genes obtained from the top 

100 loci from the GWAS of the six feed intake traits. Gene-set enrichment analysis 

based on the obtained 281 genes showed that neural development or neural activity 

related functions, such as astrocyte differentiation (P = 8.61e-5), cognition (P = 0.002), 

learning (P = 0.002), and glial cell differentiation (P = 0.003), were significantly 

enriched (Fig. S7 and Supplementary Table S11). The KEGG pathway analysis also 

showed that the nervous system processes were significantly enriched (Fig. S8 and 

Supplementary Table S12), including the neurotrophin signaling pathway (P = 0.015) 

(Fig. S9) and GABAergic synapse (P = 0.021). This finding suggests that pig-feeding 

behaviour involves complex traits that are affected by the regulation of the nervous 

system, leading to the stimulation of appetite. The current breeding schedule of this 

commercial population has been successful, especially in terms of improving growth 

traits. The next stage should focus on the use of genomic selection strategies for 

‘infinitesimal traits’ with high heritability but no major QTL, such as feeding behaviour 

traits. 

In conclusion, we developed a Tn5-based, highly accurate, cost- and time-efficient 

LCS method to obtain whole genome SNP markers in a large Duroc population. GWAS 

results for 21 important agricultural traits identified tens of important QTLs/genes and 

showed their various genetic architectures, providing promising guidance for further 

genetic improvement harnessing genomic feature. 
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Potential Implications 

The present work advances our understanding of the genetic architecture of quantitative 

traits and suggests a direction for future application of genomic information in pig 

breeding. We expect that our method could be applied to large-scale genome studies for 

any species without a good reference panel, especially for agricultural species that have 

important economic value. The rapid accumulation of data will significantly improve 

many bottlenecks in the current genome research, and will combine multi-omics 

information and artificial intelligence algorithms to contribute to decipher the genetic 

and regulatory mechanisms behind complex traits. 

Methods 

Animals, phenotyping, and DNA Extraction 

The Duroc boars used for this study were born from September 2011 to September 2013. 

All boars were managed on a single nucleus farm in a commercial company, which 

enduring strong artificial selection for many years. The associated phenotype data used 

in this study included back fat thickness at 100 kg (BF), loin muscle area at 100 kg 

(LMA), loin muscle depth at 100 kg (LMD), lean meat percentage at 100 kg (LMP), 

average daily gain (0-30 kg and 30-100 kg) (ADG30 and ADG100), age to 30 kg and 

100 kg daily weight (AGE30 and AGE100), body length (BL), body height (BH), 

circumference of cannon bone (CC), feed conversion ratio (FCR), average daily feed 

intake (ADFI), number of visits to feeder per day (NVD), time spent to eat per day 

(TPD), time spent to eat per visit (TPV), feed intake per visit (FPV), feed intake rate 

(FR), left teat number (LTN), right teat number (RTN), and total teat number (TTN). 

The phenotype TTN data were acquired from Tan’s study [31]. In detail, the number of 

left and right teats of each pig were recorded within 48 h after birth, and only normal 

teats were counted. The total teat number in this study was the sum of normal left and 

right teats. Body weights were recorded at birth and at the beginning (30 ± 5 Kg) and 

the end (100 ± 5 Kg) of the experiment. The ADG was calculated as the total weight 
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gain over this time, divided by the number of days. The ages at which the pig reached 

30 Kg and 100 Kg were recorded as AGE30 and AGE100 respectively. BF, LMD, LMA, 

and LMP were measured over the last three to four ribs using b-ultrasound-scan 

equipment when the weight of pigs reached 100 ± 5 Kg (Aloka SSD-500). Feeding 

behaviors including the time taken, duration, feed consumption, and weight of each pig 

were recorded at every visit by the Osborne FIRE Pig Performance Testing System 

(Kansas, American). The ADFI of each animal was obtained by dividing the total feed 

intake during the test by the number of days of the test period. The following feeding 

behavior and eating efficiency traits were defined and calculated for each boar: ADFI 

(Kg/day), TPD (min), NVD, TPV (= TPD/NVD, %), FPV (Kg), FR (= DFI/TPD, 

g/min), and FCR (=ADFI/ADG). The phenotypic values nearly all followed a normal 

distribution (Fig. S1).  

Genomic DNA was extracted from the ear tissue using a DNeasy Blood & Tissue 

Kit (Qiagen 69506), assessed using a NanoDrop, and checked in 1% agarose gel. All 

samples were quantified using a Qubit 2.0 Fluorometer and then diluted to 40 ng/ml in 

96-well plates. 

Tn5 Library generation and sequencing 

Equal amounts of Tn5ME-A/Tn5MErev and Tn5ME-B/Tn5MErev were incubated at 

72 ℃ for 2 minutes and then placed on ice immediately. Tn5 (Karolinska Institute, 

Sweden) was loaded with Tn5ME-A+rev and Tn5ME-B+rev in 2× Tn5 dialysis buffer 

at 25 ℃ for 2 h. All linker oligonucleotides were the same as in a previous report [66]. 

Tagmentation were carried out at 55 ℃ for 10 minutes by mixing 4 μl 5×TAPS-

MgCl2, 2 μl of dimethylformamide (DMF) (Sigma Aldrich), 1 μl of the Tn5 pre-diluted 

to 16.5 ng/μl, 50 ng of DNA, and nuclease-free water. The total volume of the reaction 

was 20 μl. Then, 3.5 μl of 0.2% SDS was added, and Tn5 was inactivated for another 

10 min at 55 ℃. 

KAPA HiFi HotStart ReadyMix (Roche) was used for PCR amplification. The 

primers were designed for MGI sequencers, with the reverse primers containing 96 

different index adaptors to distinguish individual libraries. The PCR program was as 
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follows: 9 min at 72 ℃, 30 sec at 98 ℃, and then 9 cycles of 30 sec at 98 ℃, 30 sec at 

63 ℃, followed by 3 min at 72 ℃. The products were quantified by Qubit Fluorometric 

Quantitation (Invitrogen). The groups of 96 indexed samples were pooled with equal 

amounts (Supplementary Table S13). 

Size selection was performed using AMPure XP beads (Beckmann), with a left side 

size selection ratio of 0.55× and a right side size selection ratio of 0.1×. The final 

libraries were sequenced on 2 lanes of MGISEQ-2000 to generate 2×100 bp paired-end 

reads or on 1 lane of BGISEQ-500 to generate 2×100 bp paired-end reads. 

Genotype data obtained using high depth sequencing and SNP chip 

We sequenced 37 out of the total 2,869 pigs using the Hiseq X Ten system at a high 

depth of 15.15×. GTX by the Genetalks company, a commercially available FPGA-

based hardware accelerator platform, was used in this study for both mapping clean 

reads to the Sscrofa11.1 reference genome (ftp://ftp.ensembl.org/pub/release-

99/fasta/sus_scrofa/dna/) and variant calling. The alignment process was accelerated by 

FPGA implementation of a parallel seed-and-extend approach based on the Smith–

Waterman algorithm, while the variant calling process was accelerated by FPGA 

implementation of GATK HaplotypeCaller (PairHMM) [67]. GATK multi-sample best 

practice was used to call and genotype SNPs for the 37 pigs, and the SNPs were hard 

filtered with a relatively strict option “QD < 10.0 || ReadPosRankSum < -8.0 || FS > 

10.0 || MQ<40.0”. 

We also selected 42 individuals who were included in the LCS dataset and 

genotyped using the GeneSeek Genomic Profiler Porcine 80K SNP Array and obtained 

68,528 SNPs across the whole genome. The genotypes of the sex chromosomes were 

excluded from this study, and after quality control (genotype call rate > 0.95), 47,946 

SNPs remained. We retained 45,308 SNPs that overlapped with the LCS dataset to 

evaluate the genotypes from the LCS strategy. 

Low coverage sequencing data analyses 
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Sequencing reads from the low coverage samples were mapped to the Sscrofa11.1 

reference genome using GTX-align, which includes a step that involves marking PCR 

duplicates. The indel realignment and base quality recalibration modules in GATK 

were applied to realign the reads around indel candidate loci and to recalibrate the base 

quality. The average running time from a fastq file to a bam file was about 3 min for 

each sample in this study. Variant calling was done using the BaseVar and hard filtered 

with EAF >= 0.01 and a depth greater than or equal to 1.5 times the interquartile range. 

The detailed BaseVar algorithm that was used to call SNP variants and estimate allele 

frequency was described in a previous report [33]. We used STITCH  to impute 

genotype probabilities for all individuals. The key parameter K (number of ancestral 

haplotypes) was decided based on the tests in SSC18. Results were filtered with an 

imputation info score > 0.4 and a Hardy Weinberg Equilibrium (HWE) P value > 1e−6. 

After quality control, 2,797 individuals with genotype data were obtained. Two 

validation actions were taken to calculate the accuracy of imputation. The first 

parameter was genotypic concordance (GC), which was calculated as the number of 

correctly-imputed genotypes divided by the total number of sites. Another parameter 

was the allele dosage R2, which was described in a previous report [34]. The SNPEff 

program [68] was used to annotate the variants.  

Population genetics analysis 

A subset of 258,662 SNPs that tagged all other SNPs with MAF > 1% at LD r2 < 0.98 

and a call rate of >95% were retained for downstream analysis. PCA clustering analyses 

were performed using the GCTA software [69]. The average heterozygosity rate and 

MAF were obtained using the vcftools program [70]. Tajima’s D [71] and diversity Pi 

were implemented to analyze selective sweep regions simultaneously with the window 

size set to 1 Mb, and only windows with an interquartile range for Tajima’s D and 

diversity Pi of 1.5-fold in the whole genome were regarded as putative selection regions. 

The Gene Ontology (GO) terms were downloaded from the Ensembl website using the 

BioMart tool (http://asia.ensembl.org/biomart/martview/), and the Kyoto Encyclopedia 

of Genes and Genomes (KEGG) pathway was obtained according to the NCBI gene 

http://asia.ensembl.org/biomart/martview/
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accession number, and both GO and KEGG terms were organism specific (S. scrofa). 

Finally, annotations of 335,522 GO terms and 6,139 KEGG pathways were retained for 

enrichment analyses. Both enrichment analyses were performed using the OmicShare 

tools (http://www.omicshare.com/tools), and the significance was determined by the P 

value according to the hypergeometric test (P < 0.05). 

Genome-wide association and Heritability estimation 

A mixed linear model (MLM) approach was used for the genome-wide association 

analyses based on tagging SNPs, as implemented in the GCTA package [69]. The 

statistical model included the year and month as discrete covariates. For BF, LMA, 

LMD, and LMP, the year and season were included as discrete covariates, and the 

weights at the beginning and end of the test were used as quantitative covariates. To 

correct for multiple testing across the genome, the FDR correction obtained using 

FDRtool R package [72] was applied to determine the genome-wide significance 

threshold (FDR < 0.05). Once a QTL had been mapped using the tagging SNPs and 

exceeded the FDR threshold, association was re-calculated with all imputed SNPs 

(from the 11.3 M set) in a 20 Mb window around the peak using the same mixed model. 

The definition of a fine-mapped candidate QTL interval was based on the linkage 

disequilibrium (LD) level between the most significant SNP and all flanking sites, 

where the boundary was verified when the LD was no more than 0.8. The SNP effect 

was estimated using the GREML_CE program in the GVCBLUP package [73], where 

the result was absoluted and normalized. 

Heritability was estimated using a mixed model as follows: 

    y = Xbb + Za + e 

with Var(y) = ZAaZ’ơa
2 + Iơe

2, where Z is an incidence matrix allocating phenotypic 

observations to each animal; b is the vector of the fixed year-month effects for BF, 

LMA, LMD, and LMP that also includes the weights at the beginning and end of the 

test as covariance; Xb is the incidence matrix for b; a is the vector of additive values 

based on the genotype data; Aa is a genomic additive relationship matrix; ơa
2 is the 

additive variance; and ơe
2 is the residual variance. Variance components were estimated 

http://www.omicshare.com/tools
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by genomic restricted maximum likelihood estimation (GREML) using the 

GREML_CE program in the GVCBLUP package. The additive heritability was defined 

as: ha
2 = ơa

2 /(ơa
2 + ơe

2). SNP effects were defined by the GREML_CE program and 

then normalized using R script. 

The heritability of the detected QTL was estimated as follows: 

y = X’bb’ + Za + e 

with Var(y) = ZAaZ’ơa
2 + Iơe

2, where Z is an incidence matrix allocating phenotypic 

observations to each animal; b’ is the vector of the fixed year-month effects and 

significant SNPs identified in the QTL region using GWAS analysis for BF, LMA, 

LMD and LMP; b also includes the weights at the beginning and end of the test as 

covariance; X’b is the incidence matrix for b; a is the vector of additive values based 

on the genotype data; Aa is a genomic additive relationship matrix; ơa
2 is the additive 

variance; and ơe
2 is the residual variance. The QTL heritability was defined as hqtl

2
 = 

ha
2 - ơa

2 /(ơa
2 + ơe

2). 

Functional Consequence of the Missense Mutations associated with TN 

The effect of the missense SNPs associated with TN on the stability of pig ABCD4, 

PROX2, and DLST proteins was assessed using I-Mutant adaptation 2.0 [74]. A 

potential surge or reduction in the DDG was predicted, along with a reliability index 

(RI), where the lowest and highest reliability levels were 0 and 10, respectively. 

Direct genotyping by Fluidigm IFC technology 

Sixteen loci on SSC7 were selected based on the GWAS results, three of which were 

related to BF, and the others were related to TN. Primers for genotyping were designed 

and ordered on the Fluidigm D3 assay design website (Supplementary Table S13), and 

191 out of the total 2,869 pigs were genotyped for each SNP using Fluidigm Dynamic 

array IFC (Integrated Fluidic Circuit). 

Data availability 
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All of the sequencing raw data in this study have been deposited into NCBI with 

accession number PRJNA681437 and PRJNA712489. Scripts, VCF files, phenotype 

information for seven traits, and other supporting data are available via the GigaScience 

repository, GigaDB [75]. The individual index information of the LCS dataset is listed 

in Supplementary Table S13. 
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Figure 1 Low coverage sequencing (LCS) study design  

The flow chart summarizes the steps used to identify and impute polymorphic sites, 

where the green block represents the highly accurate pipeline used for Tn5-based LCS 

analysis (BaseVar-STITCH). We also generated SNP results using the GATK-Beagle 

pipeline (grey) and compared them with those obtained using the BaseVar-STITCH 

method. Three datasets (blue) were used to assess the accuracy of the results. The 

BaseVar-STITCH pipeline was used in the GWAS presented in this study. 
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Figure 2 Performance of BaseVar-STITCH on different minor allele frequencies 

(MAFs) and sample sizes 

The validation dataset is the high-coverage sequencing results of 37 individuals 

genotyped by GATK best practices (HaplotypeCaller model). (a) and (b) show a 

comparison of the dosage R2 and genotypic concordance values (%) between the 

BaseVar-STITCH for low-coverage sequencing (LCS) (blue) and the GATK-Beagle 

(orange) pipelines, and (c) and (d) show the comparison of the dosage R2 and genotypic 

concordance values (%) among different sequencing depths. 
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Figure 3 Genetic diversity of the Duroc population 

(a) The distribution of SNPs in 1 Mb windows across the genome. (b) Histogram of 

allele counts by each 1% MAF bin. Novel (red) and known SNP sets (blue) were 

defined by comparing them to the pig dbSNP database. (c) Principal component 1 and 

2 distribution in the Duroc population. (d) The extent of linkage disequilibrium (LD), 

in which the LD on chromosomes 6 (SSC6) and 10 (SSC10) represent the highest and 

lowest levels across the whole genome, respectively. 
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Figure 4 Summary Manhattan plot of seven phenotypes with significant SNPs  

Genome-wide representation of all quantitative trait loci (QTLs) identified in this study. 

Light and dark grey dots show associations from the seven measures where at least one 

QTL was detected at the tagging SNP positions (n = 258,662). The most significant 

SNP positions at each QTL are marked with a colour dot. 
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Figure 5 Manhattan plots and fine-mapping of the total teat number (TTN) and 

back fat thickness (BF)  

(a) and (b) Depict the TTN and BF association signals on the whole genome. (c) Fine-

mapping of the TTN using the entire set of SNPs, in which two isolated regions on 

chromosome 7 with lengths of 113 and 66 Kb were detected as QTLs. (d) Fine-mapping 

of BF using the entire set of SNPs. A narrow QTL with a length of 280 Kb was detected 

on chromosome 7. The association genes within QTLs are displayed below. 



 

33 

 

 

Figure 6 Heritability and SNP significance and normalized effect of 21 traits  

The SNP effect was estimated and normalized and is displayed in the black boxplot. 

The grey boxplot represents the distribution of -log10 P values for all SNPs. Red dots 

represrent heritability estimates, while black lines represent standard deviations. 
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Table 1. QTLs mapping and contribution to heritability 

Phenotype Number Mean ± standard deviation Significant 

thresholda 

QTL 

number 

Variance 

explained(%)b 

Gene numberc 

Total teat number (TTN) 2797 10.73 ± 1.07 4.55 6 8.86 52 

Left teat number (LTN) 2797 5.35 ± 0.66 4.81 2 3.16 14 

Right teat number (RTN) 2797 5.38 ± 0.64 4.79 5 6.03 56 

Back fat thickness at 100 Kg (BF, mm) 2796 10.99 ± 2.66 4.67 4 2.40 55 

Loin muscle depth at 100 Kg (LMD, mm) 2796 46.15 ± 3.93 5.36 2 1.27 15 

Loin muscle area at 100 Kg (LMA, mm2) 2795 36.25 ± 3.60 - 0 0 0 

Lean meat percentage at 100 Kg (LMP, %) 2795 54.02 ± 1.58 5.50 1 1.19 48 

Time spent to eat per day (TPD, min) 2602 63.02 ± 9.85 6.10 1 1.08 28 

Average daily feed intake (ADFI, Kg) 2602 2.00 ± 0.20 - 0 0 0 

Number of visits to feeder per day (NVD) 2602 7.30 ± 1.83 - 0 0 0 

Time spent to eat per visit (TPV, min) 2602 10.06 ± 2.79 - 0 0 0 

Feed intake rate (FR, g/min) 2602 32.37 ± 5.19 - 0 0 0 

Feed intake per visit (FPV, Kg) 2602 290.6 ± 75.87 - 0 0 0 

Feed conversion rate (FCR) 2691 2.19 ± 0.19 - 0 0 0 

Average daily gain (0-30 Kg) (ADG30, g) 2795 354.8 ± 38.72 - 0 0 0 

Age to 30 kg live weight (AGE30, day) 2796 80.49 ± 8.57 - 0 0 0 

Average daily gain (30-100 Kg) (ADG100, g) 2795 633.8 ± 37.12 - 0 0 0 

Age to 100 kg live weight (AGE100, day) 2796 155.5 ± 9.20 - 0 0 0 

Body length (BL, cm) 1844 117.60 ± 2.91 - 0 0 0 

Body height (BH, cm) 1844 62.19 ± 1.55 - 0 0 0 

Circumference of cannon bone (CC, cm) 1844 17.81 ± 0.54 - 0 0 0 

a. –Log10(p) value when FDR < 0.05; b. total phenotypic variance explained by QTLs; c. Total gene number included in QTLs.
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Additional Files 

Supplementary Figure 1 Phenotypic distribution of 21 traits 

Supplementary Figure 2 Dosage R2 and cost time (minute) among different K 

values 

Accuracy and cost time of genotyping from K = 5 to K = 25, where the blue and black 

lines represent the dosage R2 and cost time (minute) respectively.  

Supplementary Figure 3 Purifying selection regions in the whole genome 

Purifying selection signals were detected on SSC2, SSC3, SSC6, SSC7, SSC9 and 

SSC15, where blue and red lines represent –Log10 Pi and Tajima’s D respectively, and 

the grey regions depict the purifying selected regions. 

Supplementary Figure 4 Manhattan plots of phenotypes with no significant SNPs 

Manhattan plots of ADFT, NVD, TPV, FPV, FR, FCR, BH, BL, CC, ADG100, AGE100, 

ADG30, AGE30 and LMA, where no significant SNPs were detected in these traits. 

Supplementary Figure 5 QQ plot of 21 phenotypes 

Supplementary Figure 6 Summary plots of fine mapping 

Supplementary Figure 7 Distribution of top 100 SNPs based on P value using 

GWAS analysis 

Supplementary Figure 8 GO and KEGG enrichment of genes identified to be 

associated with feeding behavior traits 

Supplementary Figure 9 Neurotrophin signaling pathway enrichment 

The red tangles represent detected pathways in this study, which including Bcl-2, NT3, 

TrkB and p75NTF. 

Supplementary Table S1 LCS data set 

Supplementary Table S2 Resequencing Duroc samples list 

Supplementary Table S3 Genotypic concordance between BaseVar-STITCH 

method and direct genotyping by Fluidigm IFC technology 
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Supplementary Table S4 Number and density of SNPs imputed by STITCH and 

Tag SNP 

Supplementary Table S5 GO enrichment of genes located in the selected regions 

Supplementary Table S6 Genetic and phenotypic coefficient of 21 traits 

Supplementary Table S7 Summary of detected QTLs 

Supplementary Table S8 Summary table of markers identified significantly 

associated with ADG, AGE or FCR in previous studies 

Supplementary Table S9 Missense SNPs in the narrowed QTL region of TN 

Supplementary Table S10 Gathered information of candidate genes 

Supplementary Table S11 GO enrichment of genes located in the selected regions 

Supplementary Table S12 KEGG enrichment of genes located in the selected 

regions 

Supplementary Table S13 Index sequence for the all LCS samples 

Supplementary Table S14 Primers used for Fluidigm IFC genotyping 
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May 19, 2021 

Hans Zauner, PhD, Editor 

GigaScience 

 

Dear Editor: 

 

We would like to sincerely thank the reviewers for the many helpful comments that have 

significantly improved the manuscript. We have addressed all comments of editor and reviewer2. 

We hereby re-submit a revised version of our manuscript entitled “Accelerated deciphering of the 

genetic architecture of agricultural economic traits in pigs using the low coverage whole-genome 

sequencing strategy” for publication in GigaScience. 

 

Uncovering the genetic architecture of economic traits in pigs is important for agricultural breeding. 

However, whole genome sequencing of large cohorts would be too expensive, and accurate 

genotype imputation requires high-density haplotype reference panels that are unavailable in most 

agricultural populations due to their large size. Here, we report a Tn5-based, highly accurate, cost 

and time-efficient, low coverage sequencing (LCS) approach to perform sequencing on 2869 Duroc 

boars at an average depth of 0.73×, which identify 11.3 M SNPs throughout the genome. Base on 

the whole genome sequencing strategy, the high-resolution genome-wide association study 

(GWAS) detected 14 candidate quantitative trait loci (QTLs) in seven of 21 important traits and 

provided a lot of worth points for further investigation. We also showed that the artificial selection 

alters genomes that affect important growth traits. Moreover, we explored the different traits with 

varies genetic architecture in depth, providing guidance for subsequent genetic improvement by 

genomic selection. The LCS strategy, together with the unprecedented capacity of NGS allows the 

cost-effective and large-scale genome analysis with industrial-scale efficiency, and we are also 

confident that it will be a universal strategy to meet the needs for the genomic study and breeding 

of both animals and plants. 

 

 

Thank you for your consideration. I look forward to hearing from you. 

 

Sincerely, 

Xiaoxiang Hu, Professor, Ph.D.  

College of Biological Sciences  

China Agricultural University  

No.2 Yuanmingyuan West Road, Beijing 100193, P. R. China  

Phone: +86-10-62733394  

E-mail: huxx@cau.edu.cn 
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