
Supporting Material I: MRI Examination and parameters: 

The patients which we retrospectively recruited all underwent MRI scan a 3.0 

Tesla system (Siemens Verio, syngo MR B17, Erlangen, Germany) with a dedicated 

16-channel breast coil. The image acquisition protocol included fat-suppressed 

T2WI, fat-suppressed T1+DCE and ADC map images. Following was the detailed 

description of the data acquisition procedure. At the scanning, an axial 

fat-suppressed T2WI sequence and axial DWI images were obtained using four b 

values (0, 800, 1000 and 2000 s/mm2) were acquired before contrast medium 

administration. An initial fat-saturated T2WI and T1WI pre-contrast scan was 

collected before T1+DCE images scanning, and then T1+DCE images were acquired 

as six post contrast scans at intervals of 90 seconds following the intravenous 

injection of gadolinium contrast agent. A gadolinium-based agent (Magnevist; Bayer 

Healthcare, Berlin, Germany) was injected using an MR imaging compatible power 

injector at a rate of 2 ml/s and at a dose of 0.2 ml/kg of body weight, followed by a 

20-ml saline flush with high-pressure injector. ADC map was derived from DWI 

imaging by two b values (the first b value was 0, and the second b value was 800, 

1000 or 2000). Because the second b value was ≥ 800, then we considered the 

ADC map was not influenced by the b values, and it can reflect the biological 

information of tumors in imaging accurately. 

The parameters for each MRI image were as follows: (1) T2WI: repetition 

time/echo time = 4330/61 msec, pixel bandwidth = 319, FOV = 380×380 mm
2
, 

Matrix = 320 × 320, flip angle = 80°, spatial resolution = 1.188 × 1.188 mm, slice 

thickness = 3.0 mm, slices: 38, axial orientation. (2) T1-DCE: repetition time/echo 

time = 4.32/1.57 msec, pixel bandwidth = 446, FOV = 380 × 380 mm
2
, matrix = 448 

× 448, flip angle = 10°, spatial resolution = 0.848 × 0.848 mm, slice thickness = 1.0 

mm, slices: 144, axial orientation. (3) ADC map: repetition time/echo time = 

6300/74 msec, pixel bandwidth = 2083, FOV = 380×380 mm
2
, Matrix = 160 × 160, 

flip angle = 90°, spatial resolution = 2.375 × 2.375 mm, slice thickness = 4.0 mm, 

slices: 24, axial orientation. 

Supporting Material II: MRI Imaging Processing and ROI segmentation: 



For each MRI sequence, N4ITK MRI bias correction and rotation to volume 

plane were done. We perform N4ITK MRI bias correction with N4 algorithm in 3D 

Slicer software (version 4.10.2, www.slicer.org). This algorithm is based on the ITK 

filters contributed in the following publication: Tustison N, Gee J "N4ITK: Nick's 

N3 ITK Implementation For MRI Bias Field Correction" (which is introduced in 

detail at http://hdl.handle.net/10380/3053), and the rotation to volume plane was 

performed using classical module in 3D Slicer software (version 4.10.2, 

www.slicer.org). 

Since the intensity values of MR images distribute widely, we used z-score 

normalization to make the image intensities have the properties of a standard normal 

distribution with     and    , where   is the mean value of the intensities, 

and   is the standard deviation. The normalized values (also called z scores) of the 

image intensities (x) were calculated as follows: 

   
   

 
 

The segmentation module in the 3D Slicer software (version 4.10.2, 

www.slicer.org) did the preliminary semi-automatic segmentation according to 

intensity threshold segmentation. The module is meant to create easy and effecient 

segmentations on high slice resolution medical images. It can calculate subtraction 

maps, register images, normalize images, create 3D volumetric ROIs using Delaunay 

Triangulation, and finally threshold intensities within an ROI. Then the manual 

corrections such as relabeling and holes filling were done by two professional 

radiologists with more than ten years of experience in consensus. 

Supporting Material III: Feature Extraction: 

Before features extraction, the voxel size of each sequence was resampled to 1 

× 1 × 1 mm3 and the bin width of gray-level histogram was fixed as 25. After 

z-score normalization of image pixel intensities, a total of 1408 quantitative imaging 

features including 13 shape based features, 18 first order statistical features, 75 

textural features from original images and 1302 derived features (744 features of 

Gabor-bank wavelet filtered images and 558 features of Law’s filtered images), were 

http://www.slicer.org/
http://hdl.handle.net/10380/3053
http://www.slicer.org/
http://www.slicer.org/


extracted respectively for T2 images, ADC maps and T1-DCE images using 

corresponding ROIs. 

(1) Shape based features 

In this group of features, we included descriptors of the three-dimensional shape and 

size of the tumor region. Let in the following definitions V denote the volume and A 

the surface area of the volume of interest. We determined the following shape and 

size based features: 

1. Compactness 1= 2
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2. Compactness 2=
2
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3. Maximum 3d diameter: The maximum three-dimensional tumor diameter is 

measured as the largest pairwise Euclidean distance, between voxels on the 

surface of the tumor volume. 

4. Spherical disproportion = 
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5. Sphericity =
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6. Surface area: The surface area is calculated by triangulation (i.e. dividing the 

surface into connected triangles) and is defined as: 
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Where N is the total number of triangles covering the surface and a, b and c are 

edge vectors of the triangles. 

7. Surface to volume ratio = A

V
 

8. Volume: The volume (V) of the tumor is determined by counting the number of 

pixels in the tumor region and multiplying this value by the voxel size. 

 

(2) First order statistical features 

The following 17 statistical features were extracted. 



Let X be the three dimensional image matrix with N voxels of the ROI and P be the 

first order histogram distribution with Ng discrete intensity levels. 

1. IntensityMax: The maximum intensity value of X. 

2. IntensityMin: The minimum intensity value of X. 

3. Median: The median intensity value of X. 

4. IntensityStd:  
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9. Range: 

The range of intensity values of X. 

10. Mean absolute deviation: 

The mean of the absolute deviations of all voxel intensities around the mean 

intensity value 

11. Energy: 
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17. Mass: 

The sum intensity value of 𝑋. 

 

(3) Textural features 

Second order statistic texture features, and higher order statistic texture features were 

extracted. Forty-four second order statistic texture features could be calculated from 

the Gray Level Co-occurrence Matrix (GLCM). Forty-six high order statistic texture 

features were calculated from the Gray Level Size Zone Matrix (GLSZM), Gray 

Level Run Length Matrix (GLRLM), and Neighborhood Gray Tone Difference 

Matrix (NGTDM). All of the GLCM, GLSZM, GLRLM, and NGTDM based texture 

feature were calculated using a 2D analysis and then averaged for all slices within 

the three-dimensional tumor volume. 

 

Gray-Level Co-Occurrence Matrix based features (GLCM) 

GLCM based features were second-order statistical texture features, which are 

defined as a matrix M (i, j; δ, θ) to indicate the relative frequency with intensity 



values of pixels (i and j) at the distance of δ in direction θ. 

Let: 

M(i, j) be the co-occurrence matrix for an arbitrary δ and θ, set δ=1 and θ=0 and 
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Ng be the number of discrete intensity levels in the images, set as 25, 

μ be the mean of M(i, j), 
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5. Homogeneity 2: 
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14. Cluster Shade 
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20. Informational measure of correlation 2 (IMC2): 
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Gray Level Run Length Matrix based features (GLRLM) 

GLRLM based features were high-order statistical texture feature, which were 

defined as P(i, j; θ) to indicate the number of times j and gray level i appear 



consecutively in the direction θ. 

Let: 

P(i, j; θ) be the run-length matrix P for a direction θ, set θ=0 and 45 

Ng be the number of discrete intensity values, 

Nr be the number of different run lengths, and 

Np be the number of voxels in the ROI. 

1. Short Run Emphasis (SRE): 
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2. Long Run Emphasis (LRE): 
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3. Gray-Level Nonuniformity (GLN): 
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4. Run-Length Nonuniformity (RLN): 
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5. Run Percentage (RP): 
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6. Low Gray-Level Run Emphasis (LGRE): 
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7. High Gray-Level Run Emphasis (HGRE): 
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8. Short Run Low Gray-Level Emphasis (SRLGE): 
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9. Short Run High Gray-Level Emphasis (SRHGE): 
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10. Long Run Low Gray-Level Emphasis (LRLGE): 
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11. Long Run High Gray-Level Emphasis (LRHGE): 
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Gray Level Size Zone Matrix based features (GLSZM) 

GLSZM based features were high-order statistical texture features, which were 

defined as P(i, j) to indicate the areas of size j and gray level i. 

Let: 

P(i, j) be the size zone of matrix P, 

Ng be the number of discrete intensity values, 

Nr be the number of different areas sizes, 

Np be the number of voxels in the ROI. 

1. Small Zone Emphasis (SZE): 
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2. Large Zone Emphasis (LZE): 
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3. Gray-Level Nonuniformity (GLN): 

2

1 1

1 1

[ (i, j)]

(i, j)

g r

g r

N N

i j

N N

i j

P

P

 

 

 



 

4. Zone-Size Nonuniformity (ZSN): 
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5. Zone Percentage (ZP): 
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6. Low Gray-Level Zone Emphasis (LGZE): 
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7. High Gray-Level Zone Emphasis (HGZE): 
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8. Small Zone Low Gray-Level Emphasis (SZLGE): 
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9. Small Zone High Gray-Level Emphasis (SZHGE): 
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10. Large Zone Low Gray-Level Emphasis (LZLGE): 
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11. Large Zone High Gray-Level Emphasis (LZHGE): 
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12. Gray-Level Variance (GLV): 
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13. Zone-Size Variance (ZSV): 
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Neighborhood Gray Tone Difference Matrix based features (NGTDM) 

NGTDM based features were high-order statistical texture features, which were 

defined as S(i) to indicate the sum of the absolute value between gray intensity level 

i and it’s neighbors’ average intensity. 

Let: 

S(i) be the sum of absolute value between gray intensity level i and its neighbors’ 

average intensity, 

C(i) be the number of voxels with the gray intensity level I, 

Ng be the number of discrete intensity values. 

1. Coarseness: 
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3. Busyness: 
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5. Strength: 
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(4) Wavelet features: first order statistical and texture features of a wavelet 

filtered image. 

A total of 1302 derived features were extracted for each sequence, with the 

Gaussian filter and a wavelet-based filter. These features were computed on the 

filtered images. The original image was filtered by 8 filters. For each image, the first 

order statistical and texture features were computed. Finally, 3906 wavelet-based 

features were extracted. 

Supporting Material IV: Radiomics Feature normalization: 

The z-score normalization process of each feature includes two steps: for one feature, 

the mean value was subtracted, and then the standard deviation was divided by the 

result, finally, all the features had a mean value of 0 and a standard deviation of 1. 

The calculating formula of feature normalization is as follows: 

   
   

 
 


