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Fig. S1: Results of the bootstrap analyses based on 100 MDE replicates. (A) From
Asia to North America; (B) from North America to Asia.



Table S1: Inferred age of dispersal events between eastern Asia (AS) and North
America (NA). Given are lower and upper bounds of the 95% highest posterior
density in million years before present.

Taxon 95% HPD Dispersal
Upper Lower direction
bound bound

Woodwardia (Blechnaceae, Polypodiales) 54 31 NA—AS
Woodwardia (Blechnaceae, Polypodiales) 40 15 AS—NA
Picea (Pinaceae, Coniferales) 60 34 NA—AS
Picea (Pinaceae, Coniferales) 63 25 NA—AS
Osmorhiza (Apiaceae, Apiales) 11 6 AS—NA
Prunus (Rosaceae, Rosales) 20 2 AS—NA
Prunus (Rosaceae, Rosales) 26 3 AS—NA
Prunus (Rosaceae, Rosales) 8 25 AS—NA
Prunus (Rosaceae, Rosales) 44 18 AS—NA
Patis and Ptilagrostis (Poaceae, Stipeae) 7 2 AS—NA
Aristolochia (Aristolochiaceae, Aristolochiales) 49 12 NA—AS
Astilbe (Saxifragaceae, Rosales) 24 10 AS—NA
Ranunculeae (Ranunculaceae, Ranunculales) 10 2 AS—NA
Ranunculeae (Ranunculaceae, Ranunculales) 10 3 AS—NA
Ranunculeae (Ranunculaceae, Ranunculales) 7 1 NA—AS
Ranunculeae (Ranunculaceae, Ranunculales) 4 0 NA—AS
Scrophularia (Scrophulariaceae, Tubiflorae) 29 28 AS—NA
Thuja (Cupressaceae, Pinales) 60 59 AS—NA
Thuja (Cupressaceae, Pinales) 48 14 NA—AS
Hamamelis (Hamamelidaceae, Saxifragales) 33 6 AS—NA
Circaea (Onagraceae, Myrtales) 31 16 AS—NA
Circaea (Onagraceae, Myrtales) 9 2 AS—NA
Circaea (Onagraceae, Myrtales) 12 4 AS—NA
Zizania (Poaceae, Cyperales) 3 0 NA—AS
Zizania (Poaceae, Cyperales) 4 2 NA—AS
Toxicodendron (Anacardiaceae, Sapindales) 21 9 AS—NA
Toxicodendron (Anacardiaceae, Sapindales) 42 23 NA—AS
Phryma (Phrymaceae, Tubiflorae) 4 2 NA—AS
Mitchelleae (Rubiaceae, Rubiales) 20 6 AS—NA
Calycanthus (Calycanthaceae, Ranales) 69 5 AS—NA
Lathyrus (Leguminosae, Rosales) 2 0 AS—NA
Taxus (Taxaceae, Taxales) 16 7 NA—AS
Thuja (Cupressaceae, Pinales) 18 3 AS—NA
Rhus(Anacardiaceae, Sapindales) 30 17 NA—AS
Pseudotsuga (Pinaceae, Pinales) 33 29 NA—AS
Orontioideae (Alismatales, Dicotyledons) 29 2 AS—NA
Kelloggia (Rubiaceae, Rubiales) 18 1 AS—NA

Aesculus (Sapindaceae, Sapindales) 57 54 AS—NA




Aesculus (Sapindaceae, Sapindales)

Aesculus (Sapindaceae, Sapindales)

Sect. Quinguefoliae (Pinus, Pinaceae, Pinales)
Sect. Quinguefoliae (Pinus, Pinaceae, Pinales)
Sect. Quinguefoliae (Pinus, Pinaceae, Pinales)
Sect. Quinguefoliae (Pinus, Pinaceae, Pinales)
Sect. Quinguefoliae (Pinus, Pinaceae, Pinales)
Juniperus (Cupressaceae, Pinales)

Juniperus (Cupressaceae, Pinales)

Juniperus (Cupressaceae, Pinales)

Abies (Pinaceae, Pinales)

Abies (Pinaceae, Pinales)

Peracarpeae (Campanulaceae, Campanulales)
Peracarpeae (Campanulaceae, Campanulales)
Peracarpeae (Campanulaceae, Campanulales)
Calocedrus (Cupressaceae, Pinales)
Altingiaceae (Saxifragales, Dicotyledons)
Rhodiola (Crassulaceae, Saxifragales)
Dryopteridaceae (Polypodiales, Equisetopsida)
Rana (Ranidae, Anura)

Rana (Ranidae, Anura)

Hyla (Hylidae, Anura)

Hyla (Hylidae, Anura)

Bufonidae (Anura, Amphibian)

Bufonidae (Anura, Amphibian)

Natricine (Colubridae, Serpentiformes)

Rat snakes (Colubridae, Serpentiformes)

Rat snakes (Colubridae, Serpentiformes)
Geoemydidae (Tesudines, Reptilia)
Geoemydidae (Tesudines, Reptilia)

Emys (Emydidae, Testudines)

Elapoidea (Serpentiformes, Reptilia)
Plestiodon (Scincidae, Lacertiformes)
Viperidae (Squamata, Reptilia)

Viperidae (Squamata, Reptilia)

Dipodoidea (Rodentia, Mammalia)

Mustela (Mustelidae, Carnivora)

Microtus (Circetidae, Rodentia)

Myotis (Mespertilionidae, Chiroptera)
Leporidae (Lagomorpha, Mammalia)
Melaphidina (Aphidoidea, Insecta)
Limnogonus (Gerridae, Hemiptera)

Aporini (Pompilidae, Hymenoptera)
Papilionidae (Lepidoptera, Insecta)

57
70
16
59
51
31
21
99
38
17
34
35
19
12

32
76
10
85
45
55
42
21
41
39
28
58
42
16
25
17
31
40
30
18
30

13
11
55
39
22
29

25
16

30
25
11

25
15

20

12

21
36

39
25
35
30
15
32
29
23
32
26

21
25
20
11
16

29
38
15
18

AS—NA
AS—NA
AS—NA
NA—AS
NA—AS
NA—AS
NA—AS
AS—NA
AS—NA
AS—NA
AS—NA
AS—NA
AS—NA
AS—NA
AS—NA
AS—NA
AS—NA
AS—NA
NA—AS
AS—NA
AS—NA
NA—AS
NA—AS
NA—AS
NA—AS
AS—NA
AS—NA
AS—NA
AS—NA
NA—AS
NA—AS
AS—NA
AS—NA
AS—NA
NA—AS
AS—NA
AS—NA
AS—NA
AS—NA
NA—AS
AS—NA
AS—NA
NA—AS
AS—NA




Papilionidae (Lepidoptera, Insecta)

Papilionidae (Lepidoptera, Insecta)

Papilionidae (Lepidoptera, Insecta)

Apaturinae (Nymphalidae, Lepidoptera, Insecta)
Apaturinae (Nymphalidae, Lepidoptera, Insecta)

Sect. Phalloideae (Amanita, Amanitaceae, Agaricales)
Sect. Phalloideae (Amanita, Amanitaceae, Agaricales)
Sect. Phalloideae (Amanita, Amanitaceae, Agaricales)
Sect. Phalloideae (Amanita, Amanitaceae, Agaricales)
Sect. Phalloideae (Amanita, Amanitaceae, Agaricales)

32
38
19
33
28
78
49
41
83
41

17
24
10
22
16
25
10

17

AS—NA
NA—AS
NA—AS
AS—NA
AS—NA
AS—NA
AS—NA
AS—NA
AS—NA
NA—AS




Supplementary Information: Details on phylogenetic and biogeographic analyses

We collected 54 phylogenetic data using sequences obtained from GenBank,

re-calculated their divergence times, and estimated ancestral area of them. Dispersal

events from these results were used to conduct biogeographical meta-analyses in this

study. On account of differences in fossil calibration points, outgroups, and gene

fragments used in our study, results of calibrated phylogenies may be different from

published ones. In case our calibration departs dramatically from the published

divergence times, we also compared them in this section. Phylogenetic and

biogeographic analyses details were listed below:

Woodwardia (Blechnaceae, Polypodiales)
The phylogeny of Woodwardia published by Li et al. [50] was re-analysed using

rbcL and rps4 sequences. The alignment length of data set was 1323 bp for rbcL and
1007 bp for rps4, respectively. To calibrate the phylogeny, we used the earliest
divergence of the woodwardioid ferns (55.8 Ma; log-normal calibration density; offset
= 54 Ma, s.d. = 0.5 Ma, 5-95% interquantile range = 54.8-58.15 Ma) as the
calibration point because fossils assignable to Woodwardia are known from
throughout the Cenozoic [51]. We applied an uncorrelated lognormal relaxed
molecular clock using a HKY substitution model for rbcL and rps4 data set. The
resulting mean substitution rate was 0.05% per Ma (95% CI = 0.04-0.07% per Ma).
We defined the biogeographic areas as East Palearctic, West Palearctic, and North

America. Root ages of this taxus were 56.78 Ma (95% HPD: 54.46-58.08Ma) for our

calibration and 56.51+2.89 Ma for the published divergence times.

Picea (Pinaceae, Coniferales)
The phylogeny of genus Picea published by Ran et al. [52] was re-analysed using

two chloroplast (trnC-trnD and trnT-trnF) and one mitochondrial (rps3) as well as
three single-copy nuclear genes (FTL1, LFY and s.d.D1). The data set included 3511
bp for FTL1, 3063 bp for LFY, 2332 bp for s.d.D1, 6614 bp for rps3, and 4001 bp for
combined sequences of two chloroplast genes. Following the study of Lockwood et al.

[53], we used two fossil calibration points. For the root constraint (the most recent



common ancestor of the three genera Cathaya, Picea and Pinus), we used a standard
deviation of 0.5, a prior mean of 2.38, and an offset at 131.1 Ma based on the earliest
fossil record of Picea burtonii from British Columbia [54]. In addition, the earliest
fossil of the Pinus subgenus Strobus [55] was used to calibrate the divergence time
between two subgenera of Pinus, represented by the species P. thunbergii and P.
strobus (mean = 2.38, s.d. = 0.25, offset at 73 Ma). We applied a uncorrelated
lognormal relaxed molecular clock using a HKY+G substitution model for FTL1 data
set, a GTR+1+G substitution model for LFY data set, a GTR+G substitution model for
s.d.D1 data set, a GTR+I+G substitution model for rps3 data set, and a GTR+G
substitution model for combined data set of two chloroplast genes. The resulting mean
substitution rate was 0.04% per Ma (95% CI = 0.03-0.05% per Ma). We defined the
biogeographic areas as East Palearctic, West Palearctic, and North America. Root ages
of this taxus were 83.22 Ma (95% HPD: 78.95-88.78 Ma) for our calibration and

83.36 Ma (95% HPD: 78.35-89.16 Ma) for the published divergence times.

Osmorhiza (Apiaceae, Apiales)
The phylogeny of genus Osmorhiza published by Yi et al. [56] was re-analysed using

nine chloroplast markers and two nuclear loci. The chloroplast data set included
atpB-rbcL, ndhF, psbA-trnH, psbE-petL, rpll6, rpsl6, trnL-F, rpl32-trnL, and
trnQ-rps16 (9352 bp total). The nuclear data set included ITS and ETS (891 bp total).
There is no fossil record for Osmorhiza and its close relatives, and fossils are rare in
the family Apiaceae [57,58]. Results of Banasiak et al. [57], which calculated the
divergence times of Apiaceae subfamily Apioideae, showed that the divergence
between the [Chaerophyllum - Sphallerocarpus] clade and the [Anthriscus -
Geocaryum - Kozlovia - Myrrhis - Neoconopodium - Krasnovia-Osmorhiza] clade
was estimated to be 16.43 Ma (95% HPD: 12.65-18.64 Ma), and between Osmorhiza
and the [Anthriscus - Geocaryum - Kozlovia - Myrrhis - Neoconopodium - Krasnovia]
clade to be 11.08 Ma (95% HPD: 7.85-12.65 Ma). In this study, we used a log-normal
prior for dating Osmorhiza clades, with the divergence of the Chaerophyllum clade

from the [Anthriscus - Myrrhis - Osmorhiza] clade set at a stdev of 0.4, a prior mean



of 0.01, and an offset of 15.4 Ma, and the divergence of the [Anthriscus - Myrrhis]
clade and the Osmorhiza clade set at a s.d. of 0.4, a prior mean of 0.08, and an offset
of 10 Ma. We applied an uncorrelated lognormal relaxed molecular clock using a
GTR+I+G substitution model for the chloroplast data set, and a GTR+I substitution
model for the nuclear data set. The resulting mean substitution rate was 0.12% per Ma
(95% CI = 0.09-0.16% per Ma). We defined the biogeographic areas as East Asia,

Northern America, and Southern America. Root ages of this taxus were 11.34 Ma (95%

HPD: 10.44-12.89 Ma) for our calibration and 5.51 Ma for the published divergence

times.

Prunus (Rosaceae, Rosales)
The phylogeny of Prunus published by Chin et al. [59] was re-analyzed using plastid

genes. The data set included 806 bp for matK, 574 bp for rbcL, 522 bp for trnL-F, and
1570 bp for trnS-G. We applied a calibration ages to the divergence node of Prunus
(log-normal calibration density; mean = 1.0 Ma, s.d. = 0.9 Ma, offset = 56 Ma) from
Wang et al. [60] as the calibration point. We applied an uncorrelated lognormal
relaxed molecular clock using a HKY+G substitution model for the matK data set, a
GTR+I substitution model for the rbcL data set, a GTR substitution model for the
trnL-F data set, and a HKY+G substitution model for the trnS-G data set. The
resulting mean substitution rate was 0.03% per Ma (95% CI = 0.027-0.047% per Ma).
We defined the biogeographic areas as East Asia, Europe, western Asia, North

America, Southeast Asia, South America and Africa. Root ages of this taxus were

58.43 Ma (95% HPD: 56.12-65.49 Ma) for our calibration and 60.7 Ma (95% HPD:

56.4—64.7 Ma) for the published divergence times.

Patis and Ptilagrostis (Poaceae, Stipeae)
The origin and dispersal of two genera, Patis and Ptilagrostis which published by

Romaschenko et al. [61] was re-analysed using four plastid DNA sequences and two
nuclear DNA sequences. The plastid data set included 783 bp for ndhF, 826 bp for
rpl32-trnL, 771 bp for rpsl6-trnK, and 786 bp for rpsl16 intron.The nuclear data set



includes 610 bp for ITS and 304 bp for At103. To calibrate the phylogeny, we used the
earliest fossil of [Stipeae - Stipidium] which morphologically resembles contemporary
Hesperostipa and Piptochaetium [62-64]. The calibration was done using a 21 Ma
offset and standard deviation of 0.8, which resulted in 95% prior distribution of
21.27-24.73 Ma. We applied an uncorrelated lognormal relaxed molecular clock
using a GTR+I+G substitution model for the ITS data set, a HKY+G substitution
model for the At103 data set, a GTR+G substitution model for the ndhF data set, a
HKY+G substitution model for the rpl32-trnL data set, a HKY+G substitution model
for the rpsl16-trnK data set, and a HKY substitution model for the rpsl6 intron data
set. The resulting mean substitution rate was 0.07% per Ma (95% CI = 0.06-0.087%
per Ma). We defined the biogeographic areas as East Palearctic, West Palearctic,

North America and South America. Root age of these taxa was 67.39 Ma (95% HPD:

45.21-96.27 Ma) for our calibration and there was no exact data of the dispersal event

for the published divergence times.

Aristolochia (Aristolochiaceae, Aristolochiales)
The phylogeny of Aristolochia published by Gonzdez et al. [65] was re-analysed

using matK gene, trnK intron and trnK-psbA spacer sequences (3152 bp total).
Although dated fossils exist for Aristolochia, none of them can be placed
unambiguously within a particular clade because they correspond only to leaves. Thus,
we took calibration points from closely related Piperales lineages. In accordance with
Symmank et al. [66], we used the Saururaceae fossil Saururus tuckerae from the
mid-Eocene (48.5 Ma; log-normal calibration density, mean = 0.4 Ma, s.d. = 0.01 Ma,
offset = 47 Ma) [67] as well as the pollen fossil Lactori pollenites (92 Ma; log-normal
calibration density, mean = 0.0 Ma, s.d. = 0.01 Ma, offset = 91 Ma) [68,69]. These
two fossils are the only two well-dated and unambiguously assigned records in
Piperales. We applied an uncorrelated lognormal relaxed molecular clock using a
GTR+G substitution model for the whole data set. The resulting mean substitution
rate was 0.078% per Ma (95% CI = 0.055-0.1% per Ma). We defined the

biogeographic areas as East Palearctic, West Palearctic and North America._Root ages



of this taxus were 46.81 Ma (95% HPD: 26.5-73.87 Ma) for our calibration and 30.24

Ma (95% HPD: 19-43 Ma) for the published divergence times.

Astilbe (Saxifragaceae, Rosales)
Phylogenetic analyses were conducted for Astilbe (Saxifragaceae) by Zhu et al. [70]

using sequences of nuclear ribosomal internal transcribed spacer (ITS; 726 bp) and
plastid sequences (2210 bp total) including matK, trnL-trnF and psbA-trnH regions.
Based on the oldest fossil of Saxifragales from the Late Cretaceous of New Jersey,
USA, with fossilized flowers and fruits (89.3-93.5 Ma, [71]), we calibrated the stem
age of the [lteaceae+Pterostemonaceae] clade using a mean age of the fossil as 91.4
Ma with the standard error of 1.0 to roughly match the fossil age of 89.3-93.5 Ma.
Based on leaf fossils of Ribes L. of Grossulariaceae (50 Ma) and leaf records of Ribes
(45 Ma), we calibrated the minimum stem age of Grossulariaceae to be 50 Ma with
the standard error of 0.6 according to Wehr & Hopkins [72] and Hermsen [73]. We
applied an uncorrelated lognormal relaxed molecular clock using a GTR+I+G
substitution model for the ITS data set, and a GTR+G substitution model for the
plastic sequences data set. The resulting mean substitution rate was 0.14% per Ma (95%
Cl =0.12-0.16% per Ma). We defined the biogeographic areas as eastern Eurasia and
North America._Root ages of this taxus were 28.28 Ma (95% HPD: 18.67-36.96 Ma)

for our calibration and 20.69 Ma (95% HPD: 12.14-30.22 Ma) for the published

divergence times.

Ranunculeae (Ranunculaceae, Ranunculales)
The phylogeny of Ranunculeae published by Emadzade &H&andl [74] was

re-analysed using ITS, matK-trnK and psbJ-petA sequences. The data set included 730
bp for ITS, 1958bp for matK-trnK, and 649 bp for psbJ-petA. The age of the split of
Ranunculus (Ranunculeae) and Clematis (Anemoneae) estimated as 46.6 Ma, based
on a fossil calibrated study of Ranunculales [75]. We used normal prior distributions
for this point at a mean of 46 Ma and a stdev of 2 Ma. We used a minimum age for

Myosurus of 23 Ma with an exponential prior distribution with an offset of 23 Ma and



a mean of 1 Ma. Within Ranunculus, we further used the divergence time between
Ranunculus carpaticola and Ranunculus notabilis (0.914 Ma) according to Nei [76].
A normal distribution was used for the age of the split with the mean of 0.914 Ma. We
applied an uncorrelated lognormal relaxed molecular clock using a GTR substitution
model for the ITS data set, a GTR+1+G substitution model for the matK-trnK data set,
and a HKY+G substitution model for the psbJ-petA data set. The resulting mean
substitution rate was 0.33% per Ma (95% CI = 0.22-0.44% per Ma). We defined the
biogeographic areas as Asia, Europe, North America, South America, Africa and

Australia. Root ages of this taxus were 20.45 Ma (95% HPD: 13.62—29.01 Ma) for

our calibration and 18.11 Ma for the published divergence times.

Scrophularia (Scrophulariaceae, Tubiflorae)
The phylogeny of genus Scrophularia L. published by Scheunert and Heubl [77] was

re-analysed using nuclear ribosomal ITS. The data set included 590 bp total. To
calibrate the phylogeny, we decided to follow Bremer et al. [78], which were probably
more reliable than other studies. Bremer et al. [78] dated the separation of
Scrophulariaceae from the Plantaginaceae at 76 Mya (normal calibration density;
mean = 76 Ma, s.d. = 2Ma). We applied an uncorrelated lognormal relaxed molecular
clock using a GTR+G substitution model for the ITS data set. The resulting mean
substitution rates was 0.13% per Ma (95% CI = 0.09-0.16% per Ma). We defined the

biogeographic areas as East Asia, Europe and North America._Root ages of this taxus

were 28.56 Ma (95% HPD: 28.36—28.75 Ma) for our calibration and 28.56 Ma (95%

HPD: 13.97-46.5 Ma) for the published divergence times.

Thuja (Cupressaceae, Pinales)
Nucleotide sequences of five cpDNA regions (5170 bp total), three nuclear genes

(6040 bp total) were employed to reconstruct the phylogeny of Thuja by Peng et al.
[79]. The cpDNA data set included rpll6, Atpl-rpoC1, trnS-trnM, trnS-trnG and
trnT-trnF. The nuclear genes data set included ITS, LEAFY and 4CL. The age of the

most recent common ancestor of Thuja was fixed at 60 Mya based on the warliest

10



reliable fossil record of the genus from the middle Paleocene of Ellesmere Island in
the Canadian Arctic [80-82]. To calibrate the phylogeny we used a normal prior
distribution with a mean of 60 Ma and a stdev of 0.5 Ma. We applied an uncorrelated
lognormal relaxed molecular clock using a GTR+G substitution model for the cpDNA
data set and a HKY+I substitution model for the nuclear gene data set. The resulting
mean substitution rates was 0.018% per Ma (95% CI = 0.015-0.025% per Ma). We

defined the biogeographic areas as East Asia and North America._Root ages of this

taxus were 59.99 Ma (95% HPD: 59.02—60.99 Ma) for our calibration and 60 Ma for

the published divergence times.

Hamamelis (Hamamelidaceae, Saxifragales)
The evolution of genus Hamamelis was re-analysed through phylogenetic analyses

[83]. Phylogenetic relationships of all Hamamelis species were reconstructed using
sequence data from six plastid (4961 bp total) and two nuclear DNA regions (1053 bp
total). The plastid data set included trnL-F, psaA-ycf3, rpsl6, matK, atpB-rbcL, and
psbA-trnH. The nuclear region data set included ITS and ETS. The stem age of
Altingiaceae was assigned at 90 Ma, based on fossil inflorescences, fruits and pollen
of Microaltingia [84]. The divergence of the clade (Liquidambar acalycina, L.
formosana) was constrained at 15.6 Ma based on the fossil L. changii [85,86]. Within
Hamamelidaceae, the stem Corylopsis was assigned at 50 Ma based on fossil leaves

of Corylopsis reedae in the lower Eocene [87]. We also used the earliest known fossil

Fothergilla malloryi in the lower Eocene [87] as a calibration point (the age is 50 Ma).

These constraining ages were set to be normally distributed with a standard deviation
(s.d. = 2). We applied an uncorrelated lognormal relaxed molecular clock using a
GTR+G substitution model for the plastid data set, and a GTR+I+G substitution
model for the nuclear region data set. The mean substitution rate was 0.049% per Ma
(95% CI = 0.042-0.056% per Ma). We defined the biogeographic areas as East Asia
and North America._Root ages of this taxus were 23.07 Ma (95% HPD: 8.71-42.88

Ma) for our calibration and 10.6 Ma (95% HPD: 4.2-19.6 Ma) for the published

divergence times.
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Circaea (Onagraceae, Myrtales)
The phylogeny of Circaea published by Xie et al. [88] was re-analysed using three

plastid markers (3545 bp total) and nrITS sequences (648 bp total). The plastid data
set included petB-petD, rpl16, and trnL-F. To calibrate the phylogeny, we followed
Berry et al. [89] and constrained the Circaea-Fuchsia node with the age of 41.5 Ma
(the average age from different fossil constrainrts). The root such as the divergence
time of Hauya and the [Circaea — Fuchsia] clade was constrained to be 52.6 Ma
estimated by Berry et al. [89]. The time estimate of the nodes was regarded as
minimum ages. We applied an uncorrelated lognormal relaxed molecular clock using
a GTR+1+G substitution model for the plastid data set, and a HKY substitution model
for the nrITS data set. The resulting mean substitution rate was 0.039% per Ma (95%
Cl = 0.031-0.048% per Ma). We defined the biogeographic areas as Eastern
Palearctic, Western Palearctic, eastern North America, western North America, South

America, Central America and the South Pacific area. Root ages of this taxus were

23.77 Ma (95% HPD: 16.42—31.13 Ma) for our calibration and 16.17 Ma (95% HPD:

7.69-24.53 Ma) for the published divergence times.

Zizania (Poaceae, Cyperales)
The phylogeny of Zizania published by Xu et al. [90] was re-constructed using

sequences of seven DNA fragments (5597 total) from chloroplast, mitochondrial and
nuclear genomes. The data set included atpB-rbcL, matK, rpsl6, trnL-F, trnH-psbA,
nadl, and Adhla. Two calibration points were used to estimate the divergence time
within Zizania: The minimum age for the stem node of Oryzeae was 34.5 Ma (normal
calibration density; s.d. = 6.8 Ma) obtained from Vicenti et al. [91]. And the minimum
age for the stem node of Leersia was 7 Ma (normal calibration density; s.d. = 2 Ma),
which was the spikelets found in a Miocene excavation in Germany [92]. We applied
an uncorrelated lognormal relaxed molecular clock using a HKY substitution model
for the whole data set. The resulting mean substitution rate was 0.26% per Ma (95%

Cl = 0.15-0.38% per Ma). We defined the biogeographic areas as Asia, North

12



America and South America. Root ages of this taxus were 3.85 Ma (95% HPD: 2.19—

6.2 Ma) for our calibration and 3.74 Ma (95% HPD: 1.04—7.23 Ma) for the published

divergence times.

Toxicodendron (Anacardiaceae, Sapindales)
The phylogeny of Toxicodendron published by Nie et al. [93] was re-constructed

using sequences of two chloroplast DNA fragments and three nuclear DNA fragments.
The data set included 3024 bp for cpDNA and 1808 bp for nrDNA. The cpDNA data
set contained fragments of ndhF and trnL-F. The nrDNA data set contained fragments
of ITS, ETS, and NIA-i3. Wood and pollen fossils of Anacardiaceae have been dated to
the Paleocene [94,95]. Thus, a normally distributed calibration prior with the mean 60
Ma and standard deviation 3 Ma was constrained for the root age of the family.
Reliable macro-fossils of Rhus were found from western North America in the middle
Eocene [96]. The minimum stem age of Rhus was thus calibrated to be 44 Ma with
standard deviation of 1 Ma. We applied an uncorrelated lognormal relaxed molecular
clock using a GTR+G substitution model from both of the chloroplast and nuclear
data set. The mean substitution rate was 0.11% per Ma (95% CI = 0.092-0.13% per
Ma). We defined the biogeographic areas as Asia, North America, South America and

Africa. Root age of this taxus was 32.30 Ma (95% HPD: 23.39-42.39 Ma) for our

calibration and there was no exact data of the root age for the published divergence

times.

Phryma (Phrymaceae, Tubiflorae)
The phylogeny of Phryma published by Nie et al. [97] was re-analysed using

sequences of nuclear ribosomal ITS and chloroplast rps16 and trnL-F. The data set
included 614 bp for ITS, 844 bp for rps16, and 889 bp for trnL-F. To allow multiple
fossil calibrations in a broad phylogenetic framework, sequences of some additional
taxa were obtained in this study. To calibrate the phylogeny, we used three calibration
points between outgroups in this study: The divergence time of Verbena,

Stachytarpheta and Jacaranda, Chilopsis, Macrocatalpa, Catalpa, Campsis, Tecoma
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was constrained to be 49.4 Ma (normal calibration density; s.d. = 2 Ma). The
divergence time of Chilopsis and Macrocatalpa, Catalpa was constrained to be 35 Ma
(normal calibration density; s.d. = 1 Ma). The divergence time of Fraxinus and
Osmanthus and Olea was constrained to be 37 Ma (normal calibration density; s.d. =
1 Ma). We applied an uncorrelated lognormal relaxed molecular clock using HKY
substitution model for ITS, rps16 and trnL-F, respectively. The mean substitution rate
was 0.35% per Ma (95% CI = 0.18-0.54% per Ma). We defined the biogeographic

areas as Asia and North America. Root ages of this taxus were 3.733 Ma (95% HPD:

2.72-4.73 Ma) for our calibration and 3.68+2.46 Ma for the published divergence

times.

Mitchelleae (Rubiaceae, Rubiales)

The phylogeny of Mitchella and its close relative Damnacanthus published by Huang
et al. [98] was re-analysed using sequences of the nuclear internal transcribed spacer
(ITS; 898 bp) and three plastid markers (atpB, 1091 bp; rbcL, 1409 bp; trnL-F, 1284
bp). To allow multiple fossil calibrations in a broad phylogenetic framework of
Rubiaceae, sequences of 63 additional taxa were obtained in this study. We followed
Antonelli et al. [99] in using the oldest fossil of this genus to place a minimum age
constraint of 33.9 Ma (lognormal calibration density), which was fixed by using the
ending point of the geological epoch to which the fossil belongs as the stem age of
Cephalanthus. The pollen fossil of Faramea have been reported from the Late Eocene
[100]; we thus used 37 Ma (lognormal calibration density) to set a minimum age of
the Faramea stem node. Saenger [101] reported pollen fossil age of Scyphiphora,
accordingly we used 23 Ma (lognormal calibration density) as a minimum age prior
for the Scyphiphora stem node. According to the phylogenetic analysis of Morinda
[102] and the well preserved fossil Morinda chinensis dated to the late Early to the
early Late Eocene [103], we calibrated the stem age of Morinda with the prior of 44.5
Ma (normal calibration density; s.d. = 3 Ma). To root the tree, 78 Ma was enforced as
the divergence time between Rubiaceae and other Gentianales, based on Bremer et al.

[78], who used a broad sampling of asterids and multiple fossils. We applied an

14



uncorrelated lognormal relaxed molecular clock using a GTR+I+G substitution model
for the ITS data set, a HKY+G substitution model for the atpB data set, a GTR+I+G
substitution model for the rbcL data set and a GTR+G substitution model for the
trnL-F data set. The resulting mean substitution rate was 0.12% per Ma (95% CI =
0.11-0.16% per Ma). We defined the biogeographic areas as East Asia and North
America._Root age of this taxus was 60.24 Ma (95% HPD: 50.21-70.54 Ma) for our

calibration and there was no exact data of the root age for the published divergence

times.

Calycanthus (Calycanthaceae, Ranales)
The phylogeny of Calycanthaceae published by Zhou et al. [104] was re-analysed

using rbcL sequences. The data set included 1321 bp for rbcL gene. Calibrations for
the divergence time estimation were as follows: (1) the root of Laurales was
constrained to maximally 140 Ma, based on the onset of angiosperm radiation [105]
[106]. We thus used 140 Ma (normal calibration density; s.d. = 0.5 Ma) to set the age
of the root node. (2) The split between Atherospermataceae and Gomortegaceae was
constrained to 88-86 Ma based on the earliest pollen of Atherospermataceae [107].
We thus used 87 Ma (normal calibration density; s.d. = 1 Ma) to set the age of this
node. (3) The split between neotropical Siparuna and African Glossocalyx was
constrained to 90-88 Ma, based on molecular-clock estimates for Laurales using a
larger sample of family representatives [108]. We thus used 89 Ma (normal calibration
density; s.d. = 1 Ma) to set the age of this node. (4) The divergence of Laureliopsis
was constrained to minimally 83 Ma, based on the oldest Laureliopsis wood [109].
We thus used 83 Ma (normal calibration density; s.d. = 0.6 Ma) to set the age of this
node. We applied an uncorrelated lognormal relaxed molecular clock using a
GTR+I+G substitution model for the rbcL data set. The resulting mean substitution
rate was 0.02% per Ma (95% Cl = 0.015-0.026% per Ma). We defined the

biogeographic areas as East Asia and North America._Root ages of this taxus were

13.04 Ma (95% HPD: 1.71 — 36.02 Ma) for our calibration and 16.0 Ma for the

published divergence times.
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Lathyrus (Leguminosae, Rosales)
The phylogeny of Lathyrus published by Kenicer et al. [110] was re-analysed using

trnL-F, trnS-G and ITS sequences. The data set included 660 bp for trnL-F, 839 bp for
trnS-G, and 595 bp for ITS data set. To calibrate the phylogeny, we used the origin
time of the Fabeae (17.5 Ma; normal calibration density; mean = 17.5 Ma, s.d. = 1.5
Ma) as root age. We applied an uncorrelated lognormal relaxed molecular clock using
a GTR+G substitution model for the trnL-F data set, a GTR+G substitution model for
the trnS-G data set, and a GTR+I+G substitution model for the ITS data set. Mean
substitution were allowed to vary. The resulting mean substitution rates was 0.72%
per Ma (95% CI = 0.6-0.85% per Ma). We defined the biogeographic areas as Asia,

Europe, North America, South America and Africa._ Root ages of this taxus were 6.12

Ma (95% HPD: 5.55-6.7 Ma) for our calibration and 5.4-6.3 Ma for the published

divergence times.

Taxus (Taxaceae, Taxales)
The phylogeny of Taxus published by Li et al. [111] was re-analysed using the

nuclear ribosomal DNA ITS region (1169 bp total). The fossil record of Taxus and
Pseudotaxus allowed them to calibrate a base substitution rate. Fossils of Taxus date
back to the middle Jurassic, and Pseudotaxus has been recorded from the late
Cretaceous [112]. We presume that the two lineages diverged at least by the middle
Jurrassic (165 Ma). We thus used 165 Ma (normal calibration density; s.d. = 10 Ma)
to set the age of the root node of phylogeny. We applied an uncorrelated lognormal
relaxed molecular clock using a HKY substitution nodel for the ITS data aet. The
mean substitution rates was 0.43% per Ma (95% CI = 0.21-0.66% per Ma). We

defined the biogeographic areas as Asia, Europe and North America. Root ages of this

taxus were 11.12 Ma for our calibration and 9.2-16.15 Ma for the published

divergence times.

Thuja (Cupressaceae, Pinales)
The phylogeny of Thuja L. published by Li et al. [113] was re-analysed using
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sequences of nuclear ribosomal DNA internal transcribed spacer (ITS) region. The
data set included 1143 bp. We used a Plio/Pleistocene fossil age (1.8 Ma; normal
calibration density; s.d. = 1 Ma) to calibrate the divergence of T. occidentalis [81]. We

applied an uncorrelated lognormal relaxed molecular clock using a HKY+G

substitution model for the ITS data set. The resulting mean substitution rate was 0.25%

per Ma (95% CI = 0.11-0.46% per Ma). We defined the biogeographic areas as East

Asia, eastern North America and western North America. Root ages of this taxus were

21 Ma (95% HPD: 6.67—39.85 Ma) for our calibration and 25.6+13.1 Ma for the

published divergence times.

Rhus (Anacardiaceae, Sapindales)
The phylogeny of Rhus published by Yi et al. [114] was re-analyzed using nuclear

ITS sequence and two chloroplast regions (ndhF and trnL-F). The data set included
734 bp for ITS, 2126 bp for ndhF, and 950 bp for trnL-F. Based on the fossil of Rhus
and its closed relatives, we can constrain the ages of three nodes in the phylogeny of
the Rhus complex. First, we used the age of the earliest divergence of the Rhoeae (60
Ma; lognormal calibration density; offset = 60 Ma, mean = 0.3, s.d. = 0.7) because
fossils of tribe Rhoeae date back to Paleocene [115]. Second, we constrained the
crown clade of Rhus subgenus Lobadium as 28 Ma (normal calibration density; s.d. =
2 Ma) because the oldest fossil for Rhus subgenus Lobaduim was reported during the
Late Oligocene [116]. And finally, we constrained the minimum age of the crown
group of Pistacia to be 30 Ma (lognormal calibration density; offset = 60 Ma, mean =
0.20, s.d. = 0.6) because the oldest fossil of Pistacia was from southern France during
Oligocene [117]. We applied an uncorrelated lognormal relaxed molecular clock using
a GTR+I+G substitution model for the ITS data set, a GTR+I+G substitution model
for the ndhF data set, and a GTR+I+G substitution model for the trnL-F data set. The
mean substitution rates was 0.037% per Ma (95% CI = 0.032-0.043% per Ma). We

defined the biogeographic areas as Asia, North America and Africa._ Root ages of this

taxus were 34.44 Ma (95% HPD: 27.52—41.29 Ma) for our calibration and 38.1+3.0

Ma for the published divergence times.

17



Pseudotsuga (Pinaceae, Pinales)
The phylogeny of genus Pseudotsuga published by Wei et al. [118] was re-analyzed

using seven plastid regions and one nuclear gene (LEAFY; 2152 bp total). The plastid
data set (9435 bp total) included atpB-rbcL, trnT-trnF, trnC-trnD, petG-psaJ,
trnfM-trnS, cox1 and nad5 intron. To calibrate the phylogeny, we used earliest known
fossil records for Pseudotsuga which were found in the early Oligocene lowland
Willamette and Rujada paleofloras of central Oregon [119]. We fixed the age of root
for Pseudotsuga to 32 Ma (normal calibration density; s.d. = 1 Ma). We applied an
uncorrelated lognormal relaxed molecular clock using a HKY substitution model for
the LEAFY data set, and a GTR+I substitution model for the whole plastid regions
data set. The resulting substitution rate was 0.14% per Ma (95% CI = 0.054-0.22%
per Ma). We defined the biogeographic areas as East Asia and North America._Root

ages of this taxus were 31.9 Ma (95% HPD: 29.87—33.79 Ma) for our calibration and

32 Ma for the published divergence times.

Orontioideae (Alismatales, Dicotyledons)
The phylogeny of the subfamily Orontioideae (Symplocarpus, Lysichiton, and

Orontium) of Araceae published by Nie et al. [120] was re-analyzed using trnL-F and
ndhF sequences. The data set included 3150 bp total. We focused on the proto
Araceae, especially on Orontioideae, which had a reliable fossil infructescence
showing similarities to, but distincted from Symplocarpus from the late Cretaceous of
Canada [121]. To calibrate the phylogeny, we used a minimal age of 72 Ma (normal
calibration density; s.d. = 5) based on fossils described as Albertarum pueri and
assigned to Orontioideae. The root of Araceae was constrained to 120 Ma (normal
calibration point; s.d. = 5) based on the fossil species Mayoa portugallica, a highly
characteristic aperturate, striate fossil pollen described from the Early Cretaceous
(110-120 Ma) of Torres Vedras in the Western Portuguese Basin [122]. We applied an
uncorrelated lognormal relaxed molecular clock using a HKY+G substitution model

for the trnL-F and ndhF data set. The resulting substitution rate was 0.09% per Ma
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(95% CI1 = 0.076-0.1% per Ma). We defined the biogeographic areas as East Asia and
North America._Root ages of this taxus were 39.6 Ma (95% HPD: 25.2-54.54 Ma) for

our calibration and 75.31 4 2.95 Ma for the published divergence times.

Kelloggia (Rubiaceae, Rubiales)
The phylogeny of Kelloggia and its relatives published by Nie et al. was re-analyzed

using sequences of three chloroplast DNA regions (1333 bp total; rbcl gene,
atpB-rbcL spacer, and rpsl6 intron). The fossil record of Rubiaceae is rather pooly
known, with only a few unequivocal records in the Northern Hemisphere [96,123].
Emmenopterys Oliver is the earliest record of Rubiaceae fruits from the middle
Eocene [96,124]. The fossil seed Pinckneya is known from the Oligocene [125].
Pollen fossils of Faramea are known from Late Eocene to recent [126]. Based on the
available fossil data, nodes of the Faramea—Coussarea clade and the Emmenopterys—
Pinckneya clade were constrained with ages of 40 (normal calibration density; s.d. = 1)
and 45 Ma (normal calibration density; s.d. = 1), respectively. Because of the first
record of Rubiaceae fossils from the Early Eocene [127], the root of Rubiaceae was
set to be 54 Ma (normal calibration density; s.d. = 1). We applied an uncorrelated
lognormal relaxed molecular clock using a GTR+I1+G substitution model for the
chloroplast data set. The resulting substitution rate was 0.059% per Ma (95% CI =
0.049-0.07% per Ma). We defined the biogeographic areas as East Asia and North
America._Root ages of this taxus were 7.03 Ma (95% HPD: 1.17-18.38 Ma) for our

calibration and 5.42 +2.32 Ma for the published divergence times.

Aesculus (Sapindaceae, Sapindales)
The phylogeny of Aesculus published by Harris et al. [128] was re-analyzed using

chloroplast DNA regions, ITS and part of the LEAFY gene. The data set included 823
bp for ITS and 811 bp for LEAFY gene. The chloroplast data set included rpsl6,
trnH-K and matK (4506 bp total). To calibrate the phylogeny, we used the fossil
Aesculus hickeyi [129] from the Paleocene-Eocene boundaryto set the age of the root

(lognormal calibration density; offset = 58 Ma, mean = 0.5, s.d. = 3.0). We applied an
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uncorrelated lognormal relaxed molecular clock using a HKY substitution model for
the ITS data set, a HKY+G substitution model for the LEAFY data set, and a HKY
substitution model for rps16, trnH-K and matK data set. The resulting substitution rate
was 0.092% per Ma (95% CI = 0.072-0.11% per Ma). We defined the biogeographic
areas as Europe, East Asia, western North America, eastern North America and South

America. Root ages of this taxus were 61 Ma (95% HPD: 58.14—67.48 Ma) for our

calibration and 62.36 Ma (95% HPD: 58.12—72.81 Ma) for the published divergence

times.

Sect. Quinquefoliae (Pinus, Pinaceae, Pinales)
The phylogeny of sect. Quinquefoliae (Pinus) published by Hao et al. [130] was

re-analyzed using four cpDNA fragments (matK, trnG, ycfl and trnC-D) and a
single-copy nuclear gene (LEAFY). The data set included 13463 bpfor chloroplast
fragments and 3425 bp for nuclear gene. Two fossil calibrations were used to
constrain (1) the crown age of Pinus: The earliest fossil can be reliably attributed to
Pinus yorkshirensis [131] dates from the Early Cretaceous (131-129 Ma). The age of
this fossil is very close to that of P. belgica (145-125 Ma) [132]. Thus the crown age

of Pinus was calibrated to 130 Ma (gamma prior distribution; shape = 4.0, scale = 1.0).

(2) The divergence time of two subgenera of Pinus: Subgenus Strobus can be dated to
the Late Cretaceous (85.8-83.5 Ma; [55]) based on the anatomy of silicified fossil
wood, which provides a minimum age for the divergence between the two subgenera
of Pinus. Thus the divergence time of the two subgenera was set to 85 Ma (gamma
prior distribution; shape = 4.0, scale = 1.0). We applied an uncorrelated lognormal
relaxed molecular clock using a GTR+G substitution model for the nuclear data set,
and a GTR+I+G substitution model for the chloroplast data set. The resulting
substitution rate was 0.067% per Ma (95% CI = 0.054-0.08% per Ma). We defined
the biogeographic areas as East Asia, North Asia, western North America, eastern

North America and Europe._Root ages of this taxus were 58.75 Ma (95% HPD:

44.47—72.55 Ma) for our calibration and 48.25 Ma (95% HPD: 33.22—64.04 Ma) for

the published divergence times.
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Juniperus (Cupressaceae, Pinales)
The phylogeny of Juniperus published by Mao et al. [133] was re-analyzed using

nine chloroplast DNA regions (matK, rbcL, trnL-F, rps4, trnS-G, trnD-T, trnV,
petB-D and psbB1-B2). The data had a 9980 bp. The earliest calibration point used
was the stem lineage of Chamaecyparis, which was set at 99.6 Ma (normal calibration
density; s.d. = 2), given that seed cone or foliage remnants comparable to
Chamaecyparis occur frequently from this point onwards [82,134]. The second
calibration point used was the crown lineage of Chamaecyparis, which was set at 83.5
Ma (normal calibration density; s.d. = 2.0) based on the fossil record of
Chamaecyparis corpulenta [135] which indicate diversification  within
Chamaecyparis from this point onwards. Within Juniperus, we constrained the
divergence of sect. Sabina (stem lineage) from the other two sections to a minimum
age of 33.9 Ma (lognormal calibration density; mean = 1.0, s.d. = 0.5) based on the
fossil of J. pauli [136]. We constrained the crown lineage of the serrate-leaved series
to a minimum age of 23 Ma (lognormal calibration density; mean = 1.0, s.d. = 0.5)
based on the fossil of J. creedensis [137]. We constrained the divergence of the most
recent common ancestor of the species pair J. occidentalis and J. osteosperma from
its sister lineage to a minimum age of 16 Ma (lognormal calibration density; mean =
1.0, s.d. = 0.5) based on the fossil of J. desatoyana [138]. Three further minimum age
calibration points outside of Juniperus were included: First, the split of Calocedrus
from its sister lineage (i.e., the stem lineage of Calocedrus) was constrained to 28.4
Ma (lognormal calibration density; mean = 1, s.d. = 0.6) based on the fossil
Calocedrus suleticensis [139]. Second, the split of Tetraclinis from its sister lineage
(i.e., the stem lineage of Tetraclinis) was constrained to 23.0 Ma (lognormal
calibration density; mean = 1.5, s.d. = 0.6) based on the fossil Tetraclinis
salicornioides [140]. Third, the split of Fokienia from the MRCA of Chamaecyparis
obtusa and C. lawsonia (i.e., the stem lineage of Fokienia) was constrained to 61.7
Ma (lognormal calibration density; mean = 0.5, s.d. = 0.5) based on the fossil

Fokienia ravenscragensis [141,142]. We applied an uncorrelated lognormal relaxed
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molecular clock using a GTR+1+G substitution model for the chloroplast data set. The
resulting substitution rate was 0.031% per Ma (95% CI = 0.027-0.036% per Ma). We
defined the biogeographic areas as Europe, East Asia, North America and Africa. Root

aqges of this taxus were 42.16 Ma (95% HPD: 33.94—74.86 Ma) for our calibration and

43.66 Ma (95% HPD: 34.09-52.87 Ma) for the published divergence times.

Abies (Pinaceae, Pinales)
The phylogeny of Abies published by Xiang et al. [143]was re-analyzed using DNA

data from three genes, i.e., internal transcribed spacer ITS (1700 bp total), three
chloroplast DNA intergenic spacers (2888 bp) and two mitochondrial intergenic
spacers (830 bp). The chloroplast data set included rpll16, rps12-rpl20 and trn T-F.
The mitochondrial data set included ssu rRNA and nad5 intron 1. The macrofossil
record of Abies milleri, known from the early Middle Eocene (47 Ma; [144]), was
used to constrained the minimum age of the root of Abies using a lognormal prior
distribution (offset = 46 Ma, mean = 1.4, s.d. = 1.4). The fossil of A. concoloroides
[145] was used to constrain the minimum age of the crown node of the clade
including sects. Grandes and Oiamel with a uniform prior distribution of 47-16 Ma.
The fossil of A. aburaensis [145] was assigned to the crown node of sect. Momi using
a lognormal prior distribution (offset = 16 Ma, mean = 0.5, s.d. = 1.2). We applied an
uncorrelated lognormal relaxed molecular clock using a HKY+G substitution model
for the ITS data set, a GTR+G substitution model for the chloroplast data set, and a
GTR substitution model for the mitochondrial data set. The resulting substitution rate
was 0.032% per Ma (95% CI = 0.025-0.038% per Ma). We defined the biogeographic

areas as East Asia, Europe and western North America._Root ages of this taxus were

43.26 Ma (95% HPD: 32.84-54.13 Ma) for our calibration and 48.6 Ma (95% HPD:

33.7-73.4 Ma) for the published divergence times.

Peracarpeae (Campanulaceae, Campanulales)
The phylogeny of Peracarpeae published by Zhou et al. [146] was re-analyzed using

four plastid markers (5445 bp total; matK, atpB, rbcL and trnL-F). The sole fossil
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record of Campanulaceae are Campanula seeds from the Miocene from southern
Poland [147,148]. Considering the certainty of this fossil taxon in the Rapunculus
clade but the uncertainty concerning the specific affinity with extant species, we
placed it as a minimum age constraint for the crown age of the Rapunculus clade
(lognormal calibration density; offset = 16.1 Ma, mean = 1.0, s.d. = 1.0). The
divergence time between Lobelia and the Campanulaceae sensu stricto [149] was
estimated at 56-49 Ma based on the broad dating analyses of angiosperm families by
Wikstrdn et al. [150] (normal calibration density; mean = 52.2 Ma, s.d. = 4.5) as our
prior for the root node. We applied an uncorrelated lognormal relaxed molecular clock
using a GTR+I+G substitution model for the plastid data set. The resulting
substitution rate was 0.17% per Ma (95% CI = 0.14-0.2% per Ma). We defined the
biogeographic areas as East Asia, western Eurasia and North America._Root ages of
this taxus were 21.55 Ma (95% HPD: 18.17-26.32 Ma) for our calibration and 21.54

Ma (95% HPD: 18.19-28.02 Ma) for the published divergence times.

Calocedrus (Cupressaceae, Pinales)
The phylogeny of Calocedrus published by Chen et al. [151] was re-analyzed using

nuclear ITS sequences (1123 bp total). The root of Calocedrus was constrained
between 33.7 and 23.8 Ma (normal calibration density; mean = 28.75 Ma, s.d. = 4.95)
because the genus appeared at the beginning of the Oligocene and became abundant
during this epoch. We applied an uncorrelated lognormal relaxed molecular clock
using a HKY+G substitution model for the ITS data set. The resulting substitution rate
was 0.044% per Ma (95% CI = 0.024-0.068% per Ma). We defined the biogeographic

areas as East Asia and North America. Root ages of this taxus were 27.06 Ma (95%

HPD: 21-32.95 Ma) for our calibration and 25.2 Ma for the published divergence

times.

Altingiaceae (Saxifragales, Dicotyledons)
The phylogeny of Altingiaceae published by Ickert-Bond and Wen [86] was

re-analyzed using five non-coding chloroplast regions (5632 bp total). The data set
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included trnL-F, psaA-ycf3, rpsl6, trnS-G, trnG and rbcL. The stem lineage of
Altingiaceae was constrained to be 90 Ma (normal calibration density; s.d. = 0.5)
based on fossil inflorescences, fruits and pollen of Microaltingia [84]. The split
between Hamamelideae and Corylopsideae was constrained to be 85 Ma (normal
calibration density; s.d. = 0.5) based on the fossil flowers of Androdeciduaendressii
[152], while the age of Corylopsis was constrained to 50 Ma (normal calibration
density; s.d. = 0.3) based on fossil leaves of Corylopsis reedae [87]. Within
Altingiaceae we constrained the divergence of the clade [L. acalycina [L. formosana -
A. obvata]] from the remaining eastern Asian species to 15.6 Ma (normal calibration
density; s.d. = 0.5) based on the western North American Middle Miocene L. changii
[85]. We applied an uncorrelated lognormal relaxed molecular clock using a HKY+G
substitution model for the chloroplast data set. The resulting substitution rate was
0.027% per Ma (95% CI = 0.022-0.032% per Ma). We defined the biogeographic

areas as East Asia, Western Asia and North America. Beacause of more sequences we

used in our study, root ages of this taxus were 57.16 Ma (95% HPD: 36.15-79.8 Ma)

for our calibration and 39.12+7.37 Ma for the published divergence times.

Rhodiola (Crassulaceae, Saxifragales)
The phylogeny and divergence time of Rhodiola published by Zhang et al. [153] was

re-analyzed using matK and rbcL sequences. The data set included 734 bp for matK
and 1221 bp for rbcL. The oldest Myriophyllum-like fossil pollen dates from the Late
Eocene of the southeast United States [154]. We thus set the stem age of
Myriophyllum to 37.7-34.75 Ma (exponential calibration density; offset = 34.7, mean
= 1.0). The divergence time of Crassulaceae from Haloragaceae and its allies was
estimated to be 84-69 Ma [155]. We used this time estimate to set the root age
(normal calibration density; mean = 76.5, s.d. = 4.8) as the prior for the root node. We
applied an uncorrelated lognormal relaxed molecular clock using a GTR+G
substitution model for the matK data set and a HKY+I substitution model for the rbcL

data set. The resulting substitution rate was 0.054% per Ma (95% CI = 0.041-0.067%

per Ma). We defined the biogeographic areas as East Asia, Europe and North America.
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Root ages of this taxus were 11.39 Ma (95% HPD: 8.89—-14.52 Ma) for our calibration

and 12.12 Ma (95% HPD: 6.32—20.23 Ma) for the published divergence times.

Dryopteridaceae (Polypodiales, Equisetopsida)
The phylogeny of the polystichoid ferns (Dryopteridaceae) published by Le Péhon

et al. [156] was re-analyzed using five plastid loci (3275 bp total). The data set
included the intergenic spaces psbA-trnH, trnS-rps4, trnL-F, the trnL intron and the
protein-coding gene rbcL. The fossil Elaphoglossum miocenicum was considered as
an extinct crown group representative of the genus Elaphoglossum [157], which was a
bolbitoid fern described from the Early Miocene (20-15 Ma). We thus used this time
estimate to constrain the crown group of Elaphoglossum (normal calibration density;
mean = 17.5, s.d. = 1.5). The second fossil, Protodrynaria takhtajanii has been
reported from the Eocene—Oligocene boundary (33.9 Ma) [158], which is considered
to be closely related to the extant genus Drynaria within the family Polypodiaceae.
We thus used this age to constrained the divergence between Polypodiaceae and
Davalliaceae (normal calibration density; mean = 33.9, s.d. = 1.0). The third fossil
taxon can undoubtedly be assigned to the extant genus Woodwardia with a first
appearance in the Palaeocene, having been widespread throughout the Paleogene [51].
We thus used this age to constrained the divergence between Blechnum and
Woodwardia (normal calibration density; mean = 55.8, s.d. = 1.0). We furthermore
constrained the root of the phylogeny using a secondary calibration point derived
from a phylogeny of leptosporangiate ferns [159], which estimated the crown group
age of eupolypods between 127.7 and 117.1 Ma. We thus applied this time interval
(uniform calibration density) as a conservative estimate. We applied an uncorrelated
lognormal relaxed molecular clock using a GTR+I+G substitution model for the
plastid data set. The resulting substitution rate was 0.097% per Ma (95% CI = 0.08—
0.12% per Ma). We defined the biogeographic areas as Eurasia, southwestern Indian
Ocean Islands, Hawaii, South America, North America, Australia and Africa. Because

of more widely outgroup selections, root age of this taxus was 127.67 Ma (95% HPD:

125.76-129.69 Ma) for our calibration and there was not corresponding root age for
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the published divergence times.

Rana (Ranidae, Anura)
The phylogeny of the genus Rana published by Yuan et al. [160] was re-analyzed

using sequences of six nuclear and three mitochondrial loci. The nuclear data set
included 3860 bp from RAG1, RAG2, BDNF, SLC8A3, TYR and POMC. The
mitochondrial data set included 3835 bp from 12S rRNA-16S rRNA, cytb and ND2.
The root stem age of genus Rana except for Rana weiningensis was calibrated using a
previous age estimate from Bossuyt et al. [161] (normal calibration density; mean =
31.2, s.d. = 8.1). The fossil ilia of several “Rana cf. Rana pipiens” individuals from
the Early Miocene of Florida (18 Ma; [162,163]) were not distinguishable from extant
species within the R. pipiens group, so we inferred the clade’s minimum age as 18 Ma
(lognormal calibration density; offset = 18 Ma, mean = 2, s.d. = 1). The Hottell Ranch
site fossils (15 Ma), identified as Rana aff. R. clamitans [164] is a species within the
R. catesbeiana clade. The MRCA of the R. catesbeiana group was calibrated at a
minimum age of 15 Ma (lognormal calibration density; offset = 15 Ma, mean = 2, s.d.
= 1). We used the single articulated fossil (R. temporaria group) dated to the Early
Miocene at 20-19 Ma, [165] to calibrate the node immediately ancestral to the MRCA
of the divergence of R. asiatica from the R. temporaria group (lognormal calibration
density; offset = 19 Ma, mean = 2, s.d. = 1). We applied an uncorrelated lognormal
relaxed molecular clock using a GTR+1+G substitution model for the mitochondrial
data set, and a HKY substitution model for the nuclear data set. The resulting
substitution rate was 0.67% per Ma (95% CI = 0.52-0.81% per Ma). We defined the
biogeographic areas as East Asia, east North America, Europe, Central Asia, western

North America, the Mexican Plateau and the Neotropics. Root ages of this taxus were

44.59 Ma (95% HPD: 35.44-55.49 Ma) for our calibration and 47.9 Ma (95% HPD:

40.3-54.6 Ma) for the published divergence times.

Hyla (Hylidae, Anura)
The phylogeny of the genus Hyla published by Li et al. [166] was re-analyzed using
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four mitochondrial genes (12S and 16S rRNA genes, tRNA" and ND1) and one
nuclear gene (POMC). The mitochondrial data set included 2140 bp and the nuclear
data set included 492 bp. A Middle Miocene (16 Ma) fossil of Acris barbouri
unearthed in North America is probably the sister group of extant Acris species [167].
As the genus Acris is in all previous phylogenies retrieved as the sister group of the
genus Pseudacris [168-171], we set the age for the divergence of Acris and
Pseudacris to 16 Ma (gamma calibration density; offset = 16.0 Ma, shape = 1.0, scale
= 1.0). Fossil H. miofloridana was also described from Miocene Hemingfordian
sediments in North America (20-16 Ma), supposedly a close relative of extant H.
gratiosa [167].We assume based on this fossil that the age of the MRCA of the
monophyletic group of H. gratiosa, H. cinerea and H. gratiosa is 16 Ma (gamma
calibration density; offset = 16.0 Ma, shape = 1.0, scale = 1.0). Fossil H. miocenia
from North America is dated to the Middle Miocene (16-14 Ma) and is
morphologically close to the extant species H. chrysoscelis and H. versicolor [167].
As H. avivoca is most likely the sister taxon to H. chrysoscelis, we set the minimum
age of the MRCA of H. versicolor and H. chrysoscelis to 14 Ma (gamma calibration
density; offset = 14.0 Ma, shape = 1.0, scale = 1.0). We applied an uncorrelated
lognormal relaxed molecular clock using a GTR+I1+G substitution model for the
mitochondrial data set. The resulting substitution rate was 0.28% per Ma (95% CI =
0.19-0.38% per Ma). We defined the biogeographic areas as North America, eastern

Eurasia and western Eurasia. Root ages of this taxus were 48.07 Ma (95% HPD:

24.01-58 Ma) for our calibration and 42—30 Ma for the published divergence times.

Bufonidae (Anura, Amphibian)
The phylogenetic hypothesis of the relationships among true toads published by

Pramuk et al. [172] was derived from DNA fragments from three mitochondrial (12S
rRNA, tRNA" 165 rRNA) and two nuclear (RAG1, CXCR4) genes. The mitochondrial
data set included 2587 bp total; the nuclear data sets included 729 bp for CXCR4 and
790 bp for RAGL. In this study, they used fourteen fossil calibrations and three

divergence estimated from the literature. We chose three of the calibration nodes to

27



re-estimate the phylogeny: the node of oldest leptodactylid [173] (normal calibration
density; mean = 87.4, s.d. = 5.5), the node of oldest bufonid [174] (lognormal
calibration density; offset = 54, mean = 0.1, s.d. = 1.0), and the node of oldest
pelobatid [175] (normal calibration density; mean = 45.5, s.d. = 4.1). We applied an
uncorrelated lognormal relaxed molecular clock using a GTR+I+G substitution model
for the 12S-16S rRNA data set, a GTR+1+G substitution model for the CXCR4 data
set, and a HKY substitution model for the RAG1 data set. The resulting substitution
rates was 0.46% per Ma (95% CI = 0.4-0.52% per Ma). We defined the
biogeographic areas as North America, Eurasia, Africa and South America. Root age

of this taxus was 39.98 Ma (95% HPD: 35.02—45.61 Ma) for our calibration and there

was not corresponding root age for the published divergence times.

Natricine (Colubridae, Serpentiformes)
The phylogeny of Natricine published by Guo et al. [176] was re-analyzed using six

mitochondrial gene fragments (12S rRNA, cytb, ND1, ND2, ND4 and CO1) and one
nuclear gene (c-mos). The data set included 982 bp for 12S RNA, 1057 bp for cytb,
964 bp for ND1, 1032 bp for ND2, 668 bp for ND4, 309 bp for CO1, and 413 bp for
c-mos. The oldest fossil of a stem natricine, Natrix mlynarskii dates from 32 to 30 Ma
[177]. We thus placed this fossil at the MRCA of all Natricinae (normal calibration
density; mean = 30, s.d. = 4). The oldest member of the extant genus Natrix is N.
saniensis or N. merkurensis, both dated at 22 Ma [178]. This fossil was placed at the
MRCA of Natrix on the tree (normal calibration density; mean = 22, s.d. = 3.6).
Finally, we used the oldest member of the New World genus, Thamnophis [179]
(normal calibration density; mean = 16, s.d. = 2.4) to calibrate the age of Thamnophis.
We applied an uncorrelated lognormal relaxed molecular clock using a GTR+I1+G
substitution model for the 12S rRNA data set, a HKY+G substitution model for the
c-mos data set, a HKY+I+G substitution model for the CO1 data set, a GTR+I+G
substitution model for the cytb data set, a GTR+I+G substitution model for the ND1
data set, a GTR+I+G substitution model for the ND2 data set, and a HKY+I+G

substitution model for the ND4 data set. The resulting substitution rate was 0.02% per
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Ma (95% CI = 0.01-0.03% per Ma). We defined the biogeographic areas as western

Eurasia, eastern Eurasia, Africa and North America. Root ages of this taxus were

31.69 Ma (95% HPD: 30.68-31.46 Ma) for our calibration and 33 Ma (95% HPD:

28—-40 Ma) for the published divergence times.

Rat snakes (Colubridae, Serpentiformes)
The phylogeny of rat snakes published by Burbrink and Lawson [180] was

re-analyzed using four mitochondrial DNA (cytb, ND1, ND2, ND4) and one nuclear
DNA (c-mos). The data set included 1118 bp for cytb, 971 bp for ND1, 1032 bp for
ND2, 883 bp for ND4, and 570 bp for c-mos. The calibration dates for Lampropeltis
ranged from 19 to 15 Ma (uniform calibration density) based on the fossil record of
genus Lampropeltis known as early as 15 Ma [181]. The calibration dates for
Pantherophis ranged from 20 to 16 Ma (uniform calibration density) based on the
New World fossil record [181]. We set the MRCA of Zamenis situla and Z. lineatus
within the range of 20-6 Ma (uniform calibration density) based on the fossils
considered directly ancestral to Z. situla and Z. lineatus dated at 6 Ma and the first rat
snake appearance in Europe at 20 Ma [182]. We applied an uncorrelated lognormal
relaxed molecular clock using a HKY+1+G substitution model for the cytb data set, a
GTR+1+G substitution model for the ND1 data set, a GTR+I1+G substitution model
for the ND2 data set, a GTR+I+G substitution model for the ND4 data set, and a
HKY+G substitution model for the c-mos data set. The resulting substitution rate was
0.53% per Ma (95% CI = 0.4-0.66% per Ma). We defined the biogeographic areas as

western Eurasia, eastern Eurasia, Africa and North America. Root age of this taxus

was 71.1 Ma (95% HPD: 22.78-105 Ma) for our calibration and there was not

corresponding root age for the published divergence times.

Geoemydidae (Tesudines, Reptilia)
The phylogeny of the turtle family Geoemydidae published by Spinks et al. [183]

was re-analyzed using the mitochondrial data set (1556 bp total). We applied an

uncorrelated lognormal relaxed molecular clock using a HKY+1+G substitution model
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for the mitochondrial data set. There is no fossil record for this taxon and its closer
relatives; therefore, we re-analyzed the data set using a mean rate of 1.2 % per Ma
(s.d. = 0.7) for the mitochondrial genes [184,185]. We defined the biogeographic areas
as East Palearctic, West Palearctic, North America and South America._Root age of
this taxus was 24.7 Ma (95% HPD: 14.69-40.58 Ma) for our calibration and there was

not corresponding root age for the published divergence times.

Emys (Emydidae, Testudines)
The phylogeny of Emys published by Spinks and Shaffer [186] was re-analyzed

using data from seven nuclear (HNF, R35, RAG, RELN, TB29, TB73, TGFB) and one
mitochondrial (cytb) gene. We found strong disagreement between mitochondrial and
nuclear gene trees. The nuclear genes increased the phylogenetic resolution, therefore
we used exclusively the nuclear data set in this study. The data set included 767 bp for
HNF, 976 bp for R35, 788 bp for RAG, 1104 bp for RELN, 590 bp for TB29, 667 bp
for TB73, and 937 bp for TGFB. We used the fossil calibrations and estimated
divergence times reported by Near et al. [187]. We applied an uncorrelated lognormal
relaxed molecular clock using a HKY+G substitution model for each of the nuclear
data set. The resulting mean substitution rate was 0.085% per Ma (95% CI = 0.067—
0.1% per Ma). We defined the biogeographic areas as western North America, eastern

North America and Eurasia. Root ages of this taxus were 12.86 Ma (95% HPD: 6.97—

17.13 Ma) for our calibration and 17.2 Ma (95% HPD: 12.5-23.3 Ma) for the

published divergence times.

Elapoidea (Serpentiformes, Reptilia)
The phylogeny of the snake superfamily Elapoidea published by Kelly et al. [188]

was re-analyzed using four mitochondrial (cytb, ND1, ND2, ND4) and one nuclear
gene (c-mos) data set. The data sets were analyzed singly and combination. The result
showed that the combined data set increased the phylogenetic resolution. We thus
used the combined data set (4601 bp total) in this study. To calibrate the phylogeny,

we used the common ancestor of Asian cobras of the genus Naja and their closest
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relatives (16 Ma; normal calibration density; mean = 15.7, s.d. = 1.0) as calibration
point because fossil evidence suggests an age of 16 Ma for the divergence between
Asian Naja and their closest relatives [189]. According to the study of Sanders et al.
[190], we set the age of the MRCAs of Acrochordidae and Colubroidea (uniform
calibration density; upper = 48, lower = 35) and of Scolecophidia and Alethinophidia
(uniform calibration density; upper = 120, lower = 92). We applied an uncorrelated
lognormal relaxed molecular clock using a GTR+I+G substitution model for the
combined data set. The resulting substitution rate was 1.45% per Ma (95% CI = 1.24—
1.67% per Ma). We defined the biogeographic areas as Africa, Eurasia, Australia and

America. Root ages of this taxus were 42.18 Ma (95% HPD: 35.77—48.76 Ma) for our

calibration and 41.3 Ma (95% HPD: 35.7-46.3 Ma) for the published divergence

times.

Plestiodon (Scincidae, Lacertiformes)
The phylogeny of Plestiodon lizards published by Brandley et al. [191] was

re-analyzed using eight independently evolving loci: BNDF (645 bp), MKL1 (903 bp),
ND1 (1208 bp), PRLR (570 bp), PTGER4 (468 bp), R35 (663 bp), RAG1 (2727 bp),
and SNCAIP (483 bp). The age of crown Episquamata (Anniella, Aspidoscelis,
Basiliscus, and Bipes) was calibrated using the age of the earliest stem “anguimorph”
fossils [192](lognormal calibration density; offset = 148 Ma, mean = 0.0, s.d. =
1.769).The age of the divergence between Amphisbaenia (Bipes biporus) and Teiidae
(Aspidoscelis) was calibrated using the ageof the earliest teiioid
(Polyglyphanodontidae) fossils (e.g., Bicuspidon from the Albian—-Cenomanian
boundary [192,193] (lognormal calibration density; offset = 96, mean = 0.0, s.d. =
2.016). We applied an uncorrelated lognormal relaxed molecular clock using a
GTR+1+G substitution model for the BNDF data set, a GTR+I+G substitution model
for the MKL1 data set, a GTR+I+G substitution model for the ND1 data set, a
HKY+G substitution model for the PRLR data set, a HKY+I+G substitution model for
the PTGER4 data set, a HKY+G substitution model for the R35 data set, a GTR+I+G
substitution model for the RAG1 data set, and a HKY+I+G substitution model for the
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SNCAIP data set. The resulting substitution rate was 0.08% per Ma (95% CI = 0.064—
0.098% per Ma). We defined the biogeographic areas as Asia and North America.
Root ages of this taxus were 33.1 Ma (95% HPD: 23.89-45.15 Ma) for our calibration

and 23.6 Ma (95% HPD: 18-29.6 Ma) for the published divergence times.

Viperidae (Squamata, Reptilia)
The phylogeny of Viperinae published by Wister et al. [194] was re-analyzed using

sequences of four mitochondrial genes (12S, 16S, NADH4 and cytb). The data set
included 381 bp for 12S, 388 bp for 16S, 599 bp for NADH4 and 641 bp for cyth. We
used the following calibration constraints: (a) Porthidium (normal calibration density;
mean = 3.5, s.d. = 0.51): the initial divergence of three South American populations of
the genus Porthidium, which almost certainly invaded South America and diverged
there after the uplift of the Isthmus of Panama, approximately at 3.5 Ma [195]. (b)
Eurasian vipers (lognormal calibration density; offset = 20, mean = 1, s.d. = 1): fossil
evidence suggests that the initial divergence of the Eurasian viper clade (excluding
Pseudocerastes and Eristicophis) had begun by 20 Ma [189]. (c) Naja (lognormal
calibration density; offset = 16, mean = 1, s.d. = 1): the split between the Asian Naja
clade and its African sister clade dates back to a minimum age of 16 Ma based on the
presence of characteristic apomorphies of the Asian clade in the fossil record
[189,196]. (d) Hemorrhois (normal calibration density; mean = 18, s.d. = 2.04): the
likely cladogenesis between eastern and western species occurred after Asia and
Africa became joined at approximately 18-16 Ma [197]. (e) Rattlesnakes (lognormal
calibration density; offset = 9, mean = 1, s.d. = 1): the divergence between Crotalus
and Sistrurus occurred before 9 Ma based on the age of a fossil vertebra of Sistrurus
[198]. (f) Colubroidea (lognormal calibration density; offset = 40, mean = 2, s.d. =
1.2): The youngest unambiguous colubroid fossils date back approximately 40 Ma to
the Eocene of Asia [199]. We did not consider the putative colubroid fossils from the
Cenomanian (approximately 95 Ma) described by Rage and Werner [200] and Rage et
al. [201]. (g) Tree root height (lognormal calibration density; offset = 45, mean = 2.5,

s.d. = 1.25): the problem of the root height of the tree ties in with the issue of the age
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of the Colubroidea and Caenophidia. We applied an uncorrelated lognormal relaxed
molecular clock using a GTR+I+G substitution model for the 12S rRNA gene data set,
a GTR+I+G substitution model for the 16S rRNA gene data set, a GTR+I+G
substitution model for the NADH4 data set, and a GTR+I+G substitution model for
the cytb data set. The resulting substitution rates was 0.95% per Ma (95% CI =
0.77-1.14% per Ma). We defined the biogeographic areas as Europe, Southeast Asia,

North America, Africa, Asia and South America. Root ages of this taxus were 46.19

Ma (95% HPD: 37.55-56.05 Ma) for our calibration and 47.4 Ma (95% HPD: 38.1—

57.4 Ma) for the published divergence times.

Dipodoidea (Rodentia, Mammalia)
The phylogeny of Dipodoidea published by Pisano et al. [202] was re-analyzed using

five protein-coding genes (BRCAL, cytb, GHR, IRBP, RAG1). The data set included
500 bp for BRCA1, 1103 bp for cytb, 850 bp for GHR, 1075 bp for IRBP, and 1056 bp
for RAG1. We assigned the oldest record of Sciuridae at 36 Ma, fossil Douglassciurus
jeffersoni [203], to the divergence between Aplodontia rufa (Aplodontiidae) and the
monophyletic group composed of Sciurus aestuans and Marmota marmota (Sciuridae)
(lognormal calibration density; offset = 34.94, mean = 1.48, s.d. = 0.9). We assigned
the oldest record of Progonomys [204] to the split between the early diverging tribe
Phloemyini (Batomys granti) and the remaining tribes of Murinae (Apodemini,
Apodemus sylvaticus and A. mystacinus; Rattini, Rattus tanezumi and Maxomys
surifer) (lognormal calibration density; offset = 7.95, mean = 2.36, s.d. = 0.89).
Fossils of Apodemus jeanteti (7 Ma) and Apodemus dominans (7 Ma) are considered
to be close to extant A. mystacinus and A. sylvaticus, respectively [205]. Consequently,
we assigned a minimum age of 7 Ma for the split between A. mystacinus and A.
sylvaticus (lognormal calibration density; offset = 4.376, mean =2.4345, s.d. = 0.75).
Sicista primus is the earliest known fossil attributed to the genus Sicista and was
recovered from the 17 million-year-old deposits in Nei Mongol, China [206].
Following Zhang et al. [207], we assumed a minimum age of the radiation of modern

Sminthidae of 17 Ma. Consequently, we calibrated the MRCA of Sminthidae
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(lognormal calibration density; offset = 14.95, mean =2.195, s.d. = 0.75). We applied
an uncorrelated lognormal relaxed molecular clock using a HKY+G substitution
model for the BRCAL data set, a GTR+I+G substitution model for the cytb data set, a
HKY+G substitution model for the GHR data set, a GTR+I+G substitution model for
the IRBP data set, and a GTR+G substitution model for the RAG1 data set. The
resulting substitution rate was 0.21% per Ma (95% CI = 0.16-0.25% per Ma). We
defined the biogeographic areas as Asia, Africa, Europe and North America._Root

aqges of this taxus were 50.95 Ma (95% HPD: 38.75-65.94 Ma) for our calibration and

40.62 Ma (95% HPD: 35.97-48.27 Ma) for the published divergence times.

Mustela (Mustelidae, Carnivora)
The phylogeny of Mustela published by Harding and Smith [208] was re-analyzed

using the whole 1140 bp mitochondrial cytochrome b (cytb) gene. Fossil calibrations
used in the relaxed molecular clock approach incorporated the appearance of
Pseudobassaris (28.5-28.0 Ma) and Plesictis (24.7-24.3 Ma) fossils to independently
define the root and crown heights of the Mustelidae relative to Procyonidae [209-211].
We chose the older fossil appearance of Pseudobassaris (normal calibration density;
mean = 28.5 Ma, s.d. = 1.0) to represent the root height of the tree. Mean crown
height for the Mustelidae was represented by the younger appearance of Plesictis
(normal calibration density; mean = 24.3 Ma, s.d. = 1.0). We applied an uncorrelated
lognormal relaxed molecular clock using a HKY+1+G substitution model for the cytb
data set. The resulting substitution rate was 1.39% per Ma (95% CI = 1.18-1.61% per
Ma). We defined the biogeographic areas as North America, South America, East Asia,

Eurasia and Europe. Root ages of this taxus were 8.84 Ma (95% HPD: 7.95-9.74 Ma)

for our calibration and 7.5-9.5 Ma for the published divergence times.

Microtus (Circetidae, Rodentia)
The phylogeny of the root vole (Microtus oeconomus) published by Brunhoff et al.

[212] was re-analyzed using the whole 1143 bp mitochondrial cytochrome b (cytb)

gene. We applied an uncorrelated lognormal relaxed molecular clock using a
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HKY+I+G substitution model for the cytb data set. To calibration the phylogeny, we
used the divergence time between the two European groups and the clade of Asian
and Beringian species (lognormal calibration density; offset = 0.15, mean = 0.1, SD =
0.3). The resulting mean substitution rate was 1.78% per Ma (95% CI = 1.14-2.5%
per Ma). We defined the biogeographic areas as European, Asia and Beringia. Root

ages of this taxus were 0.27 (95% HPD: 0.085-0.20 Ma) Ma for our calibration and

0.19-0.66 Ma for the published divergence times.

Myotis (Vespertilionidae, Chiroptera)
The phylogeny of genus Myotis published by Ruedi and Mayer [213] was

re-analyzed using cytb (1141 bp total) and RAG2 (1148 bp total). We used the same
model of DNA evolution (with TS/TV ratio set at 8.56 and gamma shape set at 0.24)
for both genes analyses. We applied an uncorrelated lognormal relaxed molecular
clock using a HKY+1 substitution model for the cytb data set, and a HKY substitution
model for the RAG2 data set. We applied a calibration age to the root node of all
species of Myotis (normal calibration density; mean = 12.2, SD = 2.0) and a
calibration age to the divergence of M. schaubi and M. nattereri (normal calibration
density; mean = 6.0, SD = 1.6). The resulting mean substitution rates were 2.64% per
Ma (95% CI = 1.86-3.55% per Ma) for cytb, 0.1% per Ma (95% CI = 0.069-0.14%
per Ma) for RAG2. We defined the biogeographic areas as Asia, Australia, Africa,
North America and South America._Root age of this taxus was 10.67 Ma (95% HPD:

7.56-13.9 Ma) for our calibration and there was not corresponding root age for the

published divergence times.

Leporidae (Lagomorpha, Mammalia)
The phylogeny of the rabbits and hares (Leporidae) published by Matthee et al. [214]

was re-analyzed using five nuclear (SPTBN1, PRKCI, THY, TG, and MGF) and two
mitochondrial (cytb and 12S rRNA) gene fragments. The data set were analyzed
separately and concatenated. The result showed that the combined data set increased

the phylogenetic resolution among genera. We thus used the combined data set (5395
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bp total) in this study. To calibrate the phylogeny, we incorporated six fossi-based
time constrains from the literature (uniform calibration density). The first pair was the
40 Ma lower and 20 Ma upper divergence between the ochotonid and the leporid
lineages [215]; the second was the origin of modern leporids with an upper age at 12
Ma [216] and a lower at 20 Ma [217]. The third pair involved the 6 Ma lower and 4
Ma upper divergence of the genus Lepus [218]. We applied an uncorrelated lognormal
relaxed molecular clock using a GTR+I+G substitution model for the combined data
set. The mean substitution rates was 1.24% per Ma (95% CI = 0.88-1.63% per Ma).
We defined the biogeographic areas as Asia, Africa, Europe, North America and South

America. Root ages of this taxus were 13.9 Ma (95% HPD: 11.71-16.16 Ma) for our

calibration and 14 Ma (95% HPD: 12.08-17.48 Ma) for the published divergence

times.

Melaphidina (Aphidoidea, Insecta)
The phylogeny of aphids of the tribus Melaphidina published by Ren et al. [219] was

re-analyzed based on mitochondrial cytochrome c¢ oxidase subunits | and Il
(COI-COII), leucine tRNA (tRNA"Y), cytochrome b (cytb), and nuclear elongation
factor 1la genes (EF1la). The data set included 1070 bp for EFla and 2489 bp for the
whole mitochondrial data set. To calibrate the phylogeny, we used two Baltic amber
fossil genera assigned to Macrosiphini (Aphididae; Aphidinae) [220], the extinct
Halajaphis and extant Pseudamphorophora. We thus set the common ancestor of the
Macrosiphini representatives to the Early/Middle Eocene boundary (normal
calibration density; mean = 48, s.d. = 2). We applied an uncorrelated lognormal
relaxed molecular clock using a GTR+G substitution model for the EF1a data set, and
a GTR+I+G substitution model for the mitochondrial data set. The resulting mean
substitution rate was 0.18% per Ma (95% CI = 0.13-0.22% per Ma). We defined the

biogeographic areas as Asia and North America._Root ages of this taxus were 59.18

Ma (95% HPD: 45.46—72.05 Ma) for our calibration and 46-55 Ma for the published

divergence times.
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Limnogonus (Gerridae, Hemiptera)
The phylogeny of Limnogonus published by Ye et al. [221] was re-analyzed using

three mitochondrial (16S rRNA, COI and COII) and one nuclear (28S rRNA) gene.
The data set included 451 bp for 16S rRNA, 514 bp for 28S rRNA and 1210 bp for
COI-COIl. The well-preserved Succineogerris larssoni from the Eocene-Oligocene
(54-38 Ma) Baltic amber was morphologically similar to the extant genus Neogerris
and was identified as a close relative of Neogerris [222—-224]. Therefore, we used a
normal prior distribution (mean = 46 Ma, s.d. = 4) to constrain the crown age of the
genus Neogerris. We applied an uncorrelated lognormal relaxed molecular clock
using a GTR+I+G substitution model for the 16S rRNA data set, a GTR+I+G
substitution model for the 28S rRNA data set, and a GTR+I+G substitution model for
the COI-COII data set. The resulting mean substitution rate was 0.35% per Ma (95%
Cl = 0.23-0.5% per Ma). We defined the biogeographic areas as East Asia, Australia,
Africa and South America._Root ages of this taxus were 67.02 Ma (95% HPD: 50.84—

90.42 Ma) for our calibration and 49 Ma (95% HPD: 38-60 Ma) for the published

divergence times.

Aporini (Pompilidae, Hymenoptera)
The phylogeny of the Aporini published by Rodriguez et al. [225] was re-analyzed

using four nuclear markers (elongation factor-1 a F2 copy (EF1; 729 bp total),
long-wavelength rhodopsin (LWRH; 661 bp total), wingless (Wg; 389 bp total) and the
D2-D3 regions of the 28S ribosomal RNA (28S rRNA; 908 bp total). The common
ancestor of Anoplius and Allochares was given a normal prior of 25 Ma (s.d. = 10),
based on a fossil of Anoplius sp. from the Dominican amber that belongs to the stem
group of Anoplius. The common ancestor of Cryptocheilus and Dipogon, as well as
the common ancestor of Agenioideus and [Allochares + Anoplius] were given a
normal prior (mean = 33.0 Ma, s.d. = 0.5), based on the fossils of Cryptocheilus
hypogaeus and Agenioideus saxigena found in the Colorado Florissant beds. The
crown-group node of all taxa included in the analysis (family Pompilidae) was

assigned a normal prior of 43 Ma (s.d. = 10), based on Wilson et al. [226]. We applied
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an uncorrelated lognormal relaxed molecular clock using a GTR+I+G substitution
model for the 28S rRNA, a GTR+I+G substitution model for the EF1, a GTR+I+G
substitution model for the LWRH, and a GTR+1+G substitution model for the Wg data
set. The resulting mean substitution rate was 0.53% per Ma (95% CI = 0.36-0.71%
per Ma). We defined the biogeographic areas as the Palaearctic, North America,

Middle America and South America. Root ages of this taxus were 28.76 Ma (95%

HPD: 20.38-41.20 Ma) for our calibration and 22.6 Ma (95% HPD: 17.4-28.83 Ma)

for the published divergence times.

Papilionidae (Lepidoptera, Insecta)
The phylogeny of swallowtail butterflies (Papilionidae) published by Condamine et

al. [227] was re-analyzed using DNA data from mitochondrial (COI and COIl; 2189
bp total) and nuclear genes (EF-/a; 1164 bp total). The oldest swallowtail fossils are
from the early Eocene (48 Ma; Green River formation in Colorado), and consist of
two species in the genus Praepapilio [228]. Therefore we calibrated the Papilionidae
crown group with a minimum age of 48 Ma (logmornal calibration density; mean =
1.0, s.d. = 0.5). The two other unequivocal fossils of Papilionidae are Thaites
ruminiana from the Early Oligocene (30 Ma), and Doritites bosniackii from the
Middle Miocene (15 Ma). We have conservatively chosen to use 30 Ma (lognormal
calibration density; mean = 1.0, s.d. = 0.5) as the minimum age for the Parnassiinae
crown group whereas the crown of Luehdorfiini was confined to a minimum age of 15
Ma (logmornal calibration density; mean = 1.0, s.d. = 0.5). We applied an
uncorrelated lognormal relaxed molecular clock using a GTR+I+G substitution model
for the mitochondrial data set, and a GTR+1+G substitution model for the EF-/a data
set. The resulting mean substitution rate was 1.18% per Ma (95% CI = 1.05-1.33%
per Ma). We defined the biogeographic areas as West Palearctic, East Palearctic, West
Nearctic, East Nearctic, Africa, Madagascan, South America, Central America, India,

Southeast Asia and Australasia. Root ages of this taxus were 47.81 Ma (95% HPD:

46.80-48.78 Ma) for our calibration and 49.01 Ma (95% HPD: 42.82-59.88 Ma) for

the published divergence times.
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Apaturinae (Nymphalidae, Lepidoptera, Insecta)
The phylogeny of Apaturinae published by Ohshma et al. [229] was re-analyzed

using mitochondrial (5715 bp total) and nuclear (5575 bp total) DNA sequence data.
The mitochondrial data set included the COI, COIIl, ATPase8, ATPase6, COlIl, ND3
and ND5 genes. The nuclear data set included EFla, Wg, ArgK, CAD, GAPDH, IDH,
MDH, and RpS5. Wahlberg et al. [230] have estimated the age of Nymphalidae using
seven fossil data for calibration [230]. The result indicated that Apaturinae and their
sister subfamily Biblidinae diverged at 61.73 Ma. Thus, we set 61.73 Ma (normal
calibration density; mean = 61.73, s.d. = 1) as the divergence time for the split
between Apaturinae and Ariadne. We applied an uncorrelated lognormal relaxed
molecular clock using a GTR+1+G substitution model for the mitochondrial data set,
and a GTR+I+G substitution model for the nuclear data set. The resulting mean
substitution rate was 0.4% per Ma (95% CI = 0.35-0.45% per Ma). We defined the
biogeographic areas as Asia, Europe, South America, Southeast Asia, North America

and Africa. Root ages of this taxus were 45.59 Ma (95% HPD: 39.21-51.57 Ma) for

our calibration and 44.5 Ma (95% HPD: 42.1-46.9 Ma) for the published divergence

times.

Sect. Phalloideae (Amanita, Amanitaceae, Agaricales)
The phylogeny of lethal amanitas (Amanita section Phalloideae) published by Cai et

al. [231] was re-analyzed using five gene loci (nrLSU, ITS, rpb2, EFl-a and
S-tubulin). The data set included 2392 bp. Given that fossil records of fungi are
limited, it has been difficult to choose a reliable calibration point to estimate the
divergence time for any fungal groups. Therefore, an extensive sampling of outgroup
species for which fossils were available were selected to estimate the divergence time
of Amanita. Two primary fossils include in this study: (a) the divergence between
Ascomycota and Basidiomycota at 528 Ma, by placing Paleopyrenomycites devonicus
in the subphylum Pezizomycotina [232]; (b) the divergence between

Hymenochaetaceae and Fomitopsidaceae based on the 125 million-year-old fossil

39



Quatsinoporites cranhamii [233], the estimated divergence time between Ascomycota

and Basidiomycota is 582—400 Ma (normal calibration density; mean = 492, s.d. = 56).

We applied an uncorrelated lognormal relaxed molecular clock using a GTR+I1+G
substitution model for the whole data set. The resulting mean substitution rate was
0.11% per Ma (95% CI = 0.096-0.13% per Ma). We defined the biogeographic areas

as North America, East Asia, Australia and Europe. Root age of this taxus was 213.04

Ma (95% HPD: 157.25-271.15 Ma) for our calibration and there was not

corresponding root age for the published divergence times.
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Supplementary Data: Phylograms with estimated divergence times (maximum clade

credibility trees) and ancestral areas (DEC-model of range evolution); the latter

annotated for each phylogeny once with best range estimate and once with relative

likelihood of ranges as pie chart.
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Viperidae BioGeoBEARS DEC
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Dipodoidea BioGeoBEARS DEC

ancstates: global optim, 3 areas max. d=0.0028; e=0; j=0; LnL=-37.43
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Dipodoidea BioGeoBEARS DEC

ancstates: global optim, 3 areas max. d=0.0028; e=0; j=0; LnL=-37.43
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Mustela BioGeoBEARS DEC

ancstates: global optim, 3 areas max. d=0.0239; e=0.0228; j=0; LnL=-41.04
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Microtus BioGeoBEARS DEC

ancstates: global optim, 3 areas max. d=0; e=0; j=0; LnL=-4.28
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ancstates: global optim, 2 areas max. d=0.0042; e=0; j=0; LnL=-46.19
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Leporidae BioGeoBEARS DEC

ancstates: global optim, 5 areas max. d=0.0172; e=
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Leporidae BioGeoBEARS DEC

ancstates: global optim, 5 areas max. d=0.0172; e=0.0178; j=0; LnL=-34.80
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Melaphidina BioGeoBEARS DEC

ancstates: global optim, 3 areas max. d=0.0015; e=1e-04; j=0; LnL=-6.68
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Limnogonus BioGeoBEARS DEC

ancstates: global optim, 4 areas max. d=0.0025; e=0; j=0; LnL=-43.18
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Aporini BioGeoBEARS DEC

ancstates: global optim, 4 areas max. d=0.0038; e=0; j=0; LnL=-39.01
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Papilionidae BioGeoBEARS DEC

ancstates: global optim, 4 areas max. d=0.0049; e=0; j=0; LnL=-586.41

[Madagascar}

{Madagascar]

\ViF=Ta!

AfricaMadagascal

Madagascan Madagasca

{Madagascar]

[EastPalearcti :Madaqascaghgascad

adagasca

[Madagascal

AfricaMadagasca Madagascan
Madagascar
Madagascan

{Africdl6

e e

WestNearcti

EastPaleal

EastPalearcticWestNearctid

{WestNearctid

WestNearctidEastNearcticSouthAmerica]
sl

WestNearctid

NoCTNIoAreT)

WestNearctid WestNearctid

I Madaaascaﬂ

EastNearctig

i'mnvmium?m
| WestNearctig -:o

licWel westNearctidtid
[EastPalparct

sarchrWasiNeArctidetic

50

40

30

20
Millions of years ago

10

156



Papilionidae BioGeoBEARS DEC

ancstates: global optim, 4 areas max. d=0.0049; e=0; j=0; LnL=-586.41
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Apaturinae BioGeoBEARS DEC

ancstates: global optim, 3 areas max. d=0.0025; e=0.0073; j=0; LnL=-29.83
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ancstates: global optim, 3 areas max. d=0.0025; e=0.0073; j=0; LnL=-29.83
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Sect. Phalloideae BioGeoBEARS DEC

ancstates: global optim, 3 areas max. d=7e-04; e=0; j=0; LnL=-44.08
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