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Fig. S1 | Axisymmetric model of α-hemolysin. a, Electrostatic equilibrium potential illustrating the location of
partial charges. b, IV curves in 1 M KCl; experimental values are compared with two different models for surface
charge; diffusivity is constant in the channel and fitted to the measurements.
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Fig. S2 | Position-dependent diffusivities. a, r-dependent tangential diffusivity near a plane wall, hydrodynamic
(LRNH) approximation Dt vs. analytical expression 1− e−a(r−r0) with parameters a, r0 fit to MD simulations. 2 The
MD data are collected from various simulation of ions and water molecules near DNA and protein, 3 where the
diffusing molecule was confined from one side. b, DNA nanopore, same as Figure 4b (main text) but for diffusivity
of protein trypsin.

S1 Axisymmetric model of α-hemolysin
Figure S1a shows our axisymmetric model of the α-hemolysin pore together with the elec-
trical potential at zero voltage. Partial charges are incorporated by dividing the pore protein
into 4 vertically aligned pieces and equi-distributing the charge contained in each piece over
the respective part of the surface. This way we can reproduce the current rectification of
the channel, as shown in Fig. S1b. The experimental IV data for a 1 M KCl solution were
taken from ref.1 We also compare with a simpler model where the surface charge is constant
over the whole protein surface (not divided into 4 pieces). This homogeneous charge model
yields an ohmic current-voltage relationship and fails to capture rectification. To make this
result clearly visible in Fig. S1b, we used a constant diffusion coefficient inside the pore that
fits the observed current (D = 0.3D0 where D0 is the bulk value)—as opposed to the main
text (Fig. 2b), where we use parameter-free models for the diffusivity.
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S2 Calculation of position-dependent diffusivity
The most direct method to compute the diffusivity tensor at any position is by numerically
solving the Stokes equation, with the particle of interest included explicitly in the geometry,
as explained in the Methods. For our simulations, we combined this direct method with
different variants of approximations.

z-dependent model In the first variant, we compute the diffusivity tensor numerically,
but only at positions along the central pore axis. This yields a one-dimensional diffusivity
profile as depicted in Fig. 2c (main text) for α-hemolysin. The dependence of diffusivity on
other coordinate directions is ignored. Outside the channel and small regions close to its
entrances, bulk diffusivity is used.

r-dependent model This variant relies on the analytical treatment of a simple geometric
situation, that of a solid sphere next to an infinite plane wall. For a sphere of radius a
whose center of mass is located at a distance r from the plane, Happel and Brenner4 give
the following expressions in terms of x := a/r and α := cosh−1(r/a):

Dt = 1− 9
16

x+
1
8

x3− 45
256

x4− 1
16

x5,

D−1
n =

4
3

sinhα

∞

∑
n=1

n(n+1)
2n(2n+3)

[
2sinh(2n+1)α +(2n+1)sinh2α

4sinh2 (n+ 1
2 )α− (2n−1)2 sinh2

α
−1

]
.

Here, Dt and Dn are the relative diffusivities for motion parallel and perpendicular to the
plane, respectively. The full 3× 3 diffusivity tensor for arbitrary orientations of the plane
and particle is given by

D = D0
[
DnRRT +Dt(I−RRT )

]
,

where R is the normal vector pointing from the plane to the particle and D0 = kT
6πηa is the

bulk diffusivity. For consistency of the theory with measured bulk diffusion constants of
ions, we use their hydrodynamic radius for a in all these expressions.

The framework above can approximately be applied to a complicated geometry by con-
sidering only the distance and normal vector to the nearest wall for any particle position,
and computing diffusivity as if that wall were replaced by its tangent plane (and no other
walls present). To implement this, we calculate the wall-distance r by numerically solving
the Eikonal equation

|∇r|= 1, r = 0 at the wall,

inside the fluid domain. The normal vector pointing from the nearest point at the wall to
any particle position is simply R = ∇r. By computing r and R over the whole domain and
then using the formulas for D above, we obtain a global, r-dependent diffusivity field for a
particle with given radius a. This model is also applied to ions if the “nearest wall” is the
target protein.

r-/z-dependent model The r-dependent model is practical as it yields a reasonable value
for the diffusivity tensor at arbitrary points of the domain, but suffers from the fact that in
a narrow channel, diffusivity can be quite a bit lower than if there was a wall only on one
side of the particle. Therefore, we correct the r-dependent model so that it equals the true
diffusivity at the pore center, i.e., combine it with the z-dependent model. This is achieved
by setting

D(x,y,z) :=

{
Dr(x,y,z)Dr(0,0,z)−1Dz(z), inside channel region,

Dr(x,y,z), elsewhere,
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where Dr and Dz are the diffusivity tensors computed by the r- and z-dependent models,
respectively.

Modified model for proteins in DNA pore The nearest-wall approximation works very
well in the case of ions, which are small compared to the channel (see Fig. 4b, main text),
and for the same reason also for protein A/G/L in the large solid-state nanopore. But it
turns out to fail when applied to protein trypsin in the DNA nanopore, where the protein
diameter is about two thirds of the channel width. In this case, non-nearest-wall effects
completely change the diffusion profile, especially for motion parallel to the channel; see
Figure S2b. Similar results were obtained experimentally.5 For this case, we use the r-
/z-dependent model from above only outside and in the wider entry of the channel. In
the narrow channel part we interpolate the profile obtained from simulations (symbols in
Fig. S2b) and use that instead of the analytical expressions for Dn and Dt to define the
diffusivity tensor, assuming the profile is constant over the narrow channel part.
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S3 Protein-receptor binding in solid-state pore
For the solid state-pore, the geometry is modeled after the estimates by Wei et al.;6 they
describe a conical pore of 40◦ aperture situated in a 50 nm thick silicon nitride membrane,
coated by a 40 nm gold film and a SAM layer of estimated thickness 3 nm. The pore diameter
(at the pore tip, without SAM layer) is dp = 26nm for the simulations in Fig. 3b (main
text) and dp = 30nm in Fig. S3b, corresponding to the reported experimental diameters in
Fig. 2b and 3a of ref.,6 respectively. Protein A/G/L was modeled as a sphere of radius 3 nm
and charge −50q, while the bis-NTA receptor is not explicitly modeled, only implicitly as
a location in the pore where the protein can bind. The binding radius (distance between
the protein center and receptor within which binding is possible) was set to 5.75 nm. In
Fig. S3a, we show a histogram of the total attempt time, i.e. the time the protein spends
within the binding radius of the receptor during one simulation; it roughly resembles an
exponential distribution. Trajectories with zero attempt time, which comprise 79% of all
simulations, were excluded.

Voltage-dependent dissociation To simulate the variation of koff in dependence of applied
voltage, we adopt the binding model with force-dependent dissociation rate; see Methods,
Eq. (9). The parameter δ (the “bond rupture length”) of this model has yet to be deter-
mined. For each voltage, we generated a plot of the cumulative τoff distribution as depicted
in Fig. S3b. The mean binding duration τoff was determined by fitting a cumulative expo-
nential distribution 1− e−τoff/τoff to these values (nonlinear least-squares fit as described in
Section S5 below). By setting koff := 1/τoff, we generate an estimate of koff for every ap-
plied voltage, resulting in a plot like Fig. 3c (main text). Then, an empirical relationship
koff = kV=0

off eαV , where V is the applied voltage, can be found by fitting the straight lines in
this plot. The constant α—which has dimension 1/V and describes the sensitivity of koff

to applied voltage—can be compared to the same constant obtained from measurements in
ref.6 In our simulation, α depends on the chosen value of δ (in a roughly linear way, as can
be seen in Fig. S3c). However, α is also influenced by the location of the receptor: the closer
the receptor is to the pore tip, the higher the sensitivity of koff to applied voltage, because the
electric field is strongest at the tip. We follow the argumentation in ref.6 that the receptor is
suspected to reside close to the tip, but allow some uncertainty by performing calculations
for a receptor at 91%, 93%, 95% and 97% of the pore height, respectively. Similarly, Wei et
al. provide data for five different pores which show a slight variation in α. Both sets of data
are compared in Fig. S3c, where the parameter δ is varied in the simulations and averages
are plotted along each set of data points. We see that both the average and width of the
distributions agree at δ = 0.55nm, so this value emerges as our estimate (and is in fact used
in all other plots). While the order of magnitude of δ is consistent with its interpretation as
a bond rupture length, we stress that this interpretation relies on an oversimplified picture
of the interaction.

The choice of δ (together with the receptor position) only fixes the slope in the koff-
voltage plot (Fig. 3c, main text). The absolute height, indicated by the extrapolated value
at zero voltage, kV=0

off , is essentially the dissociation rate kd , which we took from Lata et
al.7 Alternatively, we can also fit kd directly to the experiments, as we did with δ . This
provides validation that our binding model can, in principle, reproduce the distribution of
event durations. To this end, in Fig. S3d, we vary kd in our simulations to find a value that
leads to agreement in kV=0

off with Wei et al.6 Effectively, we see that kV=0
off = kd . The rate

kd = 4.5 · 10−3/s obtained in this way leads to very close fits of the experimental data; see
the simulations labeled kd from Wei in Figures 3b and 3c (main text).

Association and arrival rate Next, we turn to the association rate constant ka. Lata et al.
report ka = 1.5 ·105 M−1s−1 for solution measurements involving different molecules attached
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Fig. S3 | Parameter estimation of protein-receptor binding. a, Histogram of simulated attempt times (i.e.,
the times a translocating protein spent in the binding zone around the receptor). Applied voltage is 200 mV. b,
Cumulative histograms of simulated τoff (total dwell time), fitted with exponential distributions. The exponential
fits are used to obtain characteristic dwell times τoff. c, Estimation of parameter δ by fitting to the slope α of
the koff-voltage relationship. Light blue lines are measurements obtained from several different pores (Fig. 3b
in ref. 6), light orange dots are simulations for three different receptor positions. Darker line/dots are averages.
d, Estimation of parameter kd by fitting to kV=0

off . e, Estimation of arrival rate karr by combining Smoluchowski’s
equation with simulations of proteins migrating to the pore entrance.

to the reaction sites, which cannot be expected to transfer well to the present setup. We
can relate ka to measurements of τon, which is the time between current blockades. The
inverse 1/τon is the rate at which new current blockades are observed when the pore is in its
unoccupied state. Wei et al. find that this rate increases linearly with protein concentration
c, in symbols 1/τon = c · kon, and they report an average value of kon = 20.9 ·106 M−1s−1 from
5 measurements at different concentrations.

It is important to stress that in our definition of the binding model, kon does not equal
ka in general. kon is the apparent association rate constant when considering the protein-
nanopore interaction as a whole, but it likely depends on features which are unrelated to
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the receptor, such as the voltage bias. By comparison, in our model, ka is designed to be the
microscopic association rate constant intrinsic to the analyte and receptor. We would expect
ka = kon only if unhindered and unbiased diffusion would govern protein migration to the
receptor.

To find the relationship between ka and τon, we first note that our simulation yields an
average number of bindings per event, given by ka

tb
Vb

where tb is the mean time the protein
spent in the binding zone, and Vb is the binding zone volume (in units of M−1). Second, let
karr denote the the rate of protein arrival at the pore, i.e. the total rate of events per second
(this will be calculated below). Then we have (bindings per second) = (bindings per event)
× (events per second),

1/τon = ka
tb
Vb

karr

In the simulation at −200mV, we find tb
Vb

= 5.32 · 10−11Ms, while measurements give τon =

0.265s at the same voltage and a protein concentration of 180nM. Dividing the last equation
by karr, we arrive at two ways to compute the number of bindings per event, which have to
be equal to be consistent with measurements at −200mV:

bindings per event =
3.76
karr

= 5.32 ·10−11ka (1)

The value ka = 1.5 ·105 M−1s−1 from Lata et al. yields a binding percentage of 0.0008% which
implies an arrival rate karr = 470000/s. To compute a more realistic ka, we take the reverse
approach and estimate karr directly.

A simple analytical formula for the arrival rate at a half-sphere covering the pore entrance
is the Smoluchowski rate equation:8–10

karr ≈ 2πDcR

where D and c are the protein’s diffusivity and concentration (in m−3) and R is the pore
radius at the entrance. Applying the formula to our pore with a radius at the bottom of
41nm yields karr = 1990/s.

However, the Smoluchowski equation is only valid for unbiased diffusion. Since in the
measurement data we have considerable electrophoretic bias towards the pore, the equation
underestimates the arrival rate. To correct for bias, we made use of our simulation meth-
ods and computed a more realistic karr in two steps: First, compute the arrival rate with
the Smoluchowski equation at a distance R much larger than the pore radius, where the
assumption of unbiased diffusion is valid. Second, simulate PNPS/BD trajectories with the
protein starting at the larger distance (randomly distributed on a half sphere), to compute
the probability for a protein to transition to the pore entrance. The arrival rate at large
distance multiplied with the transitioning probability gives the arrival rate at the entrance.

This was done for successively larger distances, see Figure S3e (blue circles). We can see
that the arrival rate is increasing with increasing distance, reflecting the bias near the pore,
until at 400−600nm the curve flattens. The largest value (a lower bound on the actual arrival
rate) is karr = 13700/s which is 7× the rate we got from naively applying Smoluchowski’s
equation with R equal to the pore radius (Figure S3e, dashed pink line).

Using equation (1) we arrive at a binding fraction of 0.027% and estimate of ka = 5.2 ·
106 M−1s−1, lower than the directly computed kon = 20.9 · 106 M−1s−1 but still considerably
larger than the 1.5 ·105 M−1s−1 from solution measurements.
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Fig. S4 | Streamline plots of force fields acting on protein trypsin in the DNA nanopore. Applied voltage is
−100 mV. Left: Electrophoretic force. Right: Electroosmotic drag force.
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Fig. S5 | Dependence of simulated ion current on pore diameter. Same as Fig. 4d,e in the main text, but for
a cylindrical model of the nanopore. In this case, the current blockade can be up to 100% if the radius of pore and
protein are equal.

S4 Model of DNA origami pore
The DNA origami pore is modeled after the descriptions in ref.11 If we assume that each
DNA strand can be effectively modeled as a stiff rod with square, 2× 2nm2 crosssection,
the pore has a box-like shape with a channel width of 6 nm and a wall thickness of 6 nm.
For simulations with a different channel width, the wall thickness is left the same. At the
opening, the pore is wider to facilitate entry of analyte molecules. We also consider an
axisymmetric version of the geometry where the pore has the same crosssection in the x-z
plane but a circular cross-section in the x-y plane, i.e. the core channel is a cylinder. The
electrolyte solution is 1 M KCl. The target protein trypsin is modeled as a sphere of radius
2.078 nm and a total charge of +5q (the pH value in experiments is 8.0). The DNA sur-
face, if not stated otherwise, is equipped with a homogeneous negative charge density of
−0.74q/nm2, a value obtained by averaging the −2q charge from two phosphate residues
per 0.34 nm over the surface of each individual DNA rod. In Fig. S4, we visualize the two
components of the force field (electrophoretic and electroosmotic), which were computed
by our continuum method, at an applied voltage of −100 mV. For this pore and protein, the
net driving force contributed by both components is in the same direction and of comparable
strength: When integrated from the top to the bottom of the channel, the electrophoretic
force accounts for a potential energy drop of 18kT , while the drag force contributes 26kT .
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S5 Non-specific binding to DNA nanopore
Parameter estimation Statistical model fitting, as used for Fig. S3b and throughout this
section, is based on the following general algorithm: Given an empirical data set D =

{τ0,τ1, . . .} (e.g., dwell time measurements), we first evaluate the empirical cumulative dis-
tribution function (ECDF) at a set of grid points which are logarithmically spaced over the
same range as the data. Mathematically, we create N + 1 grid points t j = τ

1− j/N
min τ

j/N
max where

τmin and τmax are the minimum and maximum of the data set; and evaluate x j = ECDF(t j),
where

ECDF(t) :=
#{τ ∈ D : τ ≤ t}

#D
.

Then, suppose we have a model F(t;θ) for the CDF which depends on a vector of parameters
θ . We fit the model to the empirical CDF using (non-linear) least squares, which means we
search for a value of θ which minimizes the cost function

L(θ) = ∑
j=0,...,N

|F(t j;θ)− x j|2. (2)

Parameter search is performed with a simple evolutionary algorithm. Given an initial pa-
rameter vector θ and an initial standard deviation σ , we do the following:

1. Generate a new population by drawing from a lognormal distribution θeσX , where X
is (multivariate) standard normal.

2. Replace θ by the member of the population which minimizes L(θ).

3. Reduce σ by a constant factor (e.g., 0.8) and go back to 1.

The number of iterations is chosen such that σ will become sufficiently small, e.g. ensuring
σ ≤ 10−3 in the last iteration. A typical population size is 100. Advantages of this algorithm
include that it is easily implemented, for an arbitrary number of parameters; and that it
can be applied to any model whose CDF can be evaluated, including models which are not
differentiable in θ and where the evaluation of the CDF is itself stochastic; see examples
below.

Long binding We fit our binding model to the current events, where events with τoff≤ 2ms
are cut off; see Fig. S7a. First, we want to establish that the distribution is close to an
exponential one. Naively, we could apply the fitting method outlined above to the CDF

F(t;τoff) = 1− e−t/τoff .

The only parameter to be fitted is the mean dwell time τoff. However, because the empirical
data is cut off, we likely obtain a better fit if we assume that the exponential distribution is
cut off at 2 ms as well. In general, the CDF of a truncated distribution, which is cut off from
below at t0, has the form

Ftrunc(t) =

{
F(t)−F(t0)

1−F(t0)
, if t > t0,

0, else,
(3)

where F(t) is the non-truncated CDF (and we have suppressed the dependence on parame-
ters). In the case of our exponential distribution, this works out as

Ftrunc(t;τoff) =
(1− e−t/τoff)− (1− e−t0/τoff)

1− (1− e−t0/τoff)
= 1− e−(t−t0)/τoff , if t > t0.

9



a

10 1 100 101 102

 off [ms]

5

10

15

20

25

30

35

A/
I 0

 [%
]

b

101 102

 off [ms]

0.0

0.1

0.2

0.3

0.4

Re
l. 

fre
qu

en
cy

Truncated exp. fit
Experiment (> 2ms)

c

100 101 102

 off [ms]

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e 

pr
ob

ab
ilit

y

Experiment (> 2ms)
Exponential fit
Truncated exp. fit

d

100 101 102

 off [ms]

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e 

pr
ob

ab
ilit

y

ka = 106/Ms
ka = 107/Ms
ka = 108/Ms
ka = 109/Ms
Experiment

e

10 1 100 101 102

 off [ms]

0.0

0.1

0.2

0.3

0.4

Re
l. 

fre
qu

en
cy

ka = 106/Ms
ka = 107/Ms
ka = 108/Ms
ka = 109/Ms
Experiment

f

105 107 109 1011

ka [M 1s 1]

0.001

0.002

0.003

0.004

0.005

Fi
tti

ng
 e

rro
r

Fig. S6 | Binding of protein trypsin to the DNA nanopore, part I: Long binding. a, Current events recorded
for a pore described by Diederichs et al. 11 Events colored in red (τoff ≤ 2ms) are discarded. b–f, Results of fitting
various statistical models to the data, as explained in the text.

The CDF obtained after truncation at t0 = 2ms is now plugged into the fitting algorithm to
determine the unknown mean time parameter τoff. In Fig. S6c, both the truncated and the
non-truncated exponential fits are shown, and we clearly see that the truncated version is
superior in capturing the data distribution in the lower range. The PDF (probability density
function) of the truncated fit is plotted in Fig. S6b alongside the data histogram. We note
that, visually, agreement for the PDF seems to be worse than for the CDF. This is because
the empirical CDF is basically the integrated histogram and therefore, in general, much
smoother, as stochastic fluctuations are averaged out by integration. For small datasets such
as this one, it is therefore preferable to use the CDF for model fitting (since we don’t want
to fit to stochastic noise).

Our actual binding model involves Poisson-guided binding and re-binding during the
BD simulation to a section of the nanopore (Fig. 5c, main text). It produces stochastic
dwell times in a way that is more complicated than simply drawing exponential variables.
Still, it meets the requirement for applying our fitting algorithm: the CDF can be evaluated
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efficiently. To accomplish this, our BD-binding algorithm, instead of generating dwell times
directly, is modified to only record the number of bindings for each event. Events with no
binding are discarded. Conditioned on a given number of bindings n ≥ 1, the dwell time—
being the sum of n exponentially distributed binding times—follows a Gamma distribution
with CDF

Fn(t;kd) :=
γ(n,kdt)
(n−1)!

.

where γ(·, ·) is the incomplete gamma gunction. This CDF directly depends on one of the
model parameters, the dissociation rate kd . The final, unconditional CDF is computed by
averaging over 1000 independent draws of n,

F(t;kd ,ka) := Fn(t;kd).

The second parameter, the association rate ka, enters via its influence on the distribution of
n. In the limit where ka→ 0, this model would reduce to the exponential distribution above
(with τoff = k−1

d ). Evaluations of F(t;kd ,ka) are implemented efficiently by precomputing
and reusing a fixed number of trajectories, as explained in the Methods. To fit the cut-off
distribution of long current events, we again use the modification of Eq. (3) to obtain a
truncated CDF.

For reasons which will be apparent immediately, fitting ka directly is not robust, i.e. it
does not yield a reliable and reproducible result. Therefore our approach is to fix ka and, for
each fixed ka, perform a fit of kd . Resulting CDFs and PDFs are shown in Figures S6d and S6e,
respectively. For displayed values ka ≤ 108 M−1s−1, the distributions are indistinguishable
from each other; only ka = 109 M−1s−1 looks significantly different and yields a worse fit to
the data. The fit quality is assessed in Fig. S6f, which shows the minimal value of the cost
function from Eq. (2), normalized as 1

N+1 L(θ), for different ka. The slight kink in the error
surface near ka = 5 ·108 M−1s−1 does not allow a conclusion about its value, as such a small
fluctuation in the fitting error can easily result from stochasticity in the data. The only valid
conclusion here is that the association rate can have any value smaller than 109 M−1s−1.

In the simulations shown in the main text, we have (arbitrarily) set ka to 108 M−1s−1,
which leads to 0.78 bindings per event on average. Our fitting procedure then yields kd =

67s−1, corresponding to an average binding duration of 1/kd = 15ms.

Short and long binding The next step is to model current event durations over the entire
observable time range. Because the measurement device used in the experiments filtered
events at 10 kHz, we discard all events shorter than 100 µs = (10kHz)−1 to avoid dealing
with artificial distortions in the distribution; see Fig. S7a. This time, the empirical CDF of
the data does not resemble an exponential distribution at all—see Fig. S7b. A better model
is given by the double exponential distribution

F(t;τ1,τ2,w) = 1− w
1+w

e−t/τ1 − 1
1+w

e−t/τ2 . (4)

It has three parameters—the two characteristic times τ1 and τ2 and the weight w—and
models two independent exponential binding processes, where the first one is w times as
likely as the second one. For Fig. S7b, we truncate this CDF at t0 = 100 µs like the data,
using Eq. (3); see also Fig. S7c for the PDF and histogram.

As in the case of the single binding process, we want to estimate the parameters of our
full binding model, which this time involves binding to two different sections of the pore
(Fig. 5d, main text) and the estimation of four kinetic binding parameters: ka, kd , ka,2 and
kd,2. Proceeding as before, we can obtain two numbers of bindings from our simulation,
n1 and n2, one for each type of binding. This time, we exclude events where both n1 and
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Fig. S7 | Binding of protein trypsin to the DNA nanopore, part II: Short and long binding. a, Current events
recorded for a pore described by Diederichs et al. 11 Events colored in red (τoff ≤ 100 µs) are discarded. b–e,
Results of fitting various statistical models to the data, as explained in the text.

n2 are zero. The distribution of dwell times conditioned on n1, n2 is a sum of two gamma
distributions T1+T2 with different shape and scale parameters, whose CDF admits no simple
closed-form. However, if we assume that the second binding process is much faster than the
first one, T2� T1, we can approximate

T1 +T2 ≈

{
T1 if n1 > 0,

T2 if n1 = 0 and n2 > 0.

Thus, in this appproximation, the unconditional distribution of T1 +T2 reduces to a simple
superposition of the distributions of T1 and T2, weighted by their respective probabilities, p1

and (1− p1)p2, where pi = P(ni > 0). The final, unconditional CDF is

F(t;kd ,kd,2,ka,ka,2) :=
w

1+w
Fn1(t;kd)+

1
1+w

Fn2(t;kd,2), (5)
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with relative weight w = p1
(1−p1)p2

. The first average is taken over events where n1 > 0, the
second over events where n1 = 0 but n2 > 0; both p1 and p2 are evaluated empirically. In
the limit where ka and ka,2 both tend to zero while keeping w constant, we would recover
the double exponential distribution (4). (Actually, in this limit, w = p1

p2
and we do not even

need the approximation T2� T1, because binding of the two different types will never occur
at the same time, so either n1 or n2 will always be zero).

Similar to before, we fix the association rate constant ka at different values and estimate
the remaining parameters by plugging the truncated version of our CDF (5) in our fitting
algorithm above. Figures S7d and S7e display the results. For any given ka, the second
association rate constant ka,2 is well encoded in the relative weight w of the two gamma-type
distributions, and the fitting procedure reliably arrives at the same value of ka,2 in multiple
different trials. Again, only an upper bound can be given for ka. Fixing ka = 108 M−1s−1

while fitting all remaining parameters leads to the estimates kd = 77s−1, kd,2 = 6434s−1 and
ka,2 = 6.5 · 106 M−1s−1. In particular, the estimated value of the slow dissociation rate kd

(77s−1) is close to the value obtained for a single type of binding (67s−1).
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Fig. S8 | Simulation of unspecific pore-protein interaction in DNA nanopore. a, Simulated events with a
single type of unspecific binding in different parts of the nanopores. b, Version of Figure 5d (main text) with
alternative coloring which indicates the type of binding. c, Trajectories and current traces with two different types
of binding.
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