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Modeling framework for comparing progressive loss of strength in different muscles 
 
Rationale for the logistic function: The logistic function asymptotic to 1 on the left (normal strength) 
and 0 on the right (zero strength) has an ogive shape, with a slow initial slope, a rapid intermediate slope, 
and a slow final slope. It is a fair approximation of trajectories of muscle strength, FVC [1] and functional 
decline [2] in ALS. This form of the logistic function has two free parameters that can be estimated, 
namely: (a) the location parameter (that we call TOMS, or time from onset to midway strength, the time 
point where the function crosses the horizontal line at 0.5 strength) and (b) the scale parameter (that we 
call SCAL, which equals half the time it takes to lose strength from 0.75 strength to 0.25 strength at the 
maximum rate of decline) (See Supplementary File Figure 1). Given that the primary goal of this study is 
to find the order of weakness of muscles, the logistic model is mathematically convenient because it 
permits ready estimation of TOMS. 

 
Supplementary File Figure 1: Schematic of location (TOMS) and scale (SCAL) parameters in a logistic 
model 
 
Heuristic approximation of (unobserved) normal strength (zero-one scaling): One difficulty with this 
modeling approach is missing premorbid normal strength data, because the patient is already weak in 
some or many muscles when first assessed. This normal value is required to assign HHD measures (in 
force units) a proportional value between 0 (total paralysis) and 1 (normal strength). Normative mean 
values [3] are an option, but many HHD measures exceed them. To solve this difficulty, we identified the 
best (highest) z-score z(0) ever for each subject for any muscle (arm or leg) (Supplementary File Figure 
2). If z(0) exceeded zero, the assumed normal for each muscle was scaled up from the normative mean of 
that muscle by that z value (z(0) *SD, where SD is the normative SD for that muscle). If z(0) was between 
0 and -2, the assumed normal for each muscle was scaled down from the normative mean of that muscle 
by half the value (0.5* z(0) *SD). If the best z-score was less than -2, assumed normals were set at the 
normative means minus the normative SDs. A floor was assigned to address the possibility that all 



muscles were weak already at initial evaluation. This approach of pegging unobserved baseline strength 
of weakened muscles to the strength of the best-preserved (and presumably intact) muscle is supported by 
significant correlation of strength across different muscles in normal subjects [4,5]. Meaningful variations 
of this empirical approach (such as setting the floor for normal at the normative mean or some specified 
distance below the mean in normative SD units, or choosing as the scaling z(0) a value informed by the 
two best-preserved muscles invoking the conditional probability density under a multivariate normal 
distribution) in our sensitivity analyses yielded qualitatively similar results. We call this method to adjust 
for between-subject variation in normal (baseline) strength and standardise strength across muscles and 
across different subjects ‘zero-one scaling’ (ZOS).  
 

Supplementary File Figure 2: Histogram of best z-
scores. Frequency of values < 0, < -1 and < -2 was 
120, 30 and 1 respectively.  
 
Listed below are muscles that contributed the best z-
score 
 
 
 
 
 
 

RSF LSF REF LEF REE LEE RWE LWE RDI LDI RHF LHF RKE LKE RKF LKF RAE LAE 
  9  14  19  18  45  24  15  19  18  15   9  13 100 115  22  21  15  22 
 
Tethering of modeled trajectory to normal strength before symptom onset: This was accomplished 
by adding (unobserved but assumed) data points at onset (time 0) and 12 weeks prior to onset that were 
near normal strength (empirically 0.98 strength) and normal strength (1 strength) respectively. Minor 
variations in these empirical choices did not significantly alter estimates.  
 
Parameterisation of the logistic function: A typical parameterisation of the 2-parameter logistic 
function (asymptotic to 1 on the left and 0 on the right) is as follows: 
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Where t is time, TOMS is the location parameter and SCAL is the scale parameter. 
 
So that we could model proportional differences in TOMS, and also to avoid the possibility of estimation 
of negative values for TOMS and SCAL, we altered parameterisation so that logarithmic transformations 
of TOMS and SCAL were estimated instead: 
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In this formulation, a, b and c are constants arbitrarily chosen to improve the success of the optimiser to 
converge at the maximum likelihood estimate in models with a high-dimensional parameter space. 
Arbitrary values used for a, b and c  were 4.2, 3.1 and 5 respectively. It should be emphasised that 



reparameterisation by different choices of a, b and c does not alter modeled trajectories or TOMS 
estimates.  
 
Non-linear mixed models: Non-linear mixed models employing the described logistic function were 
constructed using the nlme package in R [6]. Mixed models permit random variability of parameters 
between subjects (random effects) in addition to fixed effects related to covariates. Our models assigned 
subject-level random effects to logTOMS as well as logSCAL, thereby permitting variability in the 
“underlying” TOMS and SCAL between subjects in a lognormal distribution. Our models also assigned 
fixed effects to logTOMS and logSCAL for each muscle group, thereby permitting a muscle group to 
have a TOMS that was some proportion of the underlying TOMS, or some proportion of the TOMS of 
another muscle group. The base model (Model 1, Supplementary File Table 1) therefore had 24 
parameters: 10 fixed effects (for each muscle group) assigned to logTOMS, 10 fixed effects (also for each 
muscle group) assigned to logSCAL, 1 random effects variance term each for logTOMS and logSCAL, 1 
random effects covariance term, and 1 residual variance term. More complex models were constructed 
adding fixed effects terms for the side of the weaker arm and for site of onset. The model presented in the 
results that had the best fit to the data had a total of 90 fixed effects parameters (described in the main text 
and also as Model 4, Supplementary File Table 1). 
 
Model selection: Because success of convergence of the optimiser was sensitive to choice of starting 
values of parameters, simpler non-linear mixed models were initially constructed with only one random 
effect (logTOMS) to find reasonable starting values of fixed parameters for more complex models where 
a second random effect (logSCAL) was introduced. Models with single random effects had poor fits. 
Table 1 below reports Akaike information criteria (AIC) for 4 fitted models with random effects for both 
logTOMS and logSCAL. One limitation of our analysis is that a second layer of variability (between 
muscles in one subject) was not modeled for. Such hierarchical mixed models were not identified because 
of limitations of data. 
 
Contrasts: Within this estimation framework, quantities of interest, such as TOMS ratios between muscle 
groups, and ratios of TOMS ratios between muscle groups by site of onset, are essentially exponents of 
linear contrasts of estimated parameters (various logTOMS). When a large number contrasts are 
examined, there is “false discovery” of effects at the Type I error rate (⍺, usually 0.05). Scheffé’s method 
for multiple comparisons [7] adjusts simultaneously for infinitely many possible linear contrasts of 
estimated parameters to reduce any false positivity (among all contrasts) to the Type I error rate. 
 
Supplementary File Table 1: 
 

Model Fixed effects parameters Variance components 
(parameters) 

df AIC 

1 (base) logTOMS: muscle group (10) 
logSCAL: muscle group (10) 

logTOMS, logSCAL, 
covariance, residual 

24 -40052 

2 logTOMS: muscle group (10) x onset_site (3) 
logSCAL: muscle group (10) x onset_site (3) 

logTOMS, logSCAL, 
covariance, residual 

64 -40344 

3 logTOMS: muscle group (10) x weaker_arm (2) 
logSCAL: muscle group (10) 

logTOMS, logSCAL, 
covariance, residual 

34 -42955 

4 (final) logTOMS: muscle group (10) x onset_site (3) x 
weaker_arm (2) 
logSCAL: muscle group (10) x onset_site (3) 

logTOMS, logSCAL, 
covariance, residual 

94 -43538 

   
 
  



Associations of muscle strength and TOMS with ALSFRS-R responses 
 
As would be expected, across all measures, strength was correlated with ALSFRS-R motor responses. 
Arm muscle strength correlated with fine motor responses (ALSFRS-R questions 4-6, relating to 
handwriting, cutting food, and dressing) as well as ALSFRS-R question 7 relating to turning in bed. Leg 
muscle strength correlated with gross motor responses (especially ALSFRS-R questions 8 and 9 relating 
to walking and climbing, less with question 7). A color-coded correlation matrix of ZOS HHD strength 
and ALSFRS-R responses is presented in Supplementary File Figure 3. Summated arm muscle ZOS 
strength (“arm ZOS-megascore”) was closely correlated with the fine motor subscore (r = 0.78, 
Supplementary File Figure 4). All correlations were adjusted for the grouped structure of the data (within-
subject correlation).  
 

 
Supplementary File Figure 3: Correlation coefficients of ZOS strength for individual muscles 
(SF=shoulder flexion, EF=elbow flexion, EE=elbow extension, WE=wrist extension, DI=first dorsal 
interosseous, HF=hip flexion, KE=knee extension, KF=knee flexion, AE=ankle extension (dorsiflexion). 
R/L indicate sides. All achieved statistical significance at the threshold of p < 0.05 except for associations 
of LKE, RKE, and LAE with questions 4 and 5 (handwriting and cutting food).  
 

 
 
Supplementary File Figure 4: Correlation of the fine motor subscore of ALSFRS-R and arm ZOS 
megascore. 



Slope of decline of arm ZOS megascore was also correlated with slope of decline of the fine motor 
subscore of ALSFRS-R (Supplementary File Figure 5).  
 

 
 
 
Supplementary File Figure 5: Fine motor subscore slope – arm ZOS megascore slope scatter plot and 
correlation. Note that linear mixed effects models with random intercept and slope were employed to 
extract individual slopes (best linear unbiased predictions), rather than the logistic model described in the 
manuscript.  
 
In contrast, the correlation between predicted fine motor subscore slopes and individual muscle TOMS 
estimates was weak (Supplementary File Figure 6) 
 

Supplementary File Figure 6: 
Fine motor subscore slope and Right 
EE TOMS scatterplot and 
correlation. 
 
  



 
Performance of the ZOS megascore relative to z-megascore and ALSFRS-R, examining linear 
decline using linear longitudinal mixed effects models 
 
Inspection of conventional (normalised or z-scaled) megascore and ZOS megascores trajectory plots 
suggests reduced between-patient variability with the latter. 

 
Supplementary File Figure 7: Spaghetti plots of ZOS megascore and z-megascore (total of 18 muscle 
groups, arms and legs) trajectories for 100 patients.  
 
For sample size calculation and determining the optimal number of repeated measures required, the 
quantities of interest are (a) the ratio of the SD of slope to the value of clinically meaningful difference 
(often set at 0.25 of mean rate of decline)  - therefore the coefficient of variation (CoV = SD/Mean), and 
(b) the ratio of the residual SD to the SD of slope respectively [8]. Low values of both quantities improve 
efficiency. They are displayed in rows 4 and 5 of Supplementary File Table 2. Although coefficient of 
variation of HHD measures remains higher than that of the ALSFRS-R total score, the ratio of residual 
SD to slope SD is lower for HHD measures. ZOS megascore improves efficiency relative to z-scaled 
megascore.  
 
Supplementary File Table 2: Comparison of longitudinal outcome measures. Note that linear mixed 
effects models with random intercept and slope were employed to extract a fixed effect (mean slope) as 
well as variance components (variance of slope and residual variance). For megascores, arm as well as leg 
muscle groups were included (total of 18 muscle groups).  
 

 ZOS-megascore, HHD 
(normalised 0-1) 

z-megascore, HHD 
(standardised) 

ALSFRS-R total score 

Residual SD 0.900 3.767 2.808 
Slope SD 0.252 0.986 0.666 
Mean slope (per month) -0.398 -1.511 -1.147 
CoV  
(Slope SD/Mean slope) 

0.633 0.653 0.580 

ResidSD/SlopeSD 3.571 3.820 4.219 
 
 
 



 
An alternative construct: Time to half (initial) strength (THIS) 
 
One valid criticism of our presented analytic approach is the possibility of inaccurate prediction of 
unknown baseline strength, which can confound all estimates. An alternative method is to disregard 
baseline strength, and instead focus on the time it takes from initial visit to reach 50% of initially 
observed strength. We call this construct ‘time to half (initial) strength’ (THIS). Clearly, TOMS, 
diagnostic delay (DD) and TOMS are intimately related. If an unrealistic linear trajectory of strength 
decline from onset is presumed, the relationship is simply 
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If a logistic trajectory of strength decline is presumed, as depicted in the schematic below,  

 
Supplementary File Figure 8: Relationship of time from onset to midway strength (TOMS), time to half 
initial strength (THIS) and diagnostic delay, depicted on a logistic trajectory.   
 
the relationship is more complex (Equation 4). The relationship between THIS and TOMS is sensitive to 
the functional form of the strength decline trajectory. 
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We estimated THIS from our data using a non-linear mixed effects model employing a Weibull functional 
form, with a shared shape parameter across muscles, and different scale parameters. Not unexpectedly, 
the order of THIS estimates closely paralleled the order of TOMS estimates (see Supplementary File 
Figures 9 and 10).  
 



Although THIS requires fewer assumptions than TOMS, it is confounded by diagnostic delay and is 
clearly less meaningful than TOMS from a biological or disease-description perspective.  

 
Supplementary File Figure 9: 
Estimates of time to half (initial) 
strength (THIS) for each muscle 
(geometric mean of two sides) by onset 
site. AO, BO and LO indicate arm, 
bulbar and leg onset.  
 
 
 
 
 
 
 
 
 
 

 
 

 
 
Supplementary File Figure 10: 
Time to half (initial) strength 
(THIS) estimates plotted against 
corresponding TOMS estimates 
for muscles by site of onset. 
Note that they are highly 
correlated.  
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