

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

Sedation strategy and ICU Delirium: A multi-center, population-based propensity score-matched cohort study

Journal:	BMJ Open
Manuscript ID	bmjopen-2020-045087
Article Type:	Original research
Date Submitted by the Author:	22-Sep-2020
Complete List of Authors:	Casault, Colin; University of Calgary Cumming School of Medicine, Department of Critical Care Medicine Soo, Andrea; University of Calgary Cumming School of Medicine, Critical Care Medicine Lee, Chel; University of Calgary Cumming School of Medicine, Department of Critical Care Couillard, Philippe; University of Calgary Cumming School of Medicine, Critical Care Medicine Niven, Daniel; University of Calgary Cumming School of Medicine, Critical Care Medicine Stelfox, Tom; University of Calgary Cumming School of Medicine, Department of Critical Care Fiest, Kirsten; University of Calgary Cumming School of Medicine, Critical Care Medicine
Keywords:	Adult intensive & critical care < ANAESTHETICS, Health & safety < HEALTH SERVICES ADMINISTRATION & MANAGEMENT, Quality in health care < HEALTH SERVICES ADMINISTRATION & MANAGEMENT, Adult intensive & critical care < INTENSIVE & CRITICAL CARE, Delirium & cognitive disorders < PSYCHIATRY

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Sedation strategy and ICU Delirium: A multi-center, population-based propensity score-matched cohort study

Colin Casault_a, MD; Andrea Soo_a, PhD; Chel Hee Lee, PhD; Philippe Couillard_a, MD; Daniel J Niven_{a,b}, MD/PhD; Tom Stelfox_{a,b}, MD/PhD; Kirsten M. Fiest_{a,b,c}, PhD.

a: Department of Critical Care Medicine, University of Calgary and Alberta Health Services, Calgary Alberta, Canada. b: Department of Community Health Sciences and O'Brien Institute for Public Health, University of Calgary, Calgary, Alberta, Canada c: Department of Psychiatry and Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada

Address for Correspondence: Colin Casault Department of Critical Care, University of Calgary Calgary, Alberta, Canada T2N-1N4 (587) 432-6762 casaultc@gmail.com

Abstract: 291 words Manuscript: 2988 Words Tables: 2 Figures: 3

Conflicts of Interest: No author has a conflict of interest to declare.

Keywords: Delirium, ICU sedation, fentanyl sedation, midazolam sedation

Objectives: We examined the relationship between dominant sedation strategy, risk of delirium and patient-centred outcomes in adults admitted to intensive care units(ICUs).

Design: Retrospective propensity matched cohort study.

Setting: Mechanically-ventilated adults (\geq 18 years) admitted to four Canadian hospital medical/surgical ICUs from 2014 – 2016 in Calgary, Alberta, Canada.

Participants: 2837 mechanically-ventilated adults (\geq 18 years) requiring admission to a medical/surgical ICU were evaluated for the relationship between sedation strategy and delirium.

Interventions: None.

Primary and secondary outcome measures: The primary exposure was dominant sedation strategy, defined as the sedative infusion, including midazolam, propofol or fentanyl, with the longest duration prior to first delirium assessment. The primary outcome was 'ever delirium' identified using the Intensive Care Delirium Screening Checklist (ICDSC). Secondary outcomes included mortality, length of stay (LOS), duration of ventilation and number of days with delirium. We analyzed the cohort with two propensity score (patient characteristics and therapies received) matched cohorts (propofol vs. fentanyl and propofol vs. midazolam).

Results: 2,837 patients (60.7% male; median age 57 years (interquartile range 43-68)) were considered for propensity matching. In propensity score-matched cohorts(propofol vs. midazolam, n=712; propofol vs. fentanyl, n=1,732), the odds of delirium were significantly higher with midazolam (odds ratio (OR) 1.46 (95% confidence interval(CI) 1.06-2.00)) and fentanyl (OR 1.22 (95% CI 1.00-1.48)) compared to propofol dominant sedation strategies. Dominant sedation strategy with midazolam and fentanyl were associated with longer duration of ventilation compared to propofol. Fentanyl was also associated with increased ICU mortality(OR 1.50 (1.07-2.12)) ICU and hospital LOS compared to a propofol dominant sedation strategy.

Conclusions: We identified a novel association between fentanyl dominant sedation strategies and increased risk of delirium, duration of mechanical ventilation, ICU LOS and hospital LOS. Midazolam dominant sedation strategies increased delirium risk and duration of mechanical ventilation.

Article Summary:

- We examine the effects of midazolam and fentanyl sedation strategies on delirium and patient centered outcomes using a large cohort of general intensive care patients.
- To reduce bias, we used a propensity score matching process on a large database.
- One key limitation is secondary to the concurrent use of multiple overlapping sedation strategies which may impact the results
- Based on the limitations and the nature of cohort studies, one should consider this study as hypothesis generating.

Introduction:

Delirium in critically ill patients is an acute confusional state marked by severe disorganization of cognition, fluctuating course, attentional deficit and awareness¹. Older age, severity of illness, presence of mechanical ventilation, coma, and sedative medications place over 50% of ICU patients at risk for developing delirium²⁻⁶. Delirium in the ICU is common, and may prolong hospital stay, increase mortality risk and contribute to long term cognitive impairment^{7 8}. With a burgeoning elderly population, ICU admission requiring mechanical ventilation is estimated to increase by 80% by 2026, therefore understanding potential contributors to delirium is paramount^{9 10}.

Over-sedation in the ICU, with benzodiazepines in particular, may be harmful^{11,12}. Prospective cohort and randomized controlled trials support shorter durations of mechanical ventilation, more rapid awakening, and equally effective sedation with propofol or dexmedetomidine compared to midazolam¹³⁻¹⁷. Similarly, a population-based study by Lonardo *et al.* demonstrated higher mortality, longer duration of mechanical ventilation and longer ICU length of stay (LOS) in patients managed with benzodiazepines compared to propofol¹¹. Lonardo *et al.* postulated midazolam's mortality effect may be may be due to increased rates of delirium. Delirium is associated with mortality, and some evidence supports patients treated with benzodiazepines may demonstrate higher rates of delirium in the ICU^{8 13 18 19}. However, the association between benzodiazepines and delirium is inconsistent⁶.

Sedation strategies often employ both a sedative, like propofol, and an analgesic, like fentanyl, simultaneously to achieve a desired effect. However, studies evaluating the clinical effects of these sedation strategies are lacking. Additional research is necessary to understand the effects of sedation strategies on delirium, hospital length of stay (LOS) and survival outcomes. Our study examined the relationship between dominant sedation strategy (continuously infused propofol, fentanyl, and/or midazolam), delirium and important patient-centred outcomes, in a multi-center population-based sample of mechanically-ventilated adults admitted to ICU. *Methods:*

This retrospective cohort study was reported in compliance with the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement²⁰ and approved by the conjoint health research ethics board at the University of Calgary (REB17-0389).

Study Setting & Population:

BMJ Open

We	e identified consecutive mechanical ventilated adults (\geq 18 years) admitted to four medical-surgical ICUs
in Calgary, A	Alberta, Canada between January 1, 2014, to June 30th, 2016. Patients were excluded if:
1)	Their ICU electronic health data did not link to an appropriate inpatient (hospital) admission
2)	They did not have any ICU admissions with at least 1 Intensive Care Delirium Screening Checklist
	(ICDSC) assessment (details described in the Outcome Measures section)
3)	They were non-Alberta residents (to allow for mortality outcome follow-up post hospital discharge)
4)	They did not receive at least 1 continuous infusion of midazolam, propofol or fentanyl prior to the first
	ICDSC assessment.
5)	They were never invasively ventilated during their ICU stay.
6)	They did not have a single dominant continuous infusion prior to the first ICDSC assessment (see
	definition of dominant sedation strategy in the Exposure Measure section below for further detail).
If t	he patient was readmitted to ICU more than once during the study period, then only the first admission
with at least	1 ICDSC assessment was used. The ICUs are staffed by accredited intensive care physicians which
provide mec	hanical ventilation, vasoactive medications, and invasive monitoring.
Data source	s:
Stu	dy data was derived from three electronic databases ²¹⁻²³ . eCritical Alberta, a database and electronic
medical reco	ord, that prospectively captures detailed clinical and demographic information ²² . The discharge abstract
database (D	AD) captures data on all hospitalized patients, including admission date, discharge, survival status, and
up to 25 diag	gnostic codes from the International Classification of Diseases, 10th revision, Canadian enhancement.
Out of hospi	ital deaths were obtained from Alberta Vital Statistics, which captures all deaths occurring in Alberta.
Data from A	Iberta Vital Statistics was available up to December 30, 2017, which provided at least 18 months of
follow-up fr	om the ICU admission date.
Exposures a	nd Definitions:
The	e main study exposure was dominant sedation strategy prior to the first ICDSC assessment. A sedation
strategy was	defined as a continuous analgo-sedative infusion limited to midazolam, fentanyl, and propofol.
Infusions we	ere selected based on a screening survey which demonstrated small populations utilizing alternative
sedation stra	ttegies. There were seven possible combinations for the sedation strategy prior to the first ICDSC
assessment:	1) propofol only, 2) fentanyl only, 3) midazolam only, 4) propofol and fentanyl, 5) propofol and
	4

midazolam, 6) fentanyl and midazolam, and 7) all three agents. A high number of patients received more than 1 agent, therefore we classified patients into a dominant sedation strategy, defined as the longest continuous duration of infusion prior to the first ICDSC assessment, which consists of three categories for the primary analyses. For example, if fentanyl was provided for the longest duration, fentanyl was considered the dominant sedation strategy. It is possible the patient could have received propofol or midazolam (or neither) for a duration less than fentanyl. If the patient received two agents for the same duration, the patient was excluded as no strategy was dominant. As sensitivity analyses, all seven possible combinations of the sedation strategy used prior to the first ICDSC assessment were considered.

Outcome Measures:

The primary outcome was categorized as 'ever/never delirium' during ICU admission compatible with previously established delirium outcome measures⁷. All ICU patients with a Richmond Agitation Sedation Scale(RASS)²⁴ score \geq -3 were evaluated twice daily using the ICDSC tool²⁵ and received a protocolized sedation awakening trial. The ICDSC is a validated delirium assessment tool²⁵. Ever delirium patients were those with an *ICDSC score* \geq 4; never delirium were those with an *ICDSC score* <4. Total number of days with an *ICDSC score* \geq 4 defined delirium duration. Duration of delirium (days) was examined in secondary analyses.

Delirium motor subtypes were identified using the RASS, based on previously published criteria¹⁸, and associated positive ICDSC score of \geq 4. The scale is scored from -5 points (unarousable) to 0 points (calm) to +4 points (combative), where scores between -3 to 0 indicate hypoactive delirium, scores between 1 to 3 indicate hyperactive delirium, and scores that fluctuate between hypoactive and hyperactive indicate mixed delirium. All ICDSC scores \geq 4 were linked to the closest RASS score within 4 hours of charting. If there was no RASS score documented within 4 hours of the ICDSC score, the sub-type was considered "unable to be classified". If there was a RASS score within 4 hours of the ICDSC score but the RASS was -5, -4 or +4, the sub-type was considered "unable to be assessed". If at least 1 assessment indicated hypoactive delirium and at least 1 assessment indicated hyperactive delirium the sub-type was considered mixed for that specific patient.

Secondary outcomes were mortality in the ICU and hospital, duration of mechanical ventilation, and ICU & hospital lengths of stay (LOS). Patient mortality was also reported at 30-days and 1-year. Duration of invasive mechanical ventilation was defined as the time a patient required the use of invasive ventilator. *Statistical Analysis:*

BMJ Open

Baseline characteristics were summarized using median with interquartile range (IQR) and frequency with percent and compared between sedation strategies using chi-squared tests and Kruskal-Wallis rank sum tests, as appropriate. For the primary outcome analysis, logistic regression was used to assess the association between dominant sedation strategy (propofol vs midazolam vs fentanyl) and risk of developing delirium. The relationship between dominant sedation strategy and delirium duration was analyzed using negative binomial models. The relationship between dominant sedation strategy and mortality outcomes were analyzed using logistic regression models. The relationship between dominant sedation strategy and LOS outcomes (ICU and hospital) were analyzed using linear regression models with a log-transformation of ICU LOS and hospital LOS. Primary analyses for all outcomes were based on forming two propensity score-matched cohorts: 1) propofol vs fentanyl and 2) propofol vs midazolam. Propensity scores were based on age, sex, reason for admission to ICU, Charlson comorbidity category (0, 1, 2+), admission APACHE II score, use of vasoactive medications and use of continuous renal replacement therapy. The cohorts were formed based on 1:1 nearest-neighbor matching without replacement using the logit of the propensity score and specified caliper width equal to 0.2 of the standard deviation of the logit of the propensity score²⁶. Sensitivity analyses were based on the full cohort with models adjusted a priori for the same patient characteristics used in the propensity scores. The above analyses were repeated for the 7-category sedation strategy prior to the first ICDSC assessment. For these analyses, we formed six pairwise propensity score-matched cohorts similar to the primary analyses, matching with patients on propofol only for each of the other 6 categories of sedation strategy prior to the first ICDSC assessment. A two-sided p-value < 0.05 was considered statistically significant. Analyses were conducted in R, version 3.5.1.²⁷ Propensity-score matching was performed using the R package "MatchIt", version 3.0.2.

Results:

There were 2,837 patients in the study cohort (Figure 1). For those receiving propofol dominant sedation, it was common to receive a single agent (62.8%). While with fentanyl (14.8%) and midazolam dominant sedation strategies (34.8%) single agent use was less common. Most patients were male (60.7%) with a median age of 57 (IQR 43-68) years and admitted for a medical reason (50.4%). The median Charlson comorbidity score was 1 (IQR 0-2), admission SOFA score 7 (IQR 4-9) and admission APACHE II score 19 (IQR 14-25). Patients who received a midazolam dominant sedation strategy were more likely admitted for medical reasons (72.8%) and had higher Charlson comorbidity scores, admission SOFA scores and admission APACHE II scores than those receiving

propofol and fentanyl dominant sedation strategies. Patients receiving midazolam dominant strategies were also more likely to receive vasoactive medications (68.8%) compared to those predominantly receiving propofol (45.3%) and fentanyl dominant sedation strategies (64.5%). (Table 1)

Due to missing patient characteristics for 5 patients (0.2%), propensity scores were calculated for 1,409 patients receiving propofol dominant strategies, 1,067 patients receiving fentanyl dominant sedation strategies and 356 patients receiving midazolam dominant sedation strategies. Of the patients receiving fentanyl dominant sedation strategies, 201 (18.8%) could not be matched to a patient receiving propofol dominant sedation strategies within the specified caliper width of 0.2; therefore, this resulted in a matched cohort for propofol and fentanyl of 1,732 patients. Of the patients receiving midazolam dominant sedation strategies, all 356 patients could be matched to a patient receiving propofol dominant sedation strategies; therefore, this resulted in a matched cohort for patients could be matched to a patient receiving propofol dominant sedation strategies; therefore, this resulted in a matched cohort for patients could be matched to a patient receiving propofol dominant sedation strategies; therefore, this resulted in a matched cohort for patients with propofol and midazolam dominant sedation strategies of 712 patients. After matching, the baseline characteristics were balanced(Table 1).

In the propensity score-matched cohorts, there was a statistically significant association between delirium and midazolam dominant(odds ratio[OR] 1.46 (95% confidence interval 1.06-2.00); p=0.02) as well as fentanyl dominant (OR 1.22 (95% CI 1.00-1.48); p=0.05) sedation strategies compared to propofol dominant sedation strategies(Figure 2). Sensitivity analyses based on the 7-category sedation strategy prior to the first ICDSC assessment showed an increased odds of delirium for those on more than one agent compared to those on propofol only (Table 2). Among those who ever experienced delirium, the distribution of delirium subtypes was similar between dominant sedation strategies (Table 3). Based on the propensity score-matched cohorts, a fentanyl dominant sedation strategy was associated with longer duration of mechanical ventilation, longer ICU and hospital LOS and more delirium days compared to a propofol dominant sedation strategy, while a midazolam dominant sedation strategy was associated with a longer duration of mechanical ventilation compared to a propofol dominant sedation strategy (Figure 3). Sensitivity analyses of the secondary outcomes based on the 7-category sedation strategy can be found in the supplementary results(Supplementary Digital Content - Table 1). There was a statistically significant association between fentanyl dominant sedation strategy and ICU(OR=1.50 (1.07-2.12)) and 30-day mortality(OR=1.35 (1.02-1.79)) in propensity score-matched analyses(Supplementary Digital Content -Table 2).

Discussion:

BMJ Open

Sedative strategy may increase the risk of adverse patient complications such as delirium, or prolonged mechanical ventilation. We found a midazolam dominant sedation strategy was associated with increased risk of developing delirium, and duration of mechanical ventilation, however was not associated with mortality. Conversely, fentanyl was associated with multiple detrimental outcomes including increased risk of ICU & hospital LOS and duration of mechanical ventilation while the associations with delirium and mortality appeared inconsistent. Regardless, these results should advise clinicians to be cautious when selecting their sedation strategy.

The association between benzodiazepine-based sedation strategies and delirium has been suggested in prior literature ^{8 17 18}. The importance of these findings should not be understated as patients with delirium suffer prolonged hospital stays, an increased risk of mortality and long term cognitive impairment^{7 8}. Sedation using multiple agents also increased delirium risk, duration of mechanical ventilation, ICU LOS and hospital LOS. Whether these effects are a direct result from the sedation strategy, or from the resulting delirium are unclear. Therefore, avoiding benzodiazepine dominant and multi-agent sedation strategies may minimize delirium risk.

We also re-confirmed the association between midazolam dominant sedation strategies and longer mechanical ventilation but not mortality as reported by Lonardo *et al.*¹¹. The mechanism that benzodiazepines would increase mortality is unclear, however prolonged mechanical ventilation is a known risk factor for mortality²⁸. A meta-analysis by Ho *et al.* comparing propofol to other sedation strategies did not demonstrate an impact on mortality; however, it did not specifically look at midazolam compared to other benzodiazpines²⁹. The heterogeneity in mortality outcomes may be attributable to variation in sedation depth, as early deep sedation is an independent predictor of delayed time to extubation and long term mortality¹². Therefore, not only agent choice but also sedation depth might contribute to the variation in mortality risk observed with benzodiazepines.

Sedation with midazolam and fentanyl is often selected for patients with significant hemodynamic instability to avoid the negative ionotropic and vasodilatory effects of propofol. In our study, those receiving midazolam dominant sedation strategies demonstrated significantly higher SOFA scores, APACHE II scores on admission and were more likely to receive vasoactive medications and continuous renal replacement. All of these may impact mortality when unaccounted for and may explain the heterogeneity observed in the literature³⁰. For example, Lonardo *et al.* did not control for the presence of renal replacement which has been associated with a high rate of mortality in critically ill patients^{11 31}. Our use of detailed clinical data for risk adjustment may help explain the differences in mortality compared to prior reports.

A fentanyl dominant sedation strategy was significantly associated with increased ICU LOS, hospital LOS and duration of mechanical ventilation. Prior literature shows associations with delayed extubation when given in the first 48 hours, which would support our findings¹². What is unclear is whether our result is a direct effect of fentanyl or a synergistic combination of both fentanyl and midazolam. Moreover, fentanyl dominant strategies were associated with increased risk of ICU mortality, 30-day mortality, and at hospital discharge but not 1 year. It is difficult to know what to make of these observations. The relationship between fentanyl use and ICU mortality has been incompletely explored in the literature. The mortality risk associated with fentanyl use may be attributable to prolongations in mechanical ventilation²⁸. In our data, the effect of mortality appeared strongest in those receiving only fentanyl and was less robust when used in combination. Another possibility could be the immunomodulatory effects of naroctics. The mu-opioid receptor is expressed on macrophages and T-lymphocytes, and chronic administration may increase the risk of bacterial infection³²⁻³⁴. Therefore, large doses of fentanyl may contribute to further immune dysregulation thereby placing critically ill patients at risk of infection. A final possibility is the use of fentanyl in the provision of palliative symptom control, therefore the mortality association is a marker of this practice. Further study is required to better delineate the true nature of the association between fentanyl and deleterious patient outcomes in the ICU.

Our studies strength is our large cohort size supported by granular patient detail extracted from a prospectively collected, clinical database representing multiple ICUs and the covariates were rigorously controlled using a propensity matched model²². The multicenter study design provides a pragmatic view of how sedation strategies are utilized in clinical practice. Limitations of our study include the possibility of confounding bias due to unmeasured impactful covariates or confounding by indication. Patients receiving midazolam dominant strategies were clearly more critically ill compared to those receiving propofol dominant strategies manifest by higher APACHE II scores, greater vasopressor requirements, and higher rates of renal replacement. To compensate, we conducted propensity score-matched analyses adjusted for known covariates. Additionally, fentanyl and midazolam are often used concurrently. Clearly teasing apart the isolated effects of each medication may be challenging. Adjustment with our statistical model should minimize this effect, however randomized controlled trials would better assess this limitation. Moreover, we focused primarily on the presence or absence of continuous infusions and did not quantify the impact of independent drug boluses. However, this effect would lessen the association with our primary outcome suggesting our observed associations are conservative. Another limitation is the use of drug

BMJ Open

duration as a surrogate for the impact of the sedation strategy rather than in vivo plasma concentrations. Patient factors may impact midazolam metabolism due to differences in age, hepatic or renal dysfunction or coadministration of medications with similar metabolic pathways³⁵⁻³⁷. Finally, the definition of dominant sedation strategy based on longest duration of infusion prior to first ICDSC may be considered arbitrary. However, defining sedation in the setting of multiple agents has been incompletely explored in the literature, therefore novel definitions are required. Our data closely reflects multiple findings previously reported with both midazolam and fentanyl sedation. This reduces the possibility our findings are pure chance.

Conclusion:

This multi-center, propensity score-matched cohort study demonstrates a novel association between fentanyl dominant sedation strategies and negative outcomes in the ICU. Fentanyl dominant sedation strategies were associated with increased risk of delirium, duration of ventilation, ICU LOS and hospital LOS. We also confirmed previous reports including an increased risk of delirium and duration of mechanical ventilation with midazolam dominant sedation strategies. This study highlights the need for additional research to further evaluate potentially negative effects of fentanyl and midazolam based sedation strategies.

7.

Sources of Funding:

This project was unfunded.

Disclosures:

The authors have no conflicts of interest.

Patient & Public Involvement:

No patient involved.

Acknowledgements:

The authors would like to thank the Hotchkiss Brain institute, the O'Brien Institute for Public Health, and the University of Calgary Departments of Critical Care, Community Health Sciences and Psychiatry for their on-going support. Moreover, we would like to thank the reviewers and editorial team for their hard work and consideration.

References:

- 1. Association AP. Diagnostic and Statistical Manual of Mental Disorders(DSM-5). Arlington, VA: American Psychiatric Association 2013.
- 2. Ely EW, Inouye SK, Bernard GR, et al. Delirium in mechanically ventilated patients: validity and reliability of the confusion assessment method for the intensive care unit (CAM-ICU). JAMA 2001;286(21):2703-10.
- 3. Dubois MJ, Bergeron N, Dumont M, et al. Delirium in an intensive care unit: a study of risk factors. *Intensive Care Med* 2001;27(8):1297-304.
- Pandharipande P, Cotton BA, Shintani A, et al. Prevalence and risk factors for development of delirium in surgical and trauma intensive care unit patients. *J Trauma* 2008;65(1):34-41. doi: 10.1097/TA.0b013e31814b2c4d
- Girard TD, Kress JP, Fuchs BD, et al. Efficacy and safety of a paired sedation and ventilator weaning protocol for mechanically ventilated patients in intensive care (Awakening and Breathing Controlled trial): a randomised controlled trial. *Lancet* 2008;371(9607):126-34. doi: 10.1016/S0140-6736(08)60105-1
- 6. Zaal IJ, Devlin JW, Peelen LM, et al. A systematic review of risk factors for delirium in the ICU. *Crit Care Med* 2015;43(1):40-7. doi: 10.1097/CCM.00000000000625
- 7. Thomason JW, Shintani A, Peterson JF, et al. Intensive care unit delirium is an independent predictor of longer hospital stay: a prospective analysis of 261 non-ventilated patients. *Crit Care* 2005;9(4):R375-81. doi: 10.1186/cc3729
- 8. Ely E, Shintani A, Truman B, et al. Delirium as a predictor of mortality in mechanically ventilated patients in the intensive care unit. *JAMA* 2004;291(14):1753-62.
- 9. Needham DM, Bronskill SE, Calinawan JR, et al. Projected incidence of mechanical ventilation in Ontario to 2026: Preparing for the aging baby boomers. *Crit Care Med* 2005;33(3):574-9.
- 10. Jacobs P, Noseworthy TW. National estimates of intensive care utilization and costs: Canada and the United States. *Crit Care Med* 1990;18(11):1282-6.
- 11. Lonardo NW, Mone MC, Nirula R, et al. Propofol is associated with favorable outcomes compared with benzodiazepines in ventilated intensive care unit patients. *Am J Respir Crit Care Med* 2014;189(11):1383-94. doi: 10.1164/rccm.201312-22910C
- Shehabi Y, Bellomo R, Reade MC, et al. Early intensive care sedation predicts long-term mortality in ventilated critically ill patients. *Am J Respir Crit Care Med* 2012;186(8):724-31. doi: 10.1164/rccm.201203-0522OC
- Riker RR, Shehabi Y, Bokesch PM, et al. Dexmedetomidine vs midazolam for sedation of critically ill patients: a randomized trial. *JAMA* 2009;301(5):489-99. doi: 10.1001/jama.2009.56
- 14. R B-v, Mar Sanchez-Soria M, Morales-Garcia C, et al. Prolonged sedation of critically ill patients with midazolam or propofol: impact on weaning and costs. *Crit Care Med* 1997;25(1):33-40.

2		
2		
3		
4		
5		
3 4 5 6 7 8 9		
0		
7		
8		
9		
10		
10		
11		
12		
13		
14		
13 14 15 16		
15		
16		
17		
10		
18		
19		
20		
21		
22		
22		
23		
24		
25		
25		
20		
27		
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36		
29		
20		
30		
31		
32		
22		
24		
34		
35		
36		
37		
37 38		
38		
39		
40		
41		
42		
43		
44		
45		
46		
47		
48		
49		
50		
51		
52		
53		
53		
54		
55		
56		
57		
58		
59		

- 15. Aitkenhead AR, Pepperman ML, Willatts SM, et al. Comparison of propofol and midazolam for sedation in critically ill patients. *Lancet* 1989;2(8665):704-9.
- 16. Chamorro C, de Latorre FJ, Montero A, et al. Comparative study of propofol versus midazolam in the sedation of critically ill patients: results of a prospective, randomized, multicenter trial. *Crit Care Med* 1996;24(6):932-9.
- Barr J, Fraser GL, Puntillo K, et al. Clinical practice guidelines for the management of pain, agitation, and delirium in adult patients in the intensive care unit. *Crit Care Med* 2013;41(1):263-306. doi: 10.1097/CCM.0b013e3182783b72
- Pandhairpande P, Shintani A, Peterson J, et al. Lorazepam is an independent risk factor for transitioning to delirium in intensive care unit patients. *Anesthesiology* 2006;104(1):21-26.
- 19. Cammarano WB, Pittet JF, Weitz S, et al. Acute withdrawal syndrome related to the administration of analgesic and sedative medications in adult intensive care unit patients. *Crit Care Med* 1998;26(4):676-84.
- 20. von Elm E, Altman DG, Egger M, et al. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies. *The Lancet* 2007;370(9596):1453-57. doi: 10.1016/s0140-6736(07)61602-x
- 21. Chiasson TC, Manns BJ, Stelfox HT. An economic evaluation of venous thromboembolism prophylaxis strategies in critically ill trauma patients at risk of bleeding. *PLoS Med* 2009;6(6):e1000098. doi: 10.1371/journal.pmed.1000098
- 22. Brundin-Mather R, Soo A, Zuege DJ, et al. Secondary EMR data for quality improvement and research: A comparison of manual and electronic data collection from an integrated critical care electronic medical record system. *J Crit Care* 2018;47:295-301. doi: 10.1016/j.jcrc.2018.07.021
- 23. Stelfox HT, Soo A, Niven DJ, et al. Assessment of the Safety of Discharging Select Patients Directly Home From the Intensive Care Unit: A Multicenter Population-Based Cohort Study. JAMA Intern Med 2018;178(10):1390-99. doi: 10.1001/jamainternmed.2018.3675
- 24. Sessler CN, Gosnell MS, Grap MJ, et al. The Richmond Agitation-Sedation Scale: validity and reliability in adult intensive care unit patients. *Am J Respir Crit Care Med* 2002;166(10):1338-44. doi: 10.1164/rccm.2107138
- 25. Bergeron N, Dubois MJ, Dumont M, et al. Intensive Care Delirium Screening Checklist: evaluation of a new screening tool. *Intensive Care Med* 2001;27(5):859-64.
- 26. Austin PC. Optimal caliper widths for propensity-score matching when estimating differences in means and differences in proportions in observational studies. *Pharm Stat* 2011;10(2):150-61. doi: 10.1002/pst.433
- 27. Team RC. R: A language and environment for statistical computing. . 2018
- 28. Feng Y, Amoateng-Adjepong Y, Kaufman D, et al. Age, duration of mechanical ventilation, and outcomes of patients who are critically ill. *Chest* 2009;136(3):759-64. doi: 10.1378/chest.09-0515
- 29. Ho KM, Ng JY. The use of propofol for medium and long-term sedation in critically ill adult patients: a meta-analysis. *Intensive Care Med* 2008;34(11):1969-79. doi: 10.1007/s00134-008-1186-5

- 30. Soo A, Zuege DJ, Fick GH, et al. Describing organ dysfunction in the intensive care unit: a cohort study of 20,000 patients. Crit Care 2019;23(1):186. doi: 10.1186/s13054-019-2459-9
- 31. Uchino S, Kellum JA, Bellomo R, et al. Acute renal failure in critically ill patients: a multinational, multicenter study. JAMA 2005;294(7):813-8. doi: 10.1001/jama.294.7.813
- 32. Risdahl JM, Khanna KV, Peterson PK, et al. Opiates and infection. J Neuroimmunol 1998;83(1-2):4-18.
- 33. Roy S, Loh HH. Effects of opioids on the immune system. Neurochem Res 1996;21(11):1375-86.
- 34. Roy S, Wang J, Kelschenbach J, et al. Modulation of immune function by morphine: implications for susceptibility to infection. J Neuroimmune Pharmacol 2006;1(1):77-89. doi: 10.1007/s11481-005-9009-8
- 35. Barr J, Zomorodi K, Bertaccini EJ, et al. A double-blind, randomized comparison of i.v. lorazepam versus midazolam for sedation of ICU patients via a pharmacologic model. Anesthesiology 2001;95(2):286-98.
- 36. Swart EL, Zuideveld KP, de Jongh J, et al. Comparative population pharmacokinetics of lorazepam and midazolam during long-term continuous infusion in critically ill patients. Br J Clin Pharmacol 2004;57(2):135-45.
- 37. Oldenhof H, de Jong M, Steenhoek A, et al. Clinical pharmacokinetics of midazolam in intensive care patients, a wide interpatient variability? Clin Pharmacol Ther 1988;43(3):263-9.

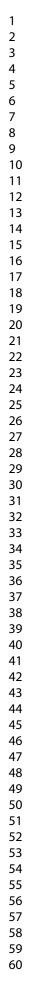
Tables:

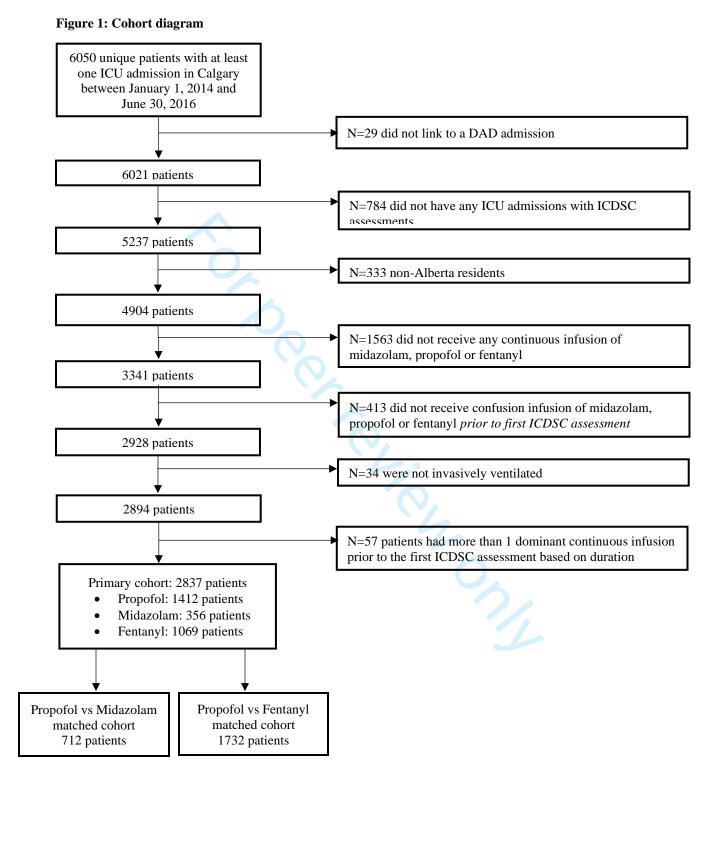
Table 1. Daselille Char							
	Overall co	ohort		Dominant sedation strategy matched cohorts			
				Propofol v	s. Midazolam	Propofol v	s. Fentanyl
				matched co	ohort	matched co	ohort
	Propofol	Fentanyl	Midazolam	Propofol	Midazolam	Propofol	Fentanyl
	(n=1412)	(n=1069)	(n=356)	(n=356)	(n=356)	(n=866)	(n=866)
Characteristic							
Age, median (IQR)	56 (42- 67)	59 (44-69)	59 (46-71)	58 (48- 69)	59 (46-71)	57 (46- 68)	57 (42- 69)
Male, n (%)	843 (59.7)	656 (61.4)	223 (62.6)	227 (63.8)	223 (62.6)	533 (61.5)	520 (60.0)
Admission reason, n (%)							
Medical	791 (56.0)	379 (35.5)	259 (72.8)	253 (71.1)	259 (72.8)	426 (49.2)	379 (43.8)
Surgical	265 (18.8)	405 (37.9)	69 (19.4)	74 (20.8)	69 (19.4)	256 (29.6)	248 (28.6)
Neurological	245 (17.4)	73 (6.8)	19 (5.3)	18 (5.1)	19 (5.3)	76 (8.8)	73 (8.4)
Trauma	109 (7.7)	211 (19.7)	9 (2.5)	11 (3.1)	9 (2.5)	108 (12.5)	166 (19.2)
Location admitted from							

Table 1: Baseline Characteristics

3						BMJ Oper	ı			
Emergency R	loom	833 (59.0)%)	413 (38.6	%)	190 (53.4%)	202 (56.7)	190 (53.4)	441 (50.9)	369 (42.6)
Operating Room/Recovery		278 (19.7	/	399 (37.3	/	59 (16.6%)		59 (16.6)	232 (26.8)	271 (31.3)
Hospital War		254		209		91 (25.6%)) 85 (23.9)	91 (25.6)	165	180
Another Hosp	oital	(18.0)%)	(19.6		. ,			(19.1)	(20.8)
Other	-	(1.89)	%)	24 (2	.2%)	7 (2.0%)	4 (1.1)	7 (2.0)	17 (2.0)	23 (2.7)
		(1.59)	%)	24 (2	.2%)	9 (2.5%)	2 (0.6)	9 (2.5)	11 (1.3)	23 (2.7)
Charlson score, 1 0	n (%)	582 (41.2	2%)	422 (39.5	%)	121 (34.0%)	127 (35.7)	121 (34.0)	322 (37.2)	336 (38.8)
1		317		239		70 (19.7%)		70 (19.7)	201	207
2+		(22.5 513		(22.4 408	<i>.</i>	165	168	165 (46.3)	(23.2) 343	(23.9) 323
Charlson score,		(36.2		(38.2		(46.3%)	(47.2)		(39.6)	(37.3)
median (IQR)		1 (0-	-2)	1 (0-2	2)	1 (0-3)	1 (0-3)	1 (0-3)	1 (0-3)	1 (0-2)
Admission SOF		6 (4-	-8)	7 (5-	10)	8 (6-11)	8 (5-10)	8 (6-11)	7 (4-9)	7 (4-10)
Admission APA	CHE	18 (1	13-				21 (16-		19 (14-	19 (13-
II score, median (IQR)		24)		19 (1	4-25)	23 (16-28)	27)	23 (16-28)	24)	26)
Vasoactive)/)	639	20/)	690 (64 5	9/)	245	241	245 (68.8)	526	488
medications, n (9 Continuous rena replacement ther	1	(45.3 59 (4.29		(64.5 78 (7		(68.8%)	(67.7)	33 (9.3)	(60.7) 52 (6.0)	(56.4) 73 (8.4)
Table 2: Sensitiv prior to first ICD		essme	ent	ining t	he rela	ationship be	tween deliriu Matched co		ual sedation	agents
Sedation	Numb		Ever		Adju	sted OR	Number	Ever	Ever	Propensit
agent prior to first ICDSC assessment	of patier		Delir n (%	ium,)	(95%	• CI) ¹	of patients per group	Delirium for propofol patients from matched cohorts, n (%)	Delirium, n (%)	score-mat OR for Ev delirium(CI) ²
Propofol	887		509 (57.4)	1.00 (group	(reference	N/A ³	N/A ³	N/A ³	1.00 (refer group)
Fentanyl	158		91 (5	/	1.04 ((0.71-1.52)	152	74 (48.7)	87 (57.2)	1.23 (0.74-
Midazolam Propofol +	124 854		77 (6) 543 (/		$(0.73-1.69) \\ (1.06-1.65)$	122 565	69 (56.6) 323 (57.2)	75 (61.5) 347 (61.4)	1.41 (0.90-
Fentanyl				,		` ´			, í	Ì
Propofol + Midazolam Fentanyl +	224 222		163 (* 160 (*			(1.23-2.43)	223	143 (64.1) 119 (55.6)	162 (72.6) 153 (71.5)	ì
Midazolam						` ´			, í	Ì
All 3	368		269 (73.1)	1.84 ((1.38-2.47)	335	199 (59.4)	241 (71.9)	1.75 (1.27-
	For pe	or rou	view o	nly - hi	ttp://bi	mionen hmi	com/site/ab	out/guidelines.	vhtml	14

Table 2: Sensitivity Analyses examining the relationship between	delirium and individual sedation agents
prior to first ICDSC assessment	


	Overall C	ohort		Matched cohorts				
Sedation agent prior to first ICDSC assessment	Number of patients	Ever Delirium, n (%)	Adjusted OR (95% CI) ¹	Number of patients per group	Ever Delirium for propofol patients from matched cohorts, n (%)	Ever Delirium, n (%)	Propensity score-matched OR for Ever delirium(95% CI) ²	
Propofol	887	509 (57.4)	1.00 (reference group)	N/A ³	N/A ³	N/A ³	1.00 (reference group)	
Fentanyl	158	91 (57.6)	1.04 (0.71-1.52)	152	74 (48.7)	87 (57.2)	1.23 (0.74-2.05)	
Midazolam	124	77 (62.1)	1.11 (0.73-1.69)	122	69 (56.6)	75 (61.5)	1.41 (0.90-2.22)	
Propofol + Fentanyl	854	543 (63.6)	1.32 (1.06-1.65)	565	323 (57.2)	347 (61.4)	1.19 (0.94-1.51)	
Propofol + Midazolam	224	163 (72.8)	1.72 (1.23-2.43)	223	143 (64.1)	162 (72.6)	1.49 (1.00-2.23)	
Fentanyl + Midazolam	222	160 (72.1)	1.72 (1.22-2.46)	214	119 (55.6)	153 (71.5)	2.00 (1.34-3.00)	
All 3	368	269 (73.1)	1.84 (1.38-2.47)	335	199 (59.4)	241 (71.9)	1.75 (1.27-2.42)	


¹Adjusted for age, sex, admission class, Charlson comorbidity category (0, 1, 2+), admission APACHE II score, vasoactive medications, continuous renal replacement therapy

²Propensity scores based on age, sex, admission class, Charlson comorbidity category (0, 1, 2+), admission APACHE II score, vasoactive medications, continuous renal replacement therapy. 1:1 nearest-neighbor pairwise (propofol vs. fentanyl and propofol vs. midazolam, etc.) matching without replacement using the logit of the propensity score and specified caliper width equal to 0.2 of the standard deviation of the logit of the propensity score ³The propofol group was used to form all 6 matched cohorts and therefore the number of patients and number (%) experiencing delirium for propofol varies for each comparison

Table 3: Delirium subtype by dominant sedation strategy prior to first ICDSC assessment among patients experiencing delirium for the propensity score-matched cohorts

	Dominant sedation strategy								
	Propofol vs. Fentanyl		Propofol vs. Midazolam matched cohort						
	patients experiencing	delirium	patients experiencing delirium						
Delirium Subtype	Propofol (n=529)	Fentanyl (n=569)	Propofol (n=228)	Midazolam (n=257)					
Hyperactive only, n	47 (8.9)	40 (7.0)	15 (6.6)	25 (9.7)					
(%)									
Hypoactive only, n	210 (39.7)	228 (40.1)	104 (45.6)	106 (41.2)					
(%)									
Mixed, n (%)	254 (48.0)	289 (50.8)	103 (45.2)	123 (47.9)					
Unable to assess or	18 (3.4)	12 (2.1)	6 (2.6)	3 (1.2)					
classify, n (%)									

Figure 2: Propensity score-matched odds ratios of delirium by dominant sedation strategy prior to first ICDSC assessment

BMJ Open

Sedation Strategy		Odds Ratio (95% CI)	p₋va
Propofol	•	1.00 (reference group)	-
Fentanyl		1.22 (1.00-1.48)	0.0
Midazolam	0.0 0.5 1.0 1.5 Odds Ratio (95% Cl)	─ 1.46 (1.06-2.00) 2.0	0.0

BMJ Open

strategy	-matched mean or rate ratios of secondary outcomes	and Securit
Secondary Outcomes	Mean or Rate Ratio (95%	CI)
ICU LOS		p-va
Propofol	1.00 (reference group) -
Fentanyl	1.11 (1.02-1.22)	0.0
Midazolam	L ↑ 1.04 (0.90-1.19)	0.0
Hospital LOS		
Propofol	1.00 (reference group))
Fentanyl	1.20 (1.08-1.33)	<0.
Midazolam	1.01 (0.86-1.18)	0.
Duration of invasive ventilation		
Propofol	* 1.00 (reference group)
Fentanyl	1.20 (1.07-1.35)	0.0
Midazolam	1.22 (1.02-1.45)	0.
Number of delirium days		-
Propofol	 1.00 (reference group))
Fentanyl	1.15 (1.00-1.32)	, 0.
Midazolam	1.11 (0.91-1.35)	0.
For peer review only -	ttp://bmjopen.bmj.com/site/about/guidelines.xhtml	

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14 15	
15 16	
17	
18	
19	
20	
21	
22	
23	
24	
23 24 25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37 38	
30 39	
39 40	
40 41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	

1 2

Propensity score- matched mean ratio or rate ratio (95% CI) ¹	ICU LOS	Hospital LOS	Duration of invasive ventilation	Number of delirium days
Sedation prior to first				
ICDSC assessment				
Propofol	1.00 (reference	1.00 (reference	1.00 (reference	1.00 (reference
	group)	group)	group)	group)
Fentanyl	1.06 (0.85-1.33)	1.25 (0.97-1.61)	1.00 (0.74-1.35)	1.03 (0.69-1.55)
Midazolam	0.83 (0.65-1.06)	0.98 (0.75-1.28)	1.00 (0.73-1.38)	0.88 (0.59-1.31)
Propofol + Fentanyl	1.17 (1.05-1.30)	1.20 (1.05-1.38)	1.37 (1.18-1.58)	1.08 (0.90-1.31)
Propofol + Midazolam	1.16 (0.99-1.36)	0.86 (0.68-1.08)	1.59 (1.28-1.99)	1.11 (0.87-1.41)
Fentanyl + Midazolam	1.40 (1.17-1.67)	1.27 (1.02-1.57)	1.95 (1.54-2.46)	1.28 (0.97-1.69)
All 3	1.73 (1.52-1.98)	1.39 (1.18-1.63)	2.47 (2.06-2.97)	1.35 (1.10-1.67)

class, x renal replac y score and spe. ¹Propensity score based on age, sex, admission class, Charlson comorbidity category (0, 1, 2+), admission APACHE II score, vasoactive medications, continuous renal replacement therapy. 1:1 nearest-neighbor matching without replacement using the logit of the propensity score and specified caliper width equal to 0.2 of the standard deviation of the logit of the propensity score

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
12	
13	
14	
15	
16	
17	
18	
19	
20	
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30	
22	
23	
24	
27	
25	
20	
27	
28	
29	
30	
31 32 33 34 35 36 37 38	
32	
33	
34	
35	
36	
37	
20	
30 39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
53	
54	
55	
56	
57	
58	

59

Table S2: Propensity score matched models of the relationship between mortality outcomes	and dominant
sedation strategy prior to first ICDSC assessment	

Outcome	Dominant Sedation Strategy	Mortality, n (%)	Propensity score-matched OR (95% CI) ²
ICU	Propofol	94 (6.7)	1.00 (reference)
Mortality	Fentanyl	104 (9.7)	1.50 (1.07-2.12)
	Midazolam	39 (11.0)	1.20 (0.74-1.97)
Hospital Mortality	Propofol	157 (11.1)	1.00 (reference)
	Fentanyl	166 (15.5)	1.27 (0.97-1.67)
	Midazolam	59 (16.6)	1.14 (0.76-1.70)
Died within 30 days of	Propofol	148 (10.5)	1.00 (reference)
ICU admission	Fentanyl	148 (13.8)	1.35 (1.02-1.79)
	Midazolam	50 (14.0)	1.02 (0.67-1.57)
Died within 1 year of ICU admission	Propofol	268 (19.0)	1.00 (reference)
	Fentanyl	248 (23.2)	1.13 (0.90-1.43)
	Midazolam	91 (25.6)	1.01 (0.72-1.42)

STROBE Statement—Checklist of items that should be included in reports of cohort studies

	Item No	Recommendation	Page No
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or	1, 2
		the abstract	
		(b) Provide in the abstract an informative and balanced summary of what	
		was done and what was found	
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	3
Objectives	3	State specific objectives, including any prespecified hypotheses	3
Methods			
Study design	4	Present key elements of study design early in the paper	4
Setting	5	Describe the setting, locations, and relevant dates, including periods of	4
		recruitment, exposure, follow-up, and data collection	
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of	4
1 will of pullo	0	participants. Describe methods of follow-up	
		(b) For matched studies, give matching criteria and number of exposed	
		and unexposed	
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders,	5,6
v arrables	/	and effect modifiers. Give diagnostic criteria, if applicable	,
Data sources/	8*	For each variable of interest, give sources of data and details of methods	4, 6
measurement	0	of assessment (measurement). Describe comparability of assessment	.,.
measurement		methods if there is more than one group	
Bias	0		6
	9	Describe any efforts to address potential sources of bias	5
Study size	10	Explain how the study size was arrived at	4,6
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If	-,0
	10	applicable, describe which groupings were chosen and why	6,
Statistical methods	12	(<i>a</i>) Describe all statistical methods, including those used to control for confounding	Supplement methods
		(b) Describe any methods used to examine subgroups and interactions	
		(c) Explain how missing data were addressed	
		(d) If applicable, explain how loss to follow-up was addressed	
		(e) Describe any sensitivity analyses	
Dosults			
Results Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers	7,
Farticipants	13	potentially eligible, examined for eligibility, confirmed eligible, included	Figure 1
		in the study, completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	
	1 4 14	(c) Consider use of a flow diagram	4,7
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical,	Table 1
		social) and information on exposures and potential confounders	
		(b) Indicate number of participants with missing data for each variable of interest	
		(c) Summarise follow-up time (eg, average and total amount)	
Outcome data	15*	Report numbers of outcome events or summary measures over time	7
			Table 2, 3,

1	Main
2 3	
3 4 5	
6	
7 8	
9	Other
10 11	
12	Discu
13	Key r
14 15	Limit
16	Interp
17 18	Interp
19 20	Gener
20 21	Othe
22	Fundi
23 24	
25	
26 27	*Give
28	Note: A
29	publish
30 31	availab
32	http://w
33 34	availab
35	
36 37	
38	
39	
40 41	
42	
43 44	
44	
46	
47 48	
49	
50 51	
52	
53	
54 55	
56	
57	

Main results	16	(<i>a</i>) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for	Table 2,3
		and why they were included	
		(b) Report category boundaries when continuous variables were categorized	
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a	
		meaningful time period	
Other analyses	17	Report other analyses done-eg analyses of subgroups and interactions, and sensitivity	7
		analyses	
Discussion			
Key results	18	Summarise key results with reference to study objectives	8
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or	10
		imprecision. Discuss both direction and magnitude of any potential bias	
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations,	8,9,10
		multiplicity of analyses, results from similar studies, and other relevant evidence	
Generalisability	21	Discuss the generalisability (external validity) of the study results	8,9,10
Other informati	ion		
Funding	22	Give the source of funding and the role of the funders for the present study and, if	11
		applicable, for the original study on which the present article is based	

*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at http://www.strobe-statement.org.

BMJ Open

Sedation strategy and ICU Delirium: A multi-center, population-based propensity score-matched cohort study

Journal:	BMJ Open
Manuscript ID	bmjopen-2020-045087.R1
	biljopen-2020-045087.RI
Article Type:	Original research
Date Submitted by the Author:	12-Apr-2021
Complete List of Authors:	Casault, Colin; University of Calgary Cumming School of Medicine, Department of Critical Care Medicine Soo, Andrea; University of Calgary Cumming School of Medicine, Critical Care Medicine Lee, Chel; University of Calgary Cumming School of Medicine, Department of Critical Care Couillard, Philippe; University of Calgary Cumming School of Medicine, Critical Care Medicine Niven, Daniel; University of Calgary Cumming School of Medicine, Critical Care Medicine Stelfox, Tom; University of Calgary Cumming School of Medicine, Department of Critical Care Fiest, Kirsten; University of Calgary Cumming School of Medicine, Critical Care
Primary Subject Heading :	Intensive care
Secondary Subject Heading:	Anaesthesia, Intensive care, Patient-centred medicine
Keywords:	Adult intensive & critical care < ANAESTHETICS, Health & safety < HEALTH SERVICES ADMINISTRATION & MANAGEMENT, Quality in health care < HEALTH SERVICES ADMINISTRATION & MANAGEMENT, Adult intensive & critical care < INTENSIVE & CRITICAL CARE, Delirium & cognitive disorders < PSYCHIATRY

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

review only

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Sedation strategy and ICU Delirium: A multi-center, population-based propensity score-matched cohort study

Colin Casault_a, MD; Andrea Soo_a, PhD; Chel Hee Lee, PhD; Philippe Couillard_a, MD; Daniel J Niven_{a,b}, MD/PhD; Tom Stelfox_{a,b}, MD/PhD; Kirsten M. Fiest_{a,b,c}, PhD.

a: Department of Critical Care Medicine, University of Calgary and Alberta Health Services, Calgary Alberta, Canada. b: Department of Community Health Sciences and O'Brien Institute for Public Health, University of Calgary, Calgary, Alberta, Canada c: Department of Psychiatry and Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada

Address for Correspondence: Colin Casault Department of Critical Care, University of Calgary Calgary, Alberta, Canada T2N-1N4 (587) 432-6762 casaultc@gmail.com

Abstract: 299 words Manuscript: 3378 words Tables: 4 Figures: 3

Conflicts of Interest: No author has a conflict of interest to declare.

Keywords: Delirium, ICU sedation, fentanyl sedation, midazolam sedation

Objectives: We examined the relationship between dominant sedation strategy, risk of delirium and patient-centred outcomes in adults admitted to intensive care units(ICUs).

Design: Retrospective propensity matched cohort study.

Setting: Mechanically-ventilated adults (\geq 18 years) admitted to four Canadian hospital medical/surgical ICUs from 2014 – 2016 in Calgary, Alberta, Canada.

Participants: 2837 mechanically-ventilated adults (\geq 18 years) requiring admission to a medical/surgical ICU were evaluated for the relationship between sedation strategy and delirium.

Interventions: None.

Primary and secondary outcome measures: The primary exposure was dominant sedation strategy, defined as the sedative infusion, including midazolam, propofol or fentanyl, with the longest duration prior to first delirium assessment. The primary outcome was 'ever delirium' identified using the Intensive Care Delirium Screening Checklist (ICDSC). Secondary outcomes included mortality, length of stay (LOS), duration of ventilation and number of days with delirium. We analyzed the cohort with two propensity score (patient characteristics and therapies received) matched cohorts (propofol vs. fentanyl and propofol vs. midazolam).

Results: 2,837 patients (60.7% male; median age 57 years (interquartile range 43-68)) were considered for propensity matching. In propensity score-matched cohorts(propofol vs. midazolam, n=712; propofol vs. fentanyl, n=1,732), the odds of delirium were significantly higher with midazolam (odds ratio (OR) 1.46 (95% confidence interval(CI) 1.06-2.00)) and fentanyl (OR 1.22 (95% CI 1.00-1.48)) compared to propofol dominant sedation strategies. Dominant sedation strategy with midazolam and fentanyl were associated with longer duration of ventilation compared to propofol. Fentanyl was also associated with increased ICU mortality(OR 1.50 (1.07-2.12)) ICU and hospital LOS compared to a propofol dominant sedation strategy.

Conclusions: We identified a novel association between fentanyl dominant sedation strategies and an increased risk of delirium, a composite outcome of delirium or death, duration of mechanical ventilation, ICU LOS and hospital LOS. Midazolam dominant sedation strategies increased delirium risk and duration of mechanical ventilation.

Article Summary:

- We examine the effects of midazolam and fentanyl sedation strategies on delirium and patient centered outcomes using a large cohort of general intensive care patients.
- To reduce bias, we used a propensity score matching process on a large database.
- One key limitation is secondary to the concurrent use of multiple overlapping sedation strategies which may impact the results
- Based on the limitations and the nature of cohort studies, one should consider this study as hypothesis generating.

Introduction:

Delirium in critically ill patients is an acute confusional state marked by severe disorganization of cognition, fluctuating course, attentional deficit and a disturbance of awareness¹. Older age, severity of illness, presence of mechanical ventilation, coma, and sedative medications place over 50% of ICU patients at risk for developing delirium²⁻⁶. Delirium in the ICU is common, and may prolong hospital stay, increase mortality risk and contribute to long term cognitive impairment^{7 8}. With a burgeoning elderly population, ICU admission requiring mechanical ventilation is estimated to increase by 80% by 2026, therefore understanding potential contributors to delirium is paramount^{9 10}.

Over-sedation in the ICU, with benzodiazepines in particular, may be harmful^{11,12}. Prospective cohort and randomized controlled trials support shorter durations of mechanical ventilation, more rapid awakening with propofol or dexmedetomidine compared to midazolam ¹³⁻¹⁷. Similarly, a population-based study by Lonardo *et al.* demonstrated higher mortality, longer duration of mechanical ventilation and longer ICU length of stay (LOS) in patients managed with benzodiazepines compared to propofol¹¹. Lonardo *et al.* postulated midazolam's mortality effect may be due to increased rates of delirium. Delirium is associated with mortality, and some evidence supports patients treated with benzodiazepines may demonstrate higher rates of delirium in the ICU^{8 13 18 19}. However, the association between benzodiazepines and delirium is inconsistent⁶.

Sedation strategies often employ both a sedative, like propofol, and an analgesic, like fentanyl, simultaneously to achieve a desired effect. However, studies evaluating the clinical effects of these sedation strategies are lacking. Additional research is necessary to understand the effects of sedation strategies on delirium, hospital length of stay (LOS) and survival outcomes. Our study examined the relationship between dominant sedation strategy (continuously infused propofol, fentanyl, and/or midazolam), delirium and important patient-centred outcomes, in a multi-center population-based sample of mechanically-ventilated adults admitted to ICU. *Methods:*

Ethics Approval Statement:

This retrospective cohort study was reported in compliance with the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement²⁰ and approved by the conjoint health research ethics board at the University of Calgary (REB17-0389).

Patient & Public Involvement Statement:

BMJ Open

2	
3	Neither patients, nor the public were not involved in the design, collection, compilation or completion of this research
4	
5	study.
6 7	St. L. Setting & Demulation
8	Study Setting & Population:
9	We identified consecutive mechanical ventilated adults (\geq 18 years) admitted to four medical-surgical ICUs
10	
11	in Calgary, Alberta, Canada between January 1, 2014, to June 30th, 2016. Patients were excluded if:
12	
13	1) Their ICU electronic health data did not link to an appropriate inpatient (hospital) admission
14	2) They did not have any ICU admissions with at least 1 Intensive Care Delirium Screening Checklist
15	2) They did not have any 100 admissions with at least 1 mensive care Demitain Scieening checkinst
16 17	(ICDSC) assessment (details described in the Outcome Measures section)
18	
19	3) They were non-Alberta residents (to allow for mortality outcome follow-up post hospital discharge)
20	4) They did not receive at least 1 continuous infusion of midazolam, propofol or fentanyl prior to the first
21	4) They did not receive at least 1 continuous infusion of infuazorani, proportion of remanyr prior to the first
22	ICDSC assessment.
23	
24 25	5) They were never invasively ventilated during their ICU stay.
26	6) They did not have a single dominant continuous infusion prior to the first ICDSC assessment (see
27	b) They did not have a single dominant continuous infusion prior to the first ICDSC assessment (see
28	definition of dominant sedation strategy in the <i>Exposure Measure</i> section below for further detail).
29	
30	If the patient was readmitted to ICU more than once during the study period, then only the first admission
31 32	with at least 1 ICDSC assessment was used. The ICUs are staffed by accredited intensive care physicians which
33	with at least 1 10DSC assessment was used. The 100s are started by accredited intensive care physicians when
34	provide mechanical ventilation, vasoactive medications, and invasive monitoring.
35	
36	Data sources:
37	Study data was derived from three electronic databases ²¹⁻²³ . eCritical Alberta, a database and electronic
38	Study data was derived from three electronic databases — ecritical Alberta, a database and electronic
39 40	medical record, that prospectively captures detailed clinical and demographic information ²² . The discharge abstract
40	
42	database (DAD) captures data on all hospitalized patients, including admission date, discharge, survival status, and
43	up to 25 diagnostic codes from the International Classification of Diseases, 10th revision, Canadian enhancement.
44	up to 25 diagnostic codes from the international Classification of Diseases, 10 th revision, Canadian enhancement.
45	Out of hospital deaths were obtained from Alberta Vital Statistics, which captures all deaths occurring in Alberta.
46	
47 48	Data from Alberta Vital Statistics was available up to December 30, 2017, which provided at least 18 months of
49	follow-up from the ICU admission date.
50	ionow-up nom the ICO admission date.
51	Exposures and Definitions:
52	
53	The main study exposure was dominant sedation strategy prior to the first ICDSC assessment. A sedation
54	strategy was defined as a continuous analysi additive influsion limited to mideralem fortanul and assards
55 56	strategy was defined as a continuous analgo-sedative infusion limited to midazolam, fentanyl, and propofol.

Infusions were selected based on a screening survey which demonstrated small populations utilizing alternative sedation strategies. There were seven possible combinations for the sedation strategy prior to the first ICDSC assessment: 1) propofol only, 2) fentanyl only, 3) midazolam only, 4) propofol and fentanyl, 5) propofol and midazolam, 6) fentanyl and midazolam, and 7) all three agents. A high number of patients received more than 1 agent, therefore we classified patients into a dominant sedation strategy, defined as the longest continuous duration of infusion prior to the first ICDSC assessment, which consists of three categories for the primary analyses. For example, if fentanyl was provided for the longest duration, fentanyl was considered the dominant sedation strategy. It is possible the patient could have received propofol or midazolam (or neither) for a duration less than fentanyl. If the patient received two agents for the same duration, the patient was excluded as no strategy was dominant. As sensitivity analyses, all seven possible combinations of the sedation strategy used prior to the first ICDSC assessment were considered.

Outcome Measures:

The primary outcome was categorized as 'ever/never delirium' during ICU admission compatible with previously established delirium outcome measures⁷. All ICU patients with a Richmond Agitation Sedation Scale(RASS)²⁴ score \geq -3 were evaluated twice daily using the ICDSC tool²⁵ and received a protocolized sedation awakening trial. The ICDSC is a validated delirium assessment tool²⁵. Ever delirium patients were those with an *ICDSC score* \geq 4; never delirium were those with an *ICDSC score* <4. Total number of days with an *ICDSC score* \geq 4 defined delirium duration. Duration of delirium (days) was examined in secondary analyses.

Delirium motor subtypes were identified using the RASS, based on previously published criteria¹⁸, and associated positive ICDSC score of \geq 4. The scale is scored from -5 points (unarousable) to 0 points (calm) to +4 points (combative), where scores between -3 to 0 indicate hypoactive delirium, scores between 1 to 3 indicate hyperactive delirium, and scores that fluctuate between hypoactive and hyperactive indicate mixed delirium. All ICDSC scores \geq 4 were linked to the closest RASS score within 4 hours of charting. If there was no RASS score documented within 4 hours of the ICDSC score, the sub-type was considered "unable to be classified". If there was a RASS score within 4 hours of the ICDSC score but the RASS was -5, -4 or +4, the sub-type was considered "unable to be assessed". If at least 1 assessment indicated hypoactive delirium and at least 1 assessment indicated hyperactive delirium the sub-type was considered mixed for that specific patient.

BMJ Open

Secondary outcomes were mortality in the ICU and hospital, duration of mechanical ventilation, and ICU & hospital lengths of stay (LOS). Patient mortality was also reported at 30-days and 1-year. Duration of invasive mechanical ventilation was defined as the time a patient required the use of invasive ventilator.

Statistical Analysis:

Baseline characteristics were summarized using median with interquartile range (IQR) and frequency with percent and compared between sedation strategies using chi-squared tests and Kruskal-Wallis rank sum tests, as appropriate. For the primary outcome analysis, logistic regression was used to assess the association between dominant sedation strategy (propofol vs midazolam vs fentanyl) and risk of developing delirium. The relationship between dominant sedation strategy and delirium duration was analyzed using negative binomial models. The relationship between dominant sedation strategy and mortality outcomes were analyzed using logistic regression models. The relationship between dominant sedation strategy and LOS outcomes (ICU and hospital) were analyzed using linear regression models with a log-transformation of ICU LOS and hospital LOS. Primary analyses for all outcomes were based on forming two propensity score-matched cohorts: 1) propofol vs fentanyl and 2) propofol vs midazolam. Propensity scores were based on age, sex, reason for admission to ICU, Charlson comorbidity category (0, 1, 2+), admission APACHE II score, use of vasoactive medications and use of continuous renal replacement therapy. The cohorts were formed based on 1:1 nearest-neighbor matching without replacement using the logit of the propensity score and specified caliper width equal to 0.2 of the standard deviation of the logit of the propensity score²⁶. Sensitivity analyses were based on the full cohort with models adjusted a priori for the same patient characteristics used in the propensity scores. The above analyses were repeated for the 7-category sedation strategy prior to the first ICDSC assessment. For these analyses, we formed six pairwise propensity score-matched cohorts similar to the primary analyses, matching with patients on propofol only for each of the other 6 categories of sedation strategy prior to the first ICDSC assessment. A two-sided p-value < 0.05 was considered statistically significant. Analyses were conducted in R, version 3.5.1.²⁷ Propensity-score matching was performed using the R package "MatchIt", version 3.0.2. Additionally, to control for the competing effects of delirium and death, a sensitivity analysis of a composite endpoint of delirium or death was calculated.

Results:

There were 2,837 patients in the study cohort (Figure 1), which included 1412 patients (49.8%) receiving a propofol dominant strategy, 356 patients (12.5%) receiving a midazolam dominant strategy and 1069 patients (37.7%) receiving a fentanyl dominant strategy. For those receiving propofol dominant sedation, it was common to receive a

single agent of only propofol (62.8%). While among those receiving fentanyl and midazolam dominant sedation strategies, single agent use was less common with 14.8% and 34.8% only receiving a single agent, respectively." Most patients were male (60.7%) with a median age of 57 (IQR 43-68) years and admitted for a medical reason (50.4%). The median Charlson comorbidity score was 1 (IQR 0-2), admission SOFA score 7 (IQR 4-9) and admission APACHE II score 19 (IQR 14-25). Patients who received a midazolam dominant sedation strategy were more likely admitted for medical reasons (72.8%) and had higher Charlson comorbidity scores, admission SOFA scores, admission SOFA scores and admission APACHE II scores than those receiving propofol and fentanyl dominant sedation strategies. Patients receiving midazolam dominant strategies were also more likely to receive vasoactive medications (68.8%) compared to those predominantly receiving propofol (45.3%) and fentanyl dominant sedation strategies (64.5%). (Table 1).

Due to missing patient characteristics for 5 patients (0.2%), propensity scores were calculated for 1,409 patients receiving propofol dominant strategies, 1,067 patients receiving fentanyl dominant sedation strategies and 356 patients receiving midazolam dominant sedation strategies. Of the patients receiving fentanyl dominant sedation strategies, 201 (18.8%) could not be matched to a patient receiving propofol dominant sedation strategies within the specified caliper width of 0.2; therefore, this resulted in a matched cohort for propofol and fentanyl of 1,732 patients. Of the patients receiving midazolam dominant sedation strategies, all 356 patients could be matched to a patient receiving propofol dominant sedation strategies; therefore, this resulted in a matched cohort for propofol and fentanyl of 1,732 patients. Of the patients receiving midazolam dominant sedation strategies, all 356 patients could be matched to a patient receiving propofol dominant sedation strategies; therefore, this resulted in a matched cohort for patients with propofol and midazolam dominant sedation strategies of 712 patients. After matching, the baseline characteristics were balanced(Table 1). The median time from admission to first ICDSC in hours were similar between the propofol(median time = 17.1hrs (IQR = 8.5-34.7)), midazolam((median time =17.6 hrs (IQR = 8.8-41.2)) and fentanyl (median time =16.5 hrs (8.8-35.4) dominant strategies. Additionally, the median number of ICDSC assessments per ICU day was similar for propofol(1.4 (IQR =1.0-1.8), fentanyl(1.4 (IQR 1.0-1.8), midazolam(1.3 (IQR 1.0-1.7) dominant sedation strategies.

In the propensity score-matched cohorts, there was a statistically significant association between delirium and midazolam dominant(odds ratio[OR] 1.46 (95% confidence interval 1.06-2.00); p=0.02) as well as fentanyl dominant (OR 1.22 (95% CI 1.00-1.48); p=0.05) sedation strategies compared to propofol dominant sedation strategies(Figure 2). To control for the effects of death on delirium rates, a sensitivity analysis of the matched cohort was performed using a composite outcome of delirium or death. A statistically significant association between the

BMJ Open

composite outcome of delirium and death with midazolam dominant(OR 1.53 (95% CI 1.10-2.12; p=0.011) and fentanyl dominant(OR 1.27 (95% CI 1.04-1.55; p=0.020) strategies was observed, however not for propofol dominant strategies. Sensitivity analyses based on the 7-category sedation strategy prior to the first ICDSC assessment showed an increased odds of delirium for those on more than one agent compared to those on propofol only (Table 2). Among those who ever experienced delirium, the distribution of delirium subtypes was similar between dominant sedation strategies (Table 3). Based on the propensity score-matched cohorts, a fentanyl dominant sedation strategy was associated with longer duration of mechanical ventilation, longer ICU and hospital LOS and more delirium days compared to a propofol dominant sedation strategy, while a midazolam dominant sedation strategy was associated with a longer duration of mechanical ventilation compared to a propofol dominant sedation strategy(Figure 3). Sensitivity analyses of the secondary outcomes and cohort characteristics based on the 7-category sedation strategy can be found in the supplementary results(Supplementary Digital Content - Table 1 & Table 2, respectively). There was a statistically significant association between fentanyl dominant sedation strategy and ICU(OR=1.50 (1.07-2.12)) and 30-day mortality(OR=1.35 (1.02-1.79)) in propensity score-matched analyses(Supplementary Digital Content - Table 3). An additional sensitivity analysis of the same propensity scorematched cohort evaluating sedation strategy dominance for greater than 6 hours can be found in Table 4. This analysis demonstrated a statistically significant association between fentanyl dominant strategies and a composite of delirium or death, ICU mortality, hospital mortality, 30 day mortality, 1 year mortality, hospital length of stay and duration of mechanical ventilation.

Discussion:

Sedative strategies may increase the risk of adverse patient complications such as delirium, or prolonged mechanical ventilation. We found a midazolam dominant sedation strategy was associated with increased risk of developing delirium, duration of mechanical ventilation, and a composite of delirium and death. Alternatively, fentanyl was associated with multiple detrimental outcomes including an increased risk of delirium, a composite of delirium or death, ICU & hospital LOS and duration of mechanical ventilation.

The association between benzodiazepine-based sedation strategies and delirium has been suggested in prior literature ^{8 17 18}. The importance of these findings should not be understated as patients with delirium suffer prolonged hospital stays, an increased risk of mortality and long term cognitive impairment^{7 8}. Sedation using multiple agents was also associated with increased delirium risk, duration of mechanical ventilation, ICU LOS and

hospital LOS. Whether these effects are a direct result from the sedation strategy, the resulting delirium or as a result of other aspects of their critical illness is unclear.

We also re-confirmed the association between midazolam dominant sedation strategies and longer mechanical ventilation but not mortality as reported by Lonardo *et al.*¹¹. The mechanism between the association of benzodiazepines and mortality is unclear, however prolonged mechanical ventilation is a known risk factor for mortality²⁸. A meta-analysis by Ho *et al.* comparing propofol to other sedation strategies did not demonstrate an impact on mortality; however, it did not specifically look at midazolam compared to other benzodiazpines²⁹. The heterogeneity in mortality outcomes may be attributable to variation in sedation depth, as early deep sedation is an independent predictor of delayed time to extubation and long term mortality¹². Therefore, not only agent choice but also sedation depth might contribute to the variation in mortality risk observed with benzodiazepines.

Sedation with midazolam and fentanyl is often selected for patients with significant hemodynamic instability to avoid the negative ionotropic and vasodilatory effects of propofol. In our study, those receiving midazolam dominant sedation strategies demonstrated significantly higher SOFA scores, APACHE II scores on admission and were more likely to receive vasoactive medications and continuous renal replacement. All of these may impact mortality when unaccounted for and may explain the heterogeneity observed in the literature³⁰. For example, Lonardo *et al.* did not control for the presence of renal replacement which has been associated with a high rate of mortality in critically ill patients^{11 31}. Our use of detailed clinical data for risk adjustment may help explain the differences in mortality compared to prior reports.

A fentanyl dominant sedation strategy was significantly associated with an increased risk of delirium, a composite of delirium or death, ICU LOS, hospital LOS and duration of mechanical ventilation. Prior literature shows associations with delayed extubation when given in the first 48 hours, which supports our findings¹². What is unclear is whether our result is a direct effect of fentanyl, an indirect effect from resulting complications of fentanyl use, for example a pulmonary embolism or pneumonia, or simply an observed association driven by an unidentified confounder. Fentanyl dominant strategies were associated with increased risk of ICU mortality, 30-day mortality, and at hospital discharge but not 1 year. It is difficult to know what to make of these observations. The relationship between fentanyl use and ICU mortality has been incompletely explored in the literature. The mortality risk associated with fentanyl use may be attributable to prolongations in mechanical ventilation²⁸. In our data, the effect of mortality appeared strongest in those receiving only fentanyl and was less robust when used in combination.

BMJ Open

However, when fentanyl was the dominant strategy for greater than 6 hours compared to the other two strategies, the association between fentanyl and negative patient centred outcomes was more consistent. This may suggest the detrimental association between fentanyl dominant strategies and patient centred outcomes observed is time dependent. Another possibility could be the immunomodulatory effects of narcotics. The mu-opioid receptor is expressed on macrophages and T-lymphocytes, and chronic administration may increase the risk of bacterial infection³²⁻³⁴. Therefore, large doses of fentanyl may contribute to further immune dysregulation thereby placing critically ill patients at risk of infection. A final possibility is the use of fentanyl in the provision of palliative symptom control, therefore the mortality association is a marker of this practice. Further study is required to better delineate the true nature of the association between fentanyl and deleterious patient outcomes in the ICU.

Our studies strength is our large cohort size supported by granular patient detail extracted from a prospectively collected, clinical database representing multiple ICUs and the covariates were rigorously controlled using a propensity matched model²². The multicenter study design provides a pragmatic view of how sedation strategies are utilized in clinical practice. Limitations of our study include the possibility of confounding bias due to unmeasured impactful covariates or confounding by indication. Patients receiving midazolam dominant strategies were clearly more critically ill compared to those receiving propofol dominant strategies manifest by higher APACHE II scores, greater vasopressor requirements, and higher rates of renal replacement. To compensate, we conducted propensity score-matched analyses adjusted for known covariates. Additionally, fentanyl and midazolam are often used concurrently. Clearly teasing apart the isolated effects of each medication may be challenging. Adjustment with our statistical model should minimize this effect, however, it is possible that unrecognized confounders which are not accounted for in the model could introduce unrecognized bias. Randomized controlled trials would better assess this limitation. Moreover, we focused primarily on the presence or absence of continuous infusions and did not quantify the impact of independent drug boluses. However, this effect would lessen the association with our primary outcome suggesting our observed associations are conservative. Another limitation is the use of drug duration as a surrogate for the impact of the sedation strategy rather than in vivo plasma concentrations. Patient factors may impact midazolam metabolism due to differences in age, hepatic or renal dysfunction or co-administration of medications with similar metabolic pathways³⁵⁻³⁷. Finally, the definition of dominant sedation strategy based on longest duration of infusion prior to first ICDSC may be considered arbitrary. It is also possible that the current definition classifies some patients as having one dominant sedation strategy when

multiple infusions were discontinued in a noticeably short time frame. However, defining sedation in the setting of multiple agents has been incompletely explored in the literature, therefore novel definitions are required. Our data closely reflects multiple findings previously reported with both midazolam and fentanyl sedation. Furthermore, when restricted to patients who received a dominant sedation strategy for greater than 6 hours, the association between fentanyl dominant strategies and negative patient outcomes was more apparent. This reduces the possibility our findings are pure chance.

Conclusion:

This multi-center, propensity score-matched cohort study demonstrates a novel association between fentanyl dominant sedation strategies and negative outcomes in the ICU. Fentanyl dominant sedation strategies were associated with an increased risk of delirium, a composite of delirium or death, duration of ventilation, ICU LOS and hospital LOS. We also confirmed previous reports including an increased risk of delirium and duration of mechanical ventilation with midazolam dominant sedation strategies. This study highlights the need for additional research to further evaluate potentially negative effects of fentanyl and midazolam based sedation strategies.

Sources of Funding:

This project was unfunded.

Disclosures:

The authors have no conflicts of interest.

Acknowledgements:

The authors would like to thank the Hotchkiss Brain institute, the O'Brien Institute for Public Health, and the University of Calgary Departments of Critical Care, Community Health Sciences and Psychiatry for their on-going support. Moreover, we would like to thank the reviewers and editorial team for their hard work and consideration.

Contributorship Statement: Dr CC was involved in the concept, study protocol, study oversight, statistical modeling, and all aspects of writing the manuscript. Drs AS & CHL were involved in the statistical modeling and contributed

BMJ Open

to the methods section of the manuscript. Drs KF, DN, TS, PC were involved in developing the concept, study

protocol, study oversight and contributed to the discussion of the manuscript.

Data Sharing Statement: Raw data were generated at the University of Calgary. Derived data supporting the findings

of this study are available from the corresponding author CC on request.

References:

- 1. Association AP. Diagnostic and Statistical Manual of Mental Disorders(DSM-5). Arlington, VA: American Psychiatric Association 2013.
- 2. Ely EW, Inouye SK, Bernard GR, et al. Delirium in mechanically ventilated patients: validity and reliability of the confusion assessment method for the intensive care unit (CAM-ICU). JAMA 2001;286(21):2703-10.
- 3. Dubois MJ, Bergeron N, Dumont M, et al. Delirium in an intensive care unit: a study of risk factors. *Intensive Care Med* 2001;27(8):1297-304.
- Pandharipande P, Cotton BA, Shintani A, et al. Prevalence and risk factors for development of delirium in surgical and trauma intensive care unit patients. *J Trauma* 2008;65(1):34-41. doi: 10.1097/TA.0b013e31814b2c4d
- Girard TD, Kress JP, Fuchs BD, et al. Efficacy and safety of a paired sedation and ventilator weaning protocol for mechanically ventilated patients in intensive care (Awakening and Breathing Controlled trial): a randomised controlled trial. *Lancet* 2008;371(9607):126-34. doi: 10.1016/S0140-6736(08)60105-1
- 6. Zaal IJ, Devlin JW, Peelen LM, et al. A systematic review of risk factors for delirium in the ICU. *Crit Care Med* 2015;43(1):40-7. doi: 10.1097/CCM.00000000000625
- 7. Thomason JW, Shintani A, Peterson JF, et al. Intensive care unit delirium is an independent predictor of longer hospital stay: a prospective analysis of 261 non-ventilated patients. *Crit Care* 2005;9(4):R375-81. doi: 10.1186/cc3729
- 8. Ely E, Shintani A, Truman B, et al. Delirium as a predictor of mortality in mechanically ventilated patients in the intensive care unit. *JAMA* 2004;291(14):1753-62.
- Needham DM, Bronskill SE, Calinawan JR, et al. Projected incidence of mechanical ventilation in Ontario to 2026: Preparing for the aging baby boomers. *Crit Care Med* 2005;33(3):574-9.
- 10. Jacobs P, Noseworthy TW. National estimates of intensive care utilization and costs: Canada and the United States. *Crit Care Med* 1990;18(11):1282-6.
- 11. Lonardo NW, Mone MC, Nirula R, et al. Propofol is associated with favorable outcomes compared with benzodiazepines in ventilated intensive care unit patients. *Am J Respir Crit Care Med* 2014;189(11):1383-94. doi: 10.1164/rccm.201312-22910C
- Shehabi Y, Bellomo R, Reade MC, et al. Early intensive care sedation predicts long-term mortality in ventilated critically ill patients. *Am J Respir Crit Care Med* 2012;186(8):724-31. doi: 10.1164/rccm.201203-0522OC

 Riker RR, Shehabi Y, Bokesch PM, et al. Dexmedetomidine vs midazolam for sedation of critically ill patients: a randomized trial. *JAMA* 2009;301(5):489-99. doi: 10.1001/jama.2009.56

- 14. R B-v, Mar Sanchez-Soria M, Morales-Garcia C, et al. Prolonged sedation of critically ill patients with midazolam or propofol: impact on weaning and costs. *Crit Care Med* 1997;25(1):33-40.
- 15. Aitkenhead AR, Pepperman ML, Willatts SM, et al. Comparison of propofol and midazolam for sedation in critically ill patients. *Lancet* 1989;2(8665):704-9.
- 16. Chamorro C, de Latorre FJ, Montero A, et al. Comparative study of propofol versus midazolam in the sedation of critically ill patients: results of a prospective, randomized, multicenter trial. *Crit Care Med* 1996;24(6):932-9.
- Barr J, Fraser GL, Puntillo K, et al. Clinical practice guidelines for the management of pain, agitation, and delirium in adult patients in the intensive care unit. *Crit Care Med* 2013;41(1):263-306. doi: 10.1097/CCM.0b013e3182783b72
- Pandhairpande P, Shintani A, Peterson J, et al. Lorazepam is an independent risk factor for transitioning to delirium in intensive care unit patients. *Anesthesiology* 2006;104(1):21-26.
- 19. Cammarano WB, Pittet JF, Weitz S, et al. Acute withdrawal syndrome related to the administration of analgesic and sedative medications in adult intensive care unit patients. *Crit Care Med* 1998;26(4):676-84.
- 20. von Elm E, Altman DG, Egger M, et al. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies. *The Lancet* 2007;370(9596):1453-57. doi: 10.1016/s0140-6736(07)61602-x
- 21. Chiasson TC, Manns BJ, Stelfox HT. An economic evaluation of venous thromboembolism prophylaxis strategies in critically ill trauma patients at risk of bleeding. *PLoS Med* 2009;6(6):e1000098. doi: 10.1371/journal.pmed.1000098
- 22. Brundin-Mather R, Soo A, Zuege DJ, et al. Secondary EMR data for quality improvement and research: A comparison of manual and electronic data collection from an integrated critical care electronic medical record system. *J Crit Care* 2018;47:295-301. doi: 10.1016/j.jcrc.2018.07.021
- 23. Stelfox HT, Soo A, Niven DJ, et al. Assessment of the Safety of Discharging Select Patients Directly Home From the Intensive Care Unit: A Multicenter Population-Based Cohort Study. JAMA Intern Med 2018;178(10):1390-99. doi: 10.1001/jamainternmed.2018.3675
- 24. Sessler CN, Gosnell MS, Grap MJ, et al. The Richmond Agitation-Sedation Scale: validity and reliability in adult intensive care unit patients. *Am J Respir Crit Care Med* 2002;166(10):1338-44. doi: 10.1164/rccm.2107138
- 25. Bergeron N, Dubois MJ, Dumont M, et al. Intensive Care Delirium Screening Checklist: evaluation of a new screening tool. *Intensive Care Med* 2001;27(5):859-64.
- 26. Austin PC. Optimal caliper widths for propensity-score matching when estimating differences in means and differences in proportions in observational studies. *Pharm Stat* 2011;10(2):150-61. doi: 10.1002/pst.433
- 27. Team RC. R: A language and environment for statistical computing. . 2018

1 ว

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
12	
10	
9 10 11 12 13 14 15 16 17 18	
15	
16	
17	
18	
19	
20	
21	
22 23 24 25 26	
23	
24	
25	
26	
27	
28	
20	
29	
30	
31	
32 33	
33	
34	
35	
35 36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
51	
53	
54	
55	
56	
57	
58	
59	
60	
00	

- 28. Feng Y, Amoateng-Adjepong Y, Kaufman D, et al. Age, duration of mechanical ventilation, and outcomes of patients who are critically ill. *Chest* 2009;136(3):759-64. doi: 10.1378/chest.09-0515
- 29. Ho KM, Ng JY. The use of propofol for medium and long-term sedation in critically ill adult patients: a meta-analysis. *Intensive Care Med* 2008;34(11):1969-79. doi: 10.1007/s00134-008-1186-5
- 30. Soo A, Zuege DJ, Fick GH, et al. Describing organ dysfunction in the intensive care unit: a cohort study of 20,000 patients. *Crit Care* 2019;23(1):186. doi: 10.1186/s13054-019-2459-9
- 31. Uchino S, Kellum JA, Bellomo R, et al. Acute renal failure in critically ill patients: a multinational, multicenter study. *JAMA* 2005;294(7):813-8. doi: 10.1001/jama.294.7.813
- 32. Risdahl JM, Khanna KV, Peterson PK, et al. Opiates and infection. *J Neuroimmunol* 1998;83(1-2):4-18.
- 33. Roy S, Loh HH. Effects of opioids on the immune system. *Neurochem Res* 1996;21(11):1375-86.
- 34. Roy S, Wang J, Kelschenbach J, et al. Modulation of immune function by morphine: implications for susceptibility to infection. *J Neuroimmune Pharmacol* 2006;1(1):77-89. doi: 10.1007/s11481-005-9009-8
- 35. Barr J, Zomorodi K, Bertaccini EJ, et al. A double-blind, randomized comparison of i.v. lorazepam versus midazolam for sedation of ICU patients via a pharmacologic model. *Anesthesiology* 2001;95(2):286-98.
- 36. Swart EL, Zuideveld KP, de Jongh J, et al. Comparative population pharmacokinetics of lorazepam and midazolam during long-term continuous infusion in critically ill patients. *Br J Clin Pharmacol* 2004;57(2):135-45.
- Oldenhof H, de Jong M, Steenhoek A, et al. Clinical pharmacokinetics of midazolam in intensive care patients, a wide interpatient variability? *Clin Pharmacol Ther* 1988;43(3):263-9.

Tables:

Table 1: Baseline Characteristics

	Overall cohort			Dominant sedation strategy matched cohorts				
				Propofol v	Propofol vs. Midazolam		Propofol vs. Fentanyl	
				matched co	ohort	matched co	ohort	
	Propofol	Fentanyl	Midazolam	Propofol	Midazolam	Propofol	Fentanyl	
	(n=1412)	(n=1069)	(n=356)	(n=356)	(n=356)	(n=866)	(n=866)	
Characteristic								
Age, median (IQR)	56 (42- 67)	59 (44-69)	59 (46-71)	58 (48- 69)	59 (46-71)	57 (46- 68)	57 (42- 69)	
Male, n (%)	843 (59.7)	656 (61.4)	223 (62.6)	227 (63.8)	223 (62.6)	533 (61.5)	520 (60.0)	
Admission reason, n (%)								
Medical	791 (56.0)	379 (35.5)	259 (72.8)	253 (71.1)	259 (72.8)	426 (49.2)	379 (43.8)	
Surgical	265 (18.8)	405 (37.9)	69 (19.4)	74 (20.8)	69 (19.4)	256 (29.6)	248 (28.6)	

Neurological	245 (17.4)	73 (6.8)	19 (5.3)	18 (5.1)	19 (5.3)	76 (8.8)	73 (8.4)
Trauma	109 (7.7)	211 (19.7)	9 (2.5)	11 (3.1)	9 (2.5)	108 (12.5)	166 (19.2)
Location admitted from							
Emergency Room	833 (59.0%)	413 (38.6%)	190 (53.4%)	202 (56.7)	190 (53.4)	441 (50.9)	369 (42.6)
Operating Room/Recovery	278 (19.7%)	399 (37.3%)	59 (16.6%)	63 (17.7)	59 (16.6)	232 (26.8)	271 (31.3)
Hospital Ward	254 (18.0%)	209 (19.6%)	91 (25.6%)	85 (23.9)	91 (25.6)	165 (19.1)	180 (20.8)
Another Hospital	26 (1.8%)	24 (2.2%)	7 (2.0%)	4 (1.1)	7 (2.0)	17 (2.0)	23 (2.7)
Other	21 (1.5%)	24 (2.2%)	9 (2.5%)	2 (0.6)	9 (2.5)	11 (1.3)	23 (2.7)
Charlson score, n (%)							
0	582 (41.2%)	422 (39.5%)	121 (34.0%)	127 (35.7)	121 (34.0)	322 (37.2)	336 (38.8)
1	317 (22.5%)	239 (22.4%)	70 (19.7%)	61 (17.1)	70 (19.7)	201 (23.2)	207 (23.9)
2+	513 (36.3%)	408 (38.2%)	165 (46.3%)	168 (47.2)	165 (46.3)	343 (39.6)	323 (37.3)
Charlson score, median (IQR)	1 (0-2)	1 (0-2)	1 (0-3)	1 (0-3)	1 (0-3)	1 (0-3)	1 (0-2)
Admission SOFA score, median (IQR)	6 (4-8)	7 (5-10)	8 (6-11)	8 (5-10)	8 (6-11)	7 (4-9)	7 (4-10)
Admission APACHE II score, median (IQR)	18 (13- 24)	19 (14-25)	23 (16-28)	21 (16- 27)	23 (16-28)	19 (14- 24)	19 (13- 26)
Vasoactive medications, n (%)	639 (45.3%)	690 (64.5%)	245 (68.8%)	241 (67.7)	245 (68.8)	526 (60.7)	488 (56.4)
Continuous renal replacement therapy, n (%)	59 (4.2%)	78 (7.3%)	33 (9.3%)	28 (7.9)	33 (9.3)	52 (6.0)	73 (8.4)

 Table 2: Sensitivity Analyses examining the relationship between delirium and individual sedation agents prior to first ICDSC assessment

	Overall Cohort			Matched cohorts			
Sedation agent prior to first ICDSC assessment	Number of patients	Ever Delirium, n (%)	Adjusted OR (95% CI) ¹	Number of patients per group	Ever Delirium for propofol patients from matched cohorts, n (%)	Ever Delirium, n (%)	Propensity score-matched OR for Ever delirium(95% CI) ²
Propofol	887	509 (57.4)	1.00 (reference group)	N/A ³	N/A ³	N/A ³	1.00 (reference group)
Fentanyl	158	91 (57.6)	1.04 (0.71-1.52)	152	74 (48.7)	87 (57.2)	1.41 (0.90-2.22)
Midazolam	124	77 (62.1)	1.11 (0.73-1.69)	122	69 (56.6)	75 (61.5)	1.23 (0.74-2.05)
Propofol + Fentanyl	854	543 (63.6)	1.32 (1.06-1.65)	565	323 (57.2)	347 (61.4)	1.19 (0.94-1.51)

Propofol +	224	163 (72.8)	1.72 (1.23-2.43)	223	143 (64.1)	162 (72.6)	1.49 (1.00-2.23)
Midazolam							
Fentanyl +	222	160 (72.1)	1.72 (1.22-2.46)	214	119 (55.6)	153 (71.5)	2.00 (1.34-3.00)
Midazolam							
All 3	368	269 (73.1)	1.84 (1.38-2.47)	335	199 (59.4)	241 (71.9)	1.75 (1.27-2.42)

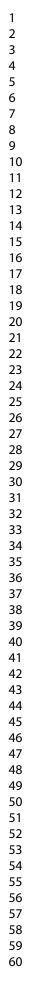
Table 3: Delirium subtype by dominant sedation strategy prior to first ICDSC assessment among patients experiencing delirium for the propensity score-matched cohorts

	Dominant sedation	strategy			
	Propofol vs. Fentany	yl matched coho	rt Propofol vs. Mida	zolam matched cohort	
	patients experiencin	g delirium	patients experienc	ing delirium	
Delirium Subtype	Propofol (n=529)	Fentanyl (n=	569) Propofol (n=228)	Midazolam (n=257)	
Hyperactive only, n (%)	47 (8.9)	40 (7.0)	15 (6.6)	25 (9.7)	
Hypoactive only, n (%)	210 (39.7)	228 (40.1)	104 (45.6)	106 (41.2)	
Mixed, n (%)	254 (48.0)	289 (50.8)	103 (45.2)	123 (47.9)	
Unable to assess or classify, n (%)	18 (3.4)	12 (2.1)	6 (2.6)	3 (1.2)	
Table 4: Sensitivity analyses based on those on a single sedation strategy or those whose sedation strategy was dominant for ≥ 6 hours over the other 2 strategies.					
Outcome		Dominant	Propensity score-matched	l	

Table 4: Sensitivity analyses based on those on a single sedation strategy or those whose sedation strategy was
dominant for ≥ 6 hours over the other 2 strategies.

	Dominant Sedatio	n stratesj			
	Propofol vs. Fentar	nyl matched coho	ort	Propofol vs. Midazo	olam
		patients experiencing delirium			ng de
Delirium Subtype	Propofol (n=529)	Fentanyl (n=	569)	Propofol (n=228)	1
Hyperactive only, n	47 (8.9)	40 (7.0)		15 (6.6)	1
(%)					
Hypoactive only, n	210 (39.7)	228 (40.1)		104 (45.6)	
(%)					
Mixed, n (%)	254 (48.0)	289 (50.8)		103 (45.2)	
Unable to assess or	18 (3.4)	12 (2.1)		6 (2.6)	
classify, n (%)					
Table 4: Sensitivity and dominant for ≥ 6 hours		tegies.			edati
Outcome		Dominant		sity score-matched	
		Sedation		atio, mean ratio or	
D 1' '		Strategy		tio (95% CI) ¹	
Delirium ever		Propofol		eference group)	
		Fentanyl		99-1.69)	
		Midazolam		.12-2.41)	
Delirium or ICU deat	n	Propofol		eference group)	
		Fentanyl		.05-1.81)	
		Midazolam		.18-2.60)	
ICU Mortality		Propofol		ference group)	
		Fentanyl	· · · · ·	.18-2.84)	
		Midazolam		.73-2.39)	
Hospital Mortality		Propofol		eference group)	
		Fentanyl	· · · · ·	.19-2.42)	
		Midazolam	<u>`</u>	.92-2.49)	
Died within 30 days c	of ICU admission	Propofol		eference group)	
		Fentanyl	· · · · ·	.27-2.68)	
		Midazolam		.69-1.89)	
Died within 1 year of	ICU admission	Propofol		eference group)	
		Fentanyl	1.38 (1.	.02-1.86)	
		Midazolam	1.16 (0.	.77-1.76)	
Died within 1.5 years	of ICU admission	Propofol	1.00 (re	eference group)	
		Fentanyl	1.25 (0.	.94-1.66)	
		Midazolam	1.25 (0.	.84-1.85)	
ICU length of stay, m	ean ratio (95% CI)	Propofol	1.00 (re	eference group)	
		Fentanyl	1.23 (1.	.09-1.39)	
		Midazolam	1.01 (0.	.86-1.20)	
Hospital length of star	y, mean ratio (95%	Propofol	1.00 (re	eference group)	
CI)		Fentanyl	1.31 (1.	.13-1.51)	
		Midazolam	1.01 (0.	.83-1.22)	

ratio (95% CI)	Fentanyl	1.35 (1.14-1.59)
	Midazolam	1.17 (0.94-1.46)
Number of delirium days, rate ratio	Propofol	1.00 (reference group)
(95% CI)	Fentanyl	1.19 (0.99-1.43)
	Midazolam	1.11 (0.85-1.44)


¹Data presented as odds ratios unless otherwise indicated

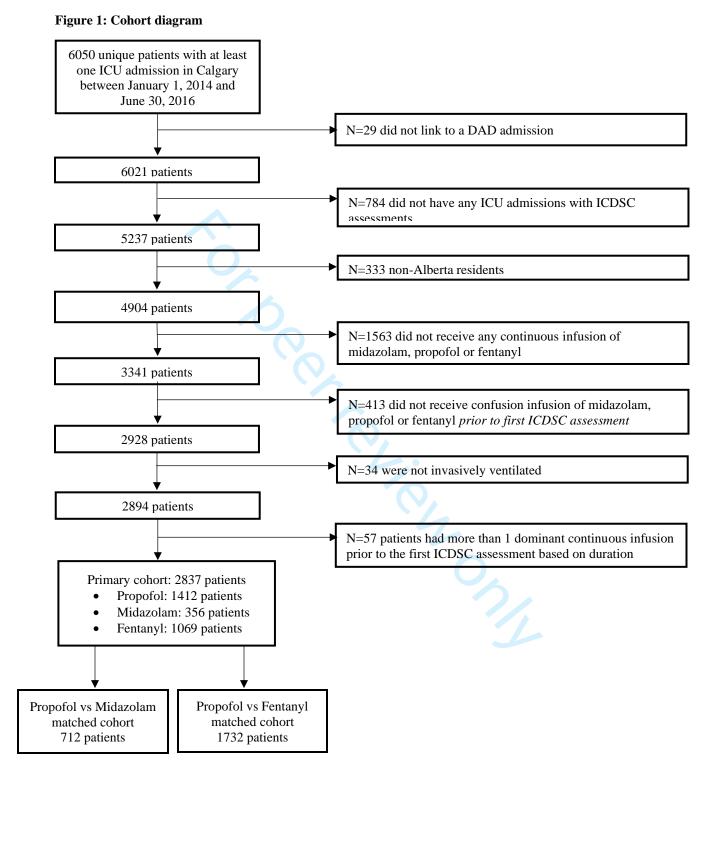

Figure Legends:

Figure 1: Cohort diagram

Figure 2: Propensity score-matched odds ratios of delirium by dominant sedation strategy prior to first ICDSC assessment

Figure 3: Forest plot of propensity score-matched mean or rate ratios of secondary outcomes and sedation strategy

Figure 2: Propensity score-matched odds ratios of delirium by dominant sedation strategy prior to first ICDSC assessment

Sedation Strategy		Odds Ratio (95% CI)	p-v
Propofol	•	1.00 (reference group)	
Fentanyl	1	1.22 (1.00-1.48)	0
Midazolam	⊢ • – • •	1.46 (1.06-2.00)	0
	0.0 0.5 1.0 1.5 2.0 Odds Ratio (95% CI)		

1 2				
3 4	Figure 3: Forest plot of propensity se	core-matched mean or rate ratios	of secondary outcomes and	sedation
5	strategy			
6 7	Secondary Outcomes		Mean or Rate Ratio (95% CI)	
8 9	ICU LOS			p-value
10	Propofol		1.00 (reference group)	-
11 12	Fentanyl	⊢⊶⊸⊣	1.11 (1.02-1.22)	0.02
13	Midazolam	⊢ ⊷I	1.04 (0.90-1.19)	0.61
14 15	Hospital LOS			
16	Propofol		1.00 (reference group)	-
17	Fentanyl	⊢ ⊷––	1.20 (1.08-1.33)	<0.001
18 19	Midazolam	F	1.01 (0.86-1.18)	0.91
20	Duration of invasive ventilation			
21 22	Propofol		1.00 (reference group)	-
23	Fentanyl	⊢ ≁−−1	1.20 (1.07-1.35)	0.003
24 25	Midazolam	⊢ •I	1.22 (1.02-1.45)	0.03
26	Number of delirium days			
27 28	Propofol		1.00 (reference group)	-
29	Fentanyl	<u> </u>	1.15 (1.00-1.32)	0.05
30	Midazolam		1.11 (0.91-1.35)	0.32
31 32	0.0	0.5 1.0 1.5 2	1	
33	0.0	Mean or Rate Ratio (95% CI)		
34 35				
36				
37 38				
39				
40 41				
42				
43 44				
44 45				
46				
47 48				
49				
50 51				
52				
53				
54 55				
56				
57 58				
59	Francisco			
60	For peer review on	ly - http://bmjopen.bmj.com/site/a	about/guidelines.xhtml	

2	
3	
4	
5	
4 5 6 7	
7	
8	
9	
10	
11	
12	
13	
14 15	
15 16	
16 17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
20 21 22 23 24 25 26 27 28 29	
28	
29	
30	
31	
32	
33	
34	
35	
36 27	
37 38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56 57	
57 58	
58 59	
29	

1

Table S1: Secondary outcomes by sedation strategy	prior to first ICDSC assessment
---	---------------------------------

Propensity score- matched mean ratio or rate ratio (95% CI) ¹	ICU LOS	Hospital LOS	Duration of invasive ventilation	Number of delirium days
Sedation prior to first				
ICDSC assessment				
Propofol	1.00 (reference	1.00 (reference	1.00 (reference	1.00 (reference
	group)	group)	group)	group)
Fentanyl	1.06 (0.85-1.33)	1.25 (0.97-1.61)	1.00 (0.74-1.35)	1.03 (0.69-1.55)
Midazolam	0.83 (0.65-1.06)	0.98 (0.75-1.28)	1.00 (0.73-1.38)	0.88 (0.59-1.31)
Propofol + Fentanyl	1.17 (1.05-1.30)	1.20 (1.05-1.38)	1.37 (1.18-1.58)	1.08 (0.90-1.31)
Propofol + Midazolam	1.16 (0.99-1.36)	0.86 (0.68-1.08)	1.59 (1.28-1.99)	1.11 (0.87-1.41)
Fentanyl + Midazolam	1.40 (1.17-1.67)	1.27 (1.02-1.57)	1.95 (1.54-2.46)	1.28 (0.97-1.69)
All 3	1.73 (1.52-1.98)	1.39 (1.18-1.63)	2.47 (2.06-2.97)	1.35 (1.10-1.67)

class, senal replac f score and spc. ¹Propensity score based on age, sex, admission class, Charlson comorbidity category (0, 1, 2+), admission APACHE II score, vasoactive medications, continuous renal replacement therapy. 1:1 nearest-neighbor matching without replacement using the logit of the propensity score and specified caliper width equal to 0.2 of the standard deviation of the logit of the propensity score

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2	
2	
3	
4	
3 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 20	
6	
7	
8	
9	
10	
11	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
20 21	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
50	
 31 32 33 34 35 36 37 38 	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
48 49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
ЪΩ	

59

60

 Table S2: Propensity score matched models of the relationship between mortality outcomes and dominant sedation strategy prior to first ICDSC assessment

Outcome	Dominant	Mortality, n (%)	Propensity score-matched
	Sedation		OR (95% CI) ²
	Strategy		
ICU	Propofol	94 (6.7)	1.00 (reference)
Mortality	Fentanyl	104 (9.7)	1.50 (1.07-2.12)
	Midazolam	39 (11.0)	1.20 (0.74-1.97)
Hospital Mortality	Propofol	157 (11.1)	1.00 (reference)
	Fentanyl	166 (15.5)	1.27 (0.97-1.67)
	Midazolam	59 (16.6)	1.14 (0.76-1.70)
Died within 30 days of	Propofol	148 (10.5)	1.00 (reference)
ICU admission	Fentanyl	148 (13.8)	1.35 (1.02-1.79)
aumission	Midazolam	50 (14.0)	1.02 (0.67-1.57)
Died within 1 year of ICU	Propofol	268 (19.0)	1.00 (reference)
admission	Fentanyl	248 (23.2)	1.13 (0.90-1.43)
	Midazolam	91 (25.6)	1.01 (0.72-1.42)

Supplementary Table 3: Table of baseline characteristics for sensitivity analyses

	Propofol	Fentanyl	Midazolam	Propofol	Propofol +	Fentanyl +	All 3
	(n=887)	(n=158)	(n=124)	+ Fentanyl (n=854)	Midazolam (n=224)	Midazolam (n=222)	(n=368)
Characteristic							
Age, median (IQR)	58 (46- 69)	64 (54-74)	66 (54-74)	55 (40- 67)	51 (35-60)	61 (51-71)	52 (40- 65)
Male, n (%)	506 (57.0)	79 (50.0)	79 (63.7)	532 (62.3)	145 (64.7)	133 (59.9)	248 (67.4)
Admission reason, n (%)							
Medical	518 (58.5)	59 (37.3)	87 (70.2)	236 (27.7)	176 (78.6)	121 (54.5)	232 (63.0)
Surgical	163 (18.4)	72 (45.6)	30 (24.2)	299 (35.1)	7 (3.1)	81 (36.5)	87 (23.6)
Neurological	169 (19.1)	10 (6.3)	6 (4.8)	102 (12.0)	37 (16.5)	3 (1.4)	10 (2.7)
Trauma	35 (4.0)	17 (10.8)	1 (0.8)	216 (25.3)	4 (1.8)	17 (7.7)	39 (10.6)
Location admitted from			Z				
Emergency Room	520 (58.6)	53 (33.5)	49 (39.5)	367 (43.0)	168 (75.0)	93 (41.9)	186 (50.5)
Operating Room/Recovery	170 (19.2)	62 (39.2)	27 (21.8)	320 (37.5)	6 (2.7)	65 (29.3)	86 (23.4)
Hospital Ward	166 (18.7)	39 (24.7)	43 (34.7)	140 (16.4)	40 (17.9)	49 (22.1)	77 (20.9)
Another Hospital	17 (1.9)	3 (1.9)	2 (1.6)	13 (1.5)	7 (3.1)	7 (3.2)	8 (2.2)
Other	14 (1.6)	1 (0.6)	3 (2.4)	14 (1.6)	3 (1.3)	8 (3.6)	11 (3.0)
Charlson score, n (%)							
0	338 (38.1)	47 (29.7)	30 (24.2)	387 (45.3)	106 (47.3)	74 (33.3)	143 (38.9)
1	204 (23.0)	35 (22.2)	19 (15.3)	171 (20.0)	55 (24.6)	50 (22.5)	92 (25.0)
2+	345 (38.9)	76 (48.1)	75 (60.5)	296 (34.7)	63 (28.1)	98 (44.1)	133 (36.1)

BMJ Open

Charlson score, median (IQR)	1 (0-3)	1 (0-3)	2 (1-4)	1 (0-2)	1 (0-2)	1 (0-3)	1 (0-2)
Admission SOFA score, median (IQR)	6 (4-8)	8 (5-10)	8 (5-10)	6 (4-9)	7 (5-9)	9 (6-11)	8 (5-11)
Admission APACHE II score, median (IQR)	18 (14- 23)	20 (15-26)	23 (16-28)	17 (12- 22)	20 914-25)	22 (16-29)	21 (14- 26)
Vasoactive medications, n (%)	356 (40.1)	105 (66.5)	81 (65.3)	477 (55.9)	117 (52.2)	175 (78.8)	263 (71.5)
Continuous renal replacement therapy, n (%)	35 (3.9)	10 (6.3)	9 (7.3)	41 (4.8)	7 (3.1)	32 (14.4)	36 (9.8)

<u>10 (6.3)</u> 9 (7.3) 41 (4.8) 7 (3.1) 32 (14.4)

STROBE Statement—Checklist of items that should be included in reports of cohort studies

	Item No	Recommendation	Page No
Title and abstract	1	(<i>a</i>) Indicate the study's design with a commonly used term in the title or the abstract	1, 2
		(b) Provide in the abstract an informative and balanced summary of what	
		was done and what was found	
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	3
Objectives	3	State specific objectives, including any prespecified hypotheses	3
Methods			1
Study design	4	Present key elements of study design early in the paper	4
Setting	5	Describe the setting, locations, and relevant dates, including periods of	4
betting		recruitment, exposure, follow-up, and data collection	
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of	4
	Ũ	participants. Describe methods of follow-up	
		(b) For matched studies, give matching criteria and number of exposed	
		and unexposed	
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders,	5,6
v arrables	/	and effect modifiers. Give diagnostic criteria, if applicable	,
Data sources/	8*	For each variable of interest, give sources of data and details of methods	4, 6
	0	of assessment (measurement). Describe comparability of assessment	., .
measurement		methods if there is more than one group	
Bias	0	Describe any efforts to address potential sources of bias	6
	9		5
Study size	10	Explain how the study size was arrived at	4,6
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If	4,0
	10	applicable, describe which groupings were chosen and why	6,
Statistical methods	12	(<i>a</i>) Describe all statistical methods, including those used to control for confounding	Supplement methods
		(b) Describe any methods used to examine subgroups and interactions	
		(c) Explain how missing data were addressed	
		(d) If applicable, explain how loss to follow-up was addressed	
		(e) Describe any sensitivity analyses	
Results			
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers	7,
i articipanto	15	potentially eligible, examined for eligibility, confirmed eligible, included	Figure 1
		in the study, completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	
Descriptions 1-1	1 1 4	(c) Consider use of a flow diagram	4,7
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical,	Table 1
		social) and information on exposures and potential confounders	
		(b) Indicate number of participants with missing data for each variable of interest	
		(c) Summarise follow-up time (eg, average and total amount)	7
Outcome data	15*	Report numbers of outcome events or summary measures over time	

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Main results	16	(<i>a</i>) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included	Table 2,3
		(b) Report category boundaries when continuous variables were categorized	
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a	
		meaningful time period	
Other analyses	17	Report other analyses done-eg analyses of subgroups and interactions, and sensitivity	7
		analyses	
Discussion			
Key results	18	Summarise key results with reference to study objectives	8
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or	10
		imprecision. Discuss both direction and magnitude of any potential bias	
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations,	8,9,10
		multiplicity of analyses, results from similar studies, and other relevant evidence	
Generalisability	21	Discuss the generalisability (external validity) of the study results	8,9,10
Other informati	on		
Funding	22	Give the source of funding and the role of the funders for the present study and, if	11
		applicable, for the original study on which the present article is based	

*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at http://www.strobe-statement.org.

BMJ Open

Sedation strategy and ICU Delirium: A multi-center, population-based propensity score-matched cohort study

Journal:	BMJ Open
Manuscript ID	bmjopen-2020-045087.R2
Article Type:	Original research
Date Submitted by the Author:	10-Jun-2021
Complete List of Authors:	Casault, Colin; University of Calgary Cumming School of Medicine, Department of Critical Care Medicine Soo, Andrea; University of Calgary Cumming School of Medicine, Critical Care Medicine Lee, Chel; University of Calgary Cumming School of Medicine, Department of Critical Care Couillard, Philippe; University of Calgary Cumming School of Medicine, Critical Care Medicine Niven, Daniel; University of Calgary Cumming School of Medicine, Critical Care Medicine Stelfox, Tom; University of Calgary Cumming School of Medicine, Department of Critical Care Fiest, Kirsten; University of Calgary Cumming School of Medicine, Critical Care Medicine
Primary Subject Heading :	Intensive care
Secondary Subject Heading:	Anaesthesia, Intensive care, Patient-centred medicine
Keywords:	Adult intensive & critical care < ANAESTHETICS, Health & safety < HEALTH SERVICES ADMINISTRATION & MANAGEMENT, Quality in health care < HEALTH SERVICES ADMINISTRATION & MANAGEMENT, Adult intensive & critical care < INTENSIVE & CRITICAL CARE, Delirium & cognitive disorders < PSYCHIATRY

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

review only

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Sedation strategy and ICU Delirium: A multi-center, population-based propensity score-matched cohort study

Colin Casault_a, MD; Andrea Soo_a, PhD; Chel Hee Lee, PhD; Philippe Couillard_a, MD; Daniel J Niven_{a,b}, MD/PhD; Tom Stelfox_{a,b}, MD/PhD; Kirsten M. Fiest_{a,b,c}, PhD.

a: Department of Critical Care Medicine, University of Calgary and Alberta Health Services, Calgary Alberta, Canada. b: Department of Community Health Sciences and O'Brien Institute for Public Health, University of Calgary, Calgary, Alberta, Canada c: Department of Psychiatry and Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada

Address for Correspondence: Colin Casault Department of Critical Care, University of Calgary Calgary, Alberta, Canada T2N-1N4 (587) 432-6762 casaultc@gmail.com

Abstract: 303 words Manuscript: 3484 words Tables: 4 Figures: 3

Conflicts of Interest: No author has a conflict of interest to declare.

Keywords: Delirium, ICU sedation, fentanyl sedation, midazolam sedation

Objectives: We examined the relationship between dominant sedation strategy, risk of delirium, and patientcentered outcomes in adults admitted to intensive care units(ICUs).

Design: Retrospective propensity-matched cohort study.

Setting: Mechanically-ventilated adults (\geq 18 years) admitted to four Canadian hospital medical/surgical ICUs from 2014 – 2016 in Calgary, Alberta, Canada.

Participants: 2837 mechanically-ventilated adults (\geq 18 years) requiring admission to a medical/surgical ICU were evaluated for the relationship between sedation strategy and delirium.

Interventions: None.

Primary and secondary outcome measures: The primary exposure was dominant sedation strategy, defined as the sedative infusion, including midazolam, propofol or fentanyl, with the longest duration before the first delirium assessment. The primary outcome was 'ever delirium' identified using the Intensive Care Delirium Screening Checklist (ICDSC). Secondary outcomes included mortality, length of stay (LOS), duration of ventilation, and number of days with delirium. We analyzed the cohort with two propensity score (patient characteristics and therapies received) matched cohorts (propofol vs. fentanyl and propofol vs. midazolam).

Results: 2,837 patients (60.7% male; median age 57 years (interquartile range 43-68)) were considered for propensity matching. In propensity score-matched cohorts(propofol vs. midazolam, n=712; propofol vs. fentanyl, n=1,732), the odds of delirium were significantly higher with midazolam (odds ratio (OR) 1.46 (95% confidence interval(CI) 1.06-2.00)) and fentanyl (OR 1.22 (95% CI 1.00-1.48)) compared to propofol dominant sedation strategies. Dominant sedation strategy with midazolam and fentanyl were associated with a longer duration of ventilation compared to propofol. Fentanyl was also associated with increased ICU mortality(OR 1.50 (1.07-2.12)) ICU and hospital LOS compared to a propofol dominant sedation strategy.

Conclusions: We identified a novel association between fentanyl dominant sedation strategies and an increased risk of delirium, a composite outcome of delirium or death, duration of mechanical ventilation, ICU LOS, and hospital LOS. Midazolam dominant sedation strategies were also associated with increased delirium risk and duration of mechanical ventilation.

Article Summary:

- We examine the effects of midazolam and fentanyl sedation strategies on delirium and patient-centered outcomes using a large cohort of general intensive care patients.
- To reduce bias, we used a propensity score matching process on a extensive database.
- One fundamental limitation is secondary to the concurrent use of multiple overlapping sedation strategies, which may impact the results.
- Based on the limitations and the nature of cohort studies, this study as hypothesis-generating.

Introduction:

Delirium in critically ill patients is an acute confusional state marked by severe disorganization of cognition, fluctuating course, attentional deficit, and a disturbance of awareness¹. Older age, severity of illness, presence of mechanical ventilation, coma, and sedative medications place over 50% of ICU patients at risk for developing delirium²⁻⁶. Delirium in the ICU is common and may prolong hospital stay, increase mortality risk and contribute to long-term cognitive impairment^{7 8}. With a burgeoning elderly population, ICU admission requiring mechanical ventilation is estimated to increase by 80% by 2026; therefore understanding potential contributors to delirium is paramount^{9 10}.

Over-sedation in the ICU, with benzodiazepines, in particular, may be harmful^{11,12}. Prospective cohort and randomized controlled trials support shorter durations of mechanical ventilation, more rapid awakening with propofol or dexmedetomidine than midazolam ¹³⁻¹⁷. Similarly, a population-based study by Lonardo *et al.* demonstrated higher mortality, longer duration of mechanical ventilation, and longer ICU length of stay (LOS) in patients managed with benzodiazepines compared to propofol¹¹. Lonardo *et al.* postulated midazolam's mortality effect might be due to increased rates of delirium. Delirium is associated with mortality, and some evidence supports patients treated with benzodiazepines may demonstrate higher rates of delirium in the ICU^{8 13 18 19}. However, the association between benzodiazepines and delirium is inconsistent⁶.

Sedation strategies often employ both a sedative, like propofol, and an analgesic, like fentanyl, simultaneously to achieve the desired effect. However, studies evaluating the clinical effects of these sedation strategies are lacking. Additional research is necessary to understand the effects of sedation strategies on delirium, hospital length of stay (LOS), and survival outcomes. Our study examined the relationship between dominant sedation strategy (continuously infused propofol, fentanyl, and/or midazolam), delirium, and important patient-centered outcomes, in a multi-center population-based sample of mechanically-ventilated adults admitted to ICU. *Methods:*

Ethics Approval Statement:

This retrospective cohort study was reported in compliance with the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement²⁰ and approved by the conjoint health research ethics board at the University of Calgary (REB17-0389).

Patient & Public Involvement Statement:

BMJ Open

2	
3	Neither patients, nor the public were not involved in the design, collection, compilation or completion of this research
4	
5	study.
6 7	Ch. J. C. Hing & Demulation
8	Study Setting & Population:
9	We identified consecutive mechanical ventilated adults (\geq 18 years) admitted to four medical-surgical ICUs
10	
11	in Calgary, Alberta, Canada between January 1, 2014, to June 30th, 2016. Patients were excluded if:
12	
13	1) Their ICU electronic health data did not link to an appropriate inpatient (hospital) admission
14	2) They did not have any ICU admissions with at least 1 Intensive Care Delirium Screening Checklist
15	2) They did not have any reo admissions with at least 1 mensive care Demitain Screening checknist
16 17	(ICDSC) assessment (details described in the Outcome Measures section)
18	
19	3) They were non-Alberta residents (to allow for mortality outcome follow-up post hospital discharge)
20	4) They did not receive at least 1 continuous infusion of midazolam, propofol or fentanyl prior to the first
21	4) They did not receive at least reolitinuous infusion of initiazolarii, proporor of remanyr prior to the first
22	ICDSC assessment.
23	
24 25	5) They were never invasively ventilated during their ICU stay.
26	6) They did not have a single dominant continuous infusion prior to the first ICDSC assessment (see
27	b) They did not have a single dominant continuous infusion prior to the first ICDSC assessment (see
28	definition of dominant sedation strategy in the <i>Exposure Measure</i> section below for further detail).
29	
30	If the patient was readmitted to ICU more than once during the study period, then only the first admission
31 32	with at least 1 ICDSC assessment was used. The ICUs are staffed by accredited intensive care physicians which
33	with at least 1 10DSC assessment was used. The 100s are standed by accredited intensive care physicians which
34	provide mechanical ventilation, vasoactive medications, and invasive monitoring.
35	
36	Data sources:
37	Study data was derived from three electronic databases ²¹⁻²³ . eCritical Alberta, a database and electronic
38	Study data was derived nom three electronic databases certical Arberta, a database and electronic
39 40	medical record, that prospectively captures detailed clinical and demographic information ²² . The discharge abstract
41	
42	database (DAD) captures data on all hospitalized patients, including admission date, discharge, survival status, and
43	up to 25 diagnostic codes from the International Classification of Diseases, 10th revision, Canadian enhancement.
44	up to 25 diagnostic codes from the international classification of Diseases, 10 ⁻ revision, Canadian enhancement.
45	Out of hospital deaths were obtained from Alberta Vital Statistics, which captures all deaths occurring in Alberta.
46	
47 48	Data from Alberta Vital Statistics was available up to December 30, 2017, which provided at least 18 months of
49	follow-up from the ICU admission date.
50	tonow-up from the re-o admission date.
51	Exposures and Definitions:
52	
53	The main study exposure was dominant sedation strategy prior to the first ICDSC assessment. A sedation
54 55	strategy was defined as a continuous analgo-sedative infusion limited to midazolam, fentanyl, and propofol.
56	success was defined as a continuous anargo-sedative infusion minited to infudzorani, remanyi, and proporor.

Infusions were selected based on a screening survey which demonstrated small populations utilizing alternative sedation strategies. There were seven possible combinations for the sedation strategy prior to the first ICDSC assessment: 1) propofol only, 2) fentanyl only, 3) midazolam only, 4) propofol and fentanyl, 5) propofol and midazolam, 6) fentanyl and midazolam, and 7) all three agents. A high number of patients received more than 1 agent, therefore we classified patients into a dominant sedation strategy, defined as the longest continuous duration of infusion prior to the first ICDSC assessment, which consists of three categories for the primary analyses. For example, if fentanyl was provided for the longest duration, fentanyl was considered the dominant sedation strategy. It is possible the patient could have received propofol or midazolam (or neither) for a duration less than fentanyl. If the patient received two agents for the same duration, the patient was excluded as no strategy was dominant. As sensitivity analyses, all seven possible combinations of the sedation strategy used prior to the first ICDSC assessment were considered.

Outcome Measures:

The primary outcome was categorized as 'ever/never delirium' during ICU admission compatible with previously established delirium outcome measures⁷. All ICU patients with a Richmond Agitation Sedation Scale(RASS)²⁴ score \geq -3 were evaluated twice daily using the ICDSC tool²⁵ and received a protocolized sedation awakening trial. The ICDSC is a validated delirium assessment tool²⁵. Ever delirium patients were those with an *ICDSC score* \geq 4; never delirium were those with an *ICDSC score* <4. Total number of days with an *ICDSC score* \geq 4 defined delirium duration. Duration of delirium (days) was examined in secondary analyses.

Delirium motor subtypes were identified using the RASS, based on previously published criteria¹⁸, and associated positive ICDSC score of \geq 4. The scale is scored from -5 points (unarousable) to 0 points (calm) to +4 points (combative), where scores between -3 to 0 indicate hypoactive delirium, scores between 1 to 3 indicate hyperactive delirium, and scores that fluctuate between hypoactive and hyperactive indicate mixed delirium. All ICDSC scores \geq 4 were linked to the closest RASS score within 4 hours of charting. If there was no RASS score documented within 4 hours of the ICDSC score, the sub-type was considered "unable to be classified". If there was a RASS score within 4 hours of the ICDSC score but the RASS was -5, -4 or +4, the sub-type was considered "unable to be assessed". If at least 1 assessment indicated hypoactive delirium and at least 1 assessment indicated hyperactive delirium the sub-type was considered mixed for that specific patient.

BMJ Open

Secondary outcomes were mortality in the ICU and hospital, duration of mechanical ventilation, and ICU & hospital lengths of stay (LOS). Patient mortality was also reported at 30-days and 1-year. Duration of invasive mechanical ventilation was defined as the time a patient required the use of invasive ventilator.

Statistical Analysis:

Baseline characteristics were summarized using median with interquartile range (IQR) and frequency with percent and compared between sedation strategies using chi-squared tests and Kruskal-Wallis rank sum tests, as appropriate. For the primary outcome analysis, logistic regression was used to assess the association between dominant sedation strategy (propofol vs midazolam vs fentanyl) and risk of developing delirium. The relationship between dominant sedation strategy and delirium duration was analyzed using negative binomial models. The relationship between dominant sedation strategy and mortality outcomes were analyzed using logistic regression models. The relationship between dominant sedation strategy and LOS outcomes (ICU and hospital) were analyzed using linear regression models with a log-transformation of ICU LOS and hospital LOS. Primary analyses for all outcomes were based on forming two propensity score-matched cohorts: 1) propofol vs fentanyl and 2) propofol vs midazolam. Propensity scores were based on age, sex, reason for admission to ICU, Charlson comorbidity category (0, 1, 2+), admission APACHE II score, use of vasoactive medications and use of continuous renal replacement therapy. The cohorts were formed based on 1:1 nearest-neighbor matching without replacement using the logit of the propensity score and specified caliper width equal to 0.2 of the standard deviation of the logit of the propensity score²⁶. Sensitivity analyses were based on the full cohort with models adjusted a priori for the same patient characteristics used in the propensity scores. The above analyses were repeated for the 7-category sedation strategy prior to the first ICDSC assessment. For these analyses, we formed six pairwise propensity score-matched cohorts similar to the primary analyses, matching with patients on propofol only for each of the other 6 categories of sedation strategy prior to the first ICDSC assessment. A two-sided p-value < 0.05 was considered statistically significant. Analyses were conducted in R, version 3.5.1.²⁷ Propensity-score matching was performed using the R package "MatchIt", version 3.0.2. Additionally, to control for the competing effects of delirium and death, a sensitivity analysis of a composite endpoint of delirium or death was calculated.

Results:

There were 2,837 patients in the study cohort (Figure 1), which included 1412 patients (49.8%) receiving a propofol dominant strategy, 356 patients (12.5%) receiving a midazolam dominant strategy and 1069 patients (37.7%) receiving a fentanyl dominant strategy. For those receiving propofol dominant sedation, it was common to receive a

single agent of only propofol (62.8%). While among those receiving fentanyl and midazolam dominant sedation strategies, single agent use was less common with 14.8% and 34.8% only receiving a single agent, respectively." Most patients were male (60.7%) with a median age of 57 (IQR 43-68) years and admitted for a medical reason (50.4%). The median Charlson comorbidity score was 1 (IQR 0-2), admission SOFA score 7 (IQR 4-9) and admission APACHE II score 19 (IQR 14-25). Patients who received a midazolam dominant sedation strategy were more likely admitted for medical reasons (72.8%) and had higher Charlson comorbidity scores, admission SOFA scores, admission SOFA scores and admission APACHE II scores than those receiving propofol and fentanyl dominant sedation strategies. Patients receiving midazolam dominant strategies were also more likely to receive vasoactive medications (68.8%) compared to those predominantly receiving propofol (45.3%) and fentanyl dominant sedation strategies (64.5%). (Table 1).

Due to missing patient characteristics for 5 patients (0.2%), propensity scores were calculated for 1,409 patients receiving propofol dominant strategies, 1,067 patients receiving fentanyl dominant sedation strategies and 356 patients receiving midazolam dominant sedation strategies. Of the patients receiving fentanyl dominant sedation strategies, 201 (18.8%) could not be matched to a patient receiving propofol dominant sedation strategies within the specified caliper width of 0.2; therefore, this resulted in a matched cohort for propofol and fentanyl of 1,732 patients. Of the patients receiving midazolam dominant sedation strategies, all 356 patients could be matched to a patient receiving propofol dominant sedation strategies; therefore, this resulted in a matched cohort for propofol and fentanyl of 1,732 patients. Of the patients receiving midazolam dominant sedation strategies, all 356 patients could be matched to a patient receiving propofol dominant sedation strategies; therefore, this resulted in a matched cohort for patients with propofol and midazolam dominant sedation strategies of 712 patients. After matching, the baseline characteristics were balanced(Table 1). The median time from admission to first ICDSC in hours were similar between the propofol(median time = 17.1hrs (IQR = 8.5-34.7)), midazolam((median time =17.6 hrs (IQR = 8.8-41.2)) and fentanyl (median time =16.5 hrs (8.8-35.4) dominant strategies. Additionally, the median number of ICDSC assessments per ICU day was similar for propofol(1.4 (IQR =1.0-1.8), fentanyl(1.4 (IQR 1.0-1.8), midazolam(1.3 (IQR 1.0-1.7) dominant sedation strategies.

In the propensity score-matched cohorts, there was a statistically significant association between delirium and midazolam dominant(odds ratio[OR] 1.46 (95% confidence interval 1.06-2.00); p=0.02) as well as fentanyl dominant (OR 1.22 (95% CI 1.00-1.48); p=0.05) sedation strategies compared to propofol dominant sedation strategies(Figure 2). To control for the effects of death on delirium rates, a sensitivity analysis of the matched cohort was performed using a composite outcome of delirium or death. A statistically significant association between the

BMJ Open

composite outcome of delirium and death with midazolam dominant(OR 1.53 (95% CI 1.10-2.12; p=0.011) and fentanyl dominant(OR 1.27 (95% CI 1.04-1.55; p=0.020) strategies was observed, however not for propofol dominant strategies. Sensitivity analyses based on the 7-category sedation strategy prior to the first ICDSC assessment showed an increased odds of delirium for those on more than one agent compared to those on propofol only (Table 2). Among those who ever experienced delirium, the distribution of delirium subtypes was similar between dominant sedation strategies (Table 3). Based on the propensity score-matched cohorts, a fentanyl dominant sedation strategy was associated with longer duration of mechanical ventilation, longer ICU and hospital LOS and more delirium days compared to a propofol dominant sedation strategy, while a midazolam dominant sedation strategy was associated with a longer duration of mechanical ventilation compared to a propofol dominant sedation strategy(Figure 3). Sensitivity analyses of the secondary outcomes and cohort characteristics based on the 7-category sedation strategy can be found in the supplementary results(Supplementary Digital Content - Table 1 & Table 2, respectively). There was a statistically significant association between fentanyl dominant sedation strategy and ICU(OR=1.50 (1.07-2.12)) and 30-day mortality(OR=1.35 (1.02-1.79)) in propensity score-matched analyses(Supplementary Digital Content - Table 3). An additional sensitivity analysis of the same propensity scorematched cohort evaluating sedation strategy dominance for greater than 6 hours can be found in Table 4. This analysis demonstrated a statistically significant association between fentanyl dominant strategies and a composite of delirium or death, ICU mortality, hospital mortality, 30 day mortality, 1 year mortality, hospital length of stay and duration of mechanical ventilation.

Discussion:

Sedative strategies may increase the risk of adverse patient complications such as delirium, or prolonged mechanical ventilation. We found a midazolam dominant sedation strategy was associated with increased risk of developing delirium, duration of mechanical ventilation, and a composite of delirium and death. Alternatively, fentanyl was associated with multiple detrimental outcomes including an increased risk of delirium, a composite of delirium or death, ICU & hospital LOS and duration of mechanical ventilation.

The association between benzodiazepine-based sedation strategies and delirium has been suggested in prior literature ^{8 17 18}. The importance of these findings should not be understated as patients with delirium suffer prolonged hospital stays, an increased risk of mortality and long term cognitive impairment^{7 8}. Sedation using multiple agents was also associated with increased delirium risk, duration of mechanical ventilation, ICU LOS and

hospital LOS. Whether these effects are a direct result from the sedation strategy, the resulting delirium or as a result of other aspects of their critical illness is unclear.

We also re-confirmed the association between midazolam dominant sedation strategies and longer mechanical ventilation but not mortality as reported by Lonardo *et al.*¹¹. The mechanism between the association of benzodiazepines and mortality is unclear, however prolonged mechanical ventilation is a known risk factor for mortality²⁸. A meta-analysis by Ho *et al.* comparing propofol to other sedation strategies did not demonstrate an impact on mortality; however, it did not specifically look at midazolam compared to other benzodiazpines²⁹. The heterogeneity in mortality outcomes may be attributable to variation in sedation depth, as early deep sedation is an independent predictor of delayed time to extubation and long term mortality¹². Therefore, not only agent choice but also sedation depth might contribute to the variation in mortality risk observed with benzodiazepines.

Sedation with midazolam and fentanyl is often selected for patients with significant hemodynamic instability to avoid the negative ionotropic and vasodilatory effects of propofol. In our study, those receiving midazolam dominant sedation strategies demonstrated significantly higher SOFA scores, APACHE II scores on admission and were more likely to receive vasoactive medications and continuous renal replacement. All of these may impact mortality when unaccounted for and may explain the heterogeneity observed in the literature³⁰. For example, Lonardo *et al.* did not control for the presence of renal replacement which has been associated with a high rate of mortality in critically ill patients^{11 31}. Our use of detailed clinical data for risk adjustment may help explain the differences in mortality compared to prior reports.

A fentanyl dominant sedation strategy was significantly associated with an increased risk of delirium, a composite of delirium or death, ICU LOS, hospital LOS and duration of mechanical ventilation. Prior literature shows associations with delayed extubation when given in the first 48 hours, which supports our findings¹². What is unclear is whether our result is a direct effect of fentanyl, an indirect effect from resulting complications of fentanyl use, for example a pulmonary embolism or pneumonia, or simply an observed association driven by an unidentified confounder. Fentanyl dominant strategies were associated with increased risk of ICU mortality, 30-day mortality, and at hospital discharge but not 1 year. It is difficult to know what to make of these observations. The relationship between fentanyl use and ICU mortality has been incompletely explored in the literature. The mortality risk associated with fentanyl use may be attributable to prolongations in mechanical ventilation²⁸. In our data, the effect of mortality appeared strongest in those receiving only fentanyl and was less robust when used in combination. It is

BMJ Open

possible those patients who received fentanyl monotherapy were more critically ill. The baseline characteristics of the fentanyl only subgroup revealed these patients that were older, had a higher vasopressor and CRRT use compared to a propofol only but not a midazolam only strategy(Table S3). However, when fentanyl was the dominant strategy for greater than 6 hours compared to the other two strategies, the association between fentanyl and negative patient centred outcomes was more consistent. This may suggest the detrimental association between fentanyl dominant strategies and patient centred outcomes observed is time dependent. Another possibility could be the immunomodulatory effects of narcotics. The mu-opioid receptor is expressed on macrophages and T-lymphocytes, and chronic administration may increase the risk of bacterial infection³²⁻³⁴. Therefore, large doses of fentanyl may contribute to further immune dysregulation thereby placing critically ill patients at risk of infection. A final possibility is the use of fentanyl in the provision of palliative symptom control, therefore the mortality association is a marker of this practice. Further study is required to better delineate the true nature of the association between fentanyl and deleterious patient outcomes in the ICU.

Our studies strength is our large cohort size supported by granular patient detail extracted from a prospectively collected, clinical database representing multiple ICUs and the covariates were rigorously controlled using a propensity matched model²². The multicenter study design provides a pragmatic view of how sedation strategies are utilized in clinical practice. Limitations of our study include the possibility of confounding bias due to unmeasured impactful covariates or confounding by indication. Patients receiving midazolam dominant strategies were clearly more critically ill compared to those receiving propofol dominant strategies manifest by higher APACHE II scores, greater vasopressor requirements, and higher rates of renal replacement. To compensate, we conducted propensity score-matched analyses adjusted for known covariates. Additionally, fentanyl and midazolam are often used concurrently and teasing apart the isolated effects of each medication may be challenging. Adjustment with our statistical model should minimize this effect, however, it is possible that unrecognized confounders which are not accounted for in the model could introduce unrecognized bias. Randomized controlled trials would better assess this limitation.

Moreover, we focused primarily on the presence or absence of continuous infusions and did not quantify the impact of independent drug boluses. However, this effect would lessen the association with our primary outcome suggesting our observed associations are conservative. Another limitation is the use of drug duration as a surrogate for the impact of the sedation strategy rather than in vivo plasma concentrations. Patient factors may impact

midazolam metabolism due to differences in age, hepatic or renal dysfunction or co-administration of medications with similar metabolic pathways³⁵⁻³⁷. Finally, the definition of dominant sedation strategy based on longest duration of infusion prior to first ICDSC may be considered arbitrary. It is also possible that the current definition classifies some patients as having one dominant sedation strategy when multiple infusions were discontinued in a noticeably short time frame. However, defining sedation in the setting of multiple agents has been incompletely explored in the literature, therefore novel definitions are required. Our data closely reflects multiple findings previously reported with both midazolam and fentanyl sedation. Furthermore, when restricted to patients who received a dominant sedation strategy for greater than 6 hours, the association between fentanyl dominant strategies and negative patient outcomes was more apparent. This reduces the possibility our findings are pure chance. When thresholds for longer durations of sedation dominance were used, the effects became inconsistent, however may be secondary to the effects of statistical analysis on progressively smaller populations.

Conclusion:

This multi-center, propensity score-matched cohort study demonstrates a novel association between fentanyl dominant sedation strategies and negative outcomes in the ICU. Fentanyl dominant sedation strategies were associated with an increased risk of delirium, a composite of delirium or death, duration of ventilation, ICU LOS and hospital LOS. We also confirmed previous reports including an increased risk of delirium and duration of mechanical ventilation with midazolam dominant sedation strategies. This study highlights the need for additional research to further evaluate potentially negative effects of fentanyl and midazolam based sedation strategies.

Sources of Funding:

This project was unfunded.

Disclosures:

The authors have no conflicts of interest.

Acknowledgements:

BMJ Open

The authors would like to thank the Hotchkiss Brain institute, the O'Brien Institute for Public Health, and the University of Calgary Departments of Critical Care, Community Health Sciences and Psychiatry for their on-going support. Moreover, we would like to thank the reviewers and editorial team for their hard work and consideration.

Contributorship Statement: Dr CC was involved in the concept, study protocol, study oversight, statistical modeling, and all aspects of writing the manuscript. Drs AS & CHL were involved in the statistical modeling and contributed to the methods section of the manuscript. Drs KF, DN, TS, PC were involved in developing the concept, study protocol, study oversight and contributed to the discussion of the manuscript.

Data Sharing Statement: Raw data were generated at the University of Calgary. Derived data supporting the findings of this study are available from the corresponding author CC on request.

References:

- 1. Association AP. Diagnostic and Statistical Manual of Mental Disorders(DSM-5). Arlington, VA: American Psychiatric Association 2013.
- 2. Ely EW, Inouye SK, Bernard GR, et al. Delirium in mechanically ventilated patients: validity and reliability of the confusion assessment method for the intensive care unit (CAM-ICU). JAMA 2001;286(21):2703-10.
- 3. Dubois MJ, Bergeron N, Dumont M, et al. Delirium in an intensive care unit: a study of risk factors. *Intensive Care Med* 2001;27(8):1297-304.
- Pandharipande P, Cotton BA, Shintani A, et al. Prevalence and risk factors for development of delirium in surgical and trauma intensive care unit patients. *J Trauma* 2008;65(1):34-41. doi: 10.1097/TA.0b013e31814b2c4d
- Girard TD, Kress JP, Fuchs BD, et al. Efficacy and safety of a paired sedation and ventilator weaning protocol for mechanically ventilated patients in intensive care (Awakening and Breathing Controlled trial): a randomised controlled trial. *Lancet* 2008;371(9607):126-34. doi: 10.1016/S0140-6736(08)60105-1
- 6. Zaal IJ, Devlin JW, Peelen LM, et al. A systematic review of risk factors for delirium in the ICU. *Crit Care Med* 2015;43(1):40-7. doi: 10.1097/CCM.00000000000625
- Thomason JW, Shintani A, Peterson JF, et al. Intensive care unit delirium is an independent predictor of longer hospital stay: a prospective analysis of 261 non-ventilated patients. *Crit Care* 2005;9(4):R375-81. doi: 10.1186/cc3729
- 8. Ely E, Shintani A, Truman B, et al. Delirium as a predictor of mortality in mechanically ventilated patients in the intensive care unit. *JAMA* 2004;291(14):1753-62.

9. Needham DM, Bronskill SE, Calinawan JR, et al. Projected incidence of mechanical ventilation in Ontario to 2026: Preparing for the aging baby boomers. *Crit Care Med* 2005;33(3):574-9.

- 10. Jacobs P, Noseworthy TW. National estimates of intensive care utilization and costs: Canada and the United States. *Crit Care Med* 1990;18(11):1282-6.
- 11. Lonardo NW, Mone MC, Nirula R, et al. Propofol is associated with favorable outcomes compared with benzodiazepines in ventilated intensive care unit patients. Am J Respir Crit Care Med 2014;189(11):1383-94. doi: 10.1164/rccm.201312-22910C
- Shehabi Y, Bellomo R, Reade MC, et al. Early intensive care sedation predicts long-term mortality in ventilated critically ill patients. *Am J Respir Crit Care Med* 2012;186(8):724-31. doi: 10.1164/rccm.201203-0522OC
- Riker RR, Shehabi Y, Bokesch PM, et al. Dexmedetomidine vs midazolam for sedation of critically ill patients: a randomized trial. JAMA 2009;301(5):489-99. doi: 10.1001/jama.2009.56
- 14. R B-v, Mar Sanchez-Soria M, Morales-Garcia C, et al. Prolonged sedation of critically ill patients with midazolam or propofol: impact on weaning and costs. *Crit Care Med* 1997;25(1):33-40.
- 15. Aitkenhead AR, Pepperman ML, Willatts SM, et al. Comparison of propofol and midazolam for sedation in critically ill patients. *Lancet* 1989;2(8665):704-9.
- 16. Chamorro C, de Latorre FJ, Montero A, et al. Comparative study of propofol versus midazolam in the sedation of critically ill patients: results of a prospective, randomized, multicenter trial. *Crit Care Med* 1996;24(6):932-9.
- Barr J, Fraser GL, Puntillo K, et al. Clinical practice guidelines for the management of pain, agitation, and delirium in adult patients in the intensive care unit. *Crit Care Med* 2013;41(1):263-306. doi: 10.1097/CCM.0b013e3182783b72
- Pandhairpande P, Shintani A, Peterson J, et al. Lorazepam is an independent risk factor for transitioning to delirium in intensive care unit patients. *Anesthesiology* 2006;104(1):21-26.
- 19. Cammarano WB, Pittet JF, Weitz S, et al. Acute withdrawal syndrome related to the administration of analgesic and sedative medications in adult intensive care unit patients. *Crit Care Med* 1998;26(4):676-84.
- 20. von Elm E, Altman DG, Egger M, et al. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies. *The Lancet* 2007;370(9596):1453-57. doi: 10.1016/s0140-6736(07)61602-x
- 21. Chiasson TC, Manns BJ, Stelfox HT. An economic evaluation of venous thromboembolism prophylaxis strategies in critically ill trauma patients at risk of bleeding. *PLoS Med* 2009;6(6):e1000098. doi: 10.1371/journal.pmed.1000098
- 22. Brundin-Mather R, Soo A, Zuege DJ, et al. Secondary EMR data for quality improvement and research: A comparison of manual and electronic data collection from an integrated critical care electronic medical record system. J Crit Care 2018;47:295-301. doi: 10.1016/j.jcrc.2018.07.021
- 23. Stelfox HT, Soo A, Niven DJ, et al. Assessment of the Safety of Discharging Select Patients Directly Home From the Intensive Care Unit: A Multicenter Population-Based Cohort Study. JAMA Intern Med 2018;178(10):1390-99. doi: 10.1001/jamainternmed.2018.3675

2	
3	
4	
4 5	
6	
7	
, 8	
0	
10	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38	
24	
25	
26	
20	
28	
20	
20	
20 21	
21	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
50	
52	
52 53	
54	
55	
56	
57	
58	
59	
60	

24. Sessler CN, Gosnell MS, Grap MJ, et al. The Richmond Agitation-Sedation Scale: validity and
reliability in adult intensive care unit patients. Am J Respir Crit Care Med
2002;166(10):1338-44. doi: 10.1164/rccm.2107138

- 25. Bergeron N, Dubois MJ, Dumont M, et al. Intensive Care Delirium Screening Checklist: evaluation of a new screening tool. *Intensive Care Med* 2001;27(5):859-64.
- 26. Austin PC. Optimal caliper widths for propensity-score matching when estimating differences in means and differences in proportions in observational studies. *Pharm Stat* 2011;10(2):150-61. doi: 10.1002/pst.433
- 27. Team RC. R: A language and environment for statistical computing. . 2018
- 28. Feng Y, Amoateng-Adjepong Y, Kaufman D, et al. Age, duration of mechanical ventilation, and outcomes of patients who are critically ill. *Chest* 2009;136(3):759-64. doi: 10.1378/chest.09-0515
- 29. Ho KM, Ng JY. The use of propofol for medium and long-term sedation in critically ill adult patients: a meta-analysis. *Intensive Care Med* 2008;34(11):1969-79. doi: 10.1007/s00134-008-1186-5
- 30. Soo A, Zuege DJ, Fick GH, et al. Describing organ dysfunction in the intensive care unit: a cohort study of 20,000 patients. *Crit Care* 2019;23(1):186. doi: 10.1186/s13054-019-2459-9
- 31. Uchino S, Kellum JA, Bellomo R, et al. Acute renal failure in critically ill patients: a multinational, multicenter study. *JAMA* 2005;294(7):813-8. doi: 10.1001/jama.294.7.813
- 32. Risdahl JM, Khanna KV, Peterson PK, et al. Opiates and infection. *J Neuroimmunol* 1998;83(1-2):4-18.
- 33. Roy S, Loh HH. Effects of opioids on the immune system. *Neurochem Res* 1996;21(11):1375-86.
- 34. Roy S, Wang J, Kelschenbach J, et al. Modulation of immune function by morphine: implications for susceptibility to infection. *J Neuroimmune Pharmacol* 2006;1(1):77-89. doi: 10.1007/s11481-005-9009-8
- 35. Barr J, Zomorodi K, Bertaccini EJ, et al. A double-blind, randomized comparison of i.v. lorazepam versus midazolam for sedation of ICU patients via a pharmacologic model. *Anesthesiology* 2001;95(2):286-98.
- 36. Swart EL, Zuideveld KP, de Jongh J, et al. Comparative population pharmacokinetics of lorazepam and midazolam during long-term continuous infusion in critically ill patients. *Br J Clin Pharmacol* 2004;57(2):135-45.
- Oldenhof H, de Jong M, Steenhoek A, et al. Clinical pharmacokinetics of midazolam in intensive care patients, a wide interpatient variability? *Clin Pharmacol Ther* 1988;43(3):263-9.

Tables:

Table 1: Baseline Characteristics

Overall co	hort		Dominant sedation strategy matched cohorts			
			Propofol vs	s. Midazolam	Propofol vs. Fentanyl	
			matched cohort		matched cohort	
Propofol	Fentanyl	Midazolam	Propofol	Midazolam	Propofol	Fentanyl
(n=1412)	(n=1069)	(n=356)	(n=356)	(n=356)	(n=866)	(n=866)

Characteristic							
Age, median (IQR)	56 (42- 67)	59 (44-69)	59 (46-71)	58 (48- 69)	59 (46-71)	57 (46- 68)	57 (42- 69)
Male, n (%)	843 (59.7)	656 (61.4)	223 (62.6)	227 (63.8)	223 (62.6)	533 (61.5)	520 (60.0)
Admission reason, n (%)							
Medical	791 (56.0)	379 (35.5)	259 (72.8)	253 (71.1)	259 (72.8)	426 (49.2)	379 (43.8)
Surgical	265 (18.8)	405 (37.9)	69 (19.4)	74 (20.8)	69 (19.4)	256 (29.6)	248 (28.6)
Neurological	245 (17.4)	73 (6.8)	19 (5.3)	18 (5.1)	19 (5.3)	76 (8.8)	73 (8.4)
Trauma	109 (7.7)	211 (19.7)	9 (2.5)	11 (3.1)	9 (2.5)	108 (12.5)	166 (19.2)
Location admitted from	0,						
Emergency Room	833 (59.0%)	413 (38.6%)	190 (53.4%)	202 (56.7)	190 (53.4)	441 (50.9)	369 (42.6)
Operating Room/Recovery	278 (19.7%)	399 (37.3%)	59 (16.6%)	63 (17.7)	59 (16.6)	232 (26.8)	271 (31.3)
Hospital Ward	254 (18.0%)	209 (19.6%)	91 (25.6%)	85 (23.9)	91 (25.6)	165 (19.1)	180 (20.8)
Another Hospital	26 (1.8%)	24 (2.2%)	7 (2.0%)	4 (1.1)	7 (2.0)	17 (2.0)	23 (2.7)
Other	21 (1.5%)	24 (2.2%)	9 (2.5%)	2 (0.6)	9 (2.5)	11 (1.3)	23 (2.7)
Charlson score, n (%)							
0	582 (41.2%)	422 (39.5%)	121 (34.0%)	127 (35.7)	121 (34.0)	322 (37.2)	336 (38.8)
1	317 (22.5%)	239 (22.4%)	70 (19.7%)	61 (17.1)	70 (19.7)	201 (23.2)	207 (23.9)
2+	513 (36.3%)	408 (38.2%)	165 (46.3%)	168 (47.2)	165 (46.3)	343 (39.6)	323 (37.3)
Charlson score, median (IQR)	1 (0-2)	1 (0-2)	1 (0-3)	1 (0-3)	1 (0-3)	1 (0-3)	1 (0-2)
Admission SOFA score, median (IQR)	6 (4-8)	7 (5-10)	8 (6-11)	8 (5-10)	8 (6-11)	7 (4-9)	7 (4-10)
Admission APACHE II score, median (IQR)	18 (13- 24)	19 (14-25)	23 (16-28)	21 (16- 27)	23 (16-28)	19 (14- 24)	19 (13- 26)
Vasoactive medications, n (%)	639 (45.3%)	690 (64.5%)	245 (68.8%)	241 (67.7)	245 (68.8)	526 (60.7)	488 (56.4)
Continuous renal replacement therapy, n (%)	59 (4.2%)	78 (7.3%)	33 (9.3%)	28 (7.9)	33 (9.3)	52 (6.0)	73 (8.4)

Table 2: Sensitivity Analyses examining the relationship between delirium and individual sedation agen	nts
prior to first ICDSC assessment	

	Overall Cohort			Matched cohorts				
Sedation agent prior to first ICDSC assessment	Number of patients	Ever Delirium, n (%)	Adjusted OR (95% CI) ¹	Number of patients per group	Ever Delirium for propofol patients	Ever Delirium, n (%)	Propensity score-matched OR for Ever	

					from matched cohorts, n (%)		delirium(95% CI) ²
Propofol	887	509 (57.4)	1.00 (reference group)	N/A ³	N/A ³	N/A ³	1.00 (reference group)
Fentanyl	158	91 (57.6)	1.04 (0.71-1.52)	152	74 (48.7)	87 (57.2)	1.41 (0.90-2.22)
Midazolam	124	77 (62.1)	1.11 (0.73-1.69)	122	69 (56.6)	75 (61.5)	1.23 (0.74-2.05)
Propofol + Fentanyl	854	543 (63.6)	1.32 (1.06-1.65)	565	323 (57.2)	347 (61.4)	1.19 (0.94-1.51)
Propofol + Midazolam	224	163 (72.8)	1.72 (1.23-2.43)	223	143 (64.1)	162 (72.6)	1.49 (1.00-2.23)
Fentanyl + Midazolam	222	160 (72.1)	1.72 (1.22-2.46)	214	119 (55.6)	153 (71.5)	2.00 (1.34-3.00)
All 3	368	269 (73.1)	1.84 (1.38-2.47)	335	199 (59.4)	241 (71.9)	1.75 (1.27-2.42)

Table 3: Delirium subtype by dominant sedation strategy prior to first ICDSC assessment among patients experiencing delirium for the propensity score-matched cohorts

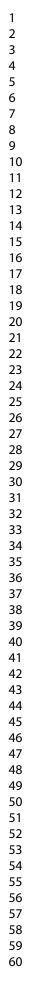
	Dominant sedation s	trategy			
	Propofol vs. Fentanyl matched cohort		Propofol vs. Midazolam matched cohort		
	patients experiencing	delirium	patients experiencing delirium		
Delirium Subtype	Propofol (n=529)	Fentanyl (n=569)	Propofol (n=228)	Midazolam (n=257)	
Hyperactive only, n (%)	47 (8.9)	40 (7.0)	15 (6.6)	25 (9.7)	
Hypoactive only, n (%)	210 (39.7)	228 (40.1)	104 (45.6)	106 (41.2)	
Mixed, n (%)	254 (48.0)	289 (50.8)	103 (45.2)	123 (47.9)	
Unable to assess or classify, n (%)	18 (3.4)	12 (2.1)	6 (2.6)	3 (1.2)	

Table 4: Sensitivity analyses based on those on a single sedation	strategy or those whose sedation strategy was
dominant for ≥ 6 hours over the other 2 strategies.	

(%)						
Mixed, n (%)	254 (48.0))	289 (50.8)		103 (45.2)	
Unable to assess or	18 (3.4)		12 (2.1)		6 (2.6)	
classify, n (%)						
				\sim		
Table 4: Sensitivity an	alyses bas	sed on those	on a single sedati	ion st	rategy or those whos	e s
dominant for ≥6 hour	s over the	other 2 stra	tegies.			
Outcome		Dominant	Sedation Strategy	y P	ropensity score-	
				n	natched odds ratio,	
				n	nean ratio or rate	
				r	atio (95% CI) ¹	
Delirium ever		Propofol		1	.00 (reference group)	
		Fentanyl(n=476)		1	1.29 (0.99-1.69)	
		Midazolam(n=231)		1	1.64 (1.12-2.41)	
Delirium or ICU deatl	1	Propofol		1	1.00 (reference group)	
		Fentanyl(n=476)		1	1.38 (1.05-1.81)	
		Midazolam(n=231)		1	1.75 (1.18-2.60)	
ICU Mortality		Propofol		1	1.00 (reference group)	
		Fentanyl(n=476)		1	1.82 (1.18-2.84)	
		Midazolam	(n=231)	1	.31 (0.73-2.39)	
Hospital Mortality		Propofol		1	.00 (reference group)	
		Fentanyl(n=476)		1	1.69 (1.19-2.42)	
		Midazolam	(n=231)	1	1.50 (0.92-2.49)	
Died within 30 days of ICU admission		Propofol		1	.00 (reference group)	
		Fentanyl(n=	=476)	1	.84 (1.27-2.68)	
		Midazolam(n=231)		1	.14 (0.69-1.89)	
Died within 1 year of	ICU	Propofol	· · ·	1	.00 (reference group)	
admission		Fentanyl(n=	=476)		.38 (1.02-1.86)	

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

	Midazolam(n=231)	1.16 (0.77-1.76)
Died within 1.5 years of ICU	Propofol	1.00 (reference group)
admission	Fentanyl(n=476)	1.25 (0.94-1.66)
	Midazolam(n=231)	1.25 (0.84-1.85)
ICU length of stay, mean ratio	Propofol	1.00 (reference group)
(95% CI)	Fentanyl(n=476)	1.23 (1.09-1.39)
	Midazolam(n=231)	1.01 (0.86-1.20)
Hospital length of stay, mean	Propofol	1.00 (reference group)
ratio (95% CI)	Fentanyl(n=476)	1.31 (1.13-1.51)
	Midazolam(n=231)	1.01 (0.83-1.22)
Duration of invasive	Propofol	1.00 (reference group)
ventilation, mean ratio (95%	Fentanyl(n=476)	1.35 (1.14-1.59)
CI)	Midazolam(n=231)	1.17 (0.94-1.46)
Number of delirium days, rate	Propofol	1.00 (reference group)
ratio (95% CI)	Fentanyl(n=476)	1.19 (0.99-1.43)
	Midazolam(n=231)	1.11 (0.85-1.44)


¹Data presented as odds ratios unless otherwise indicated.

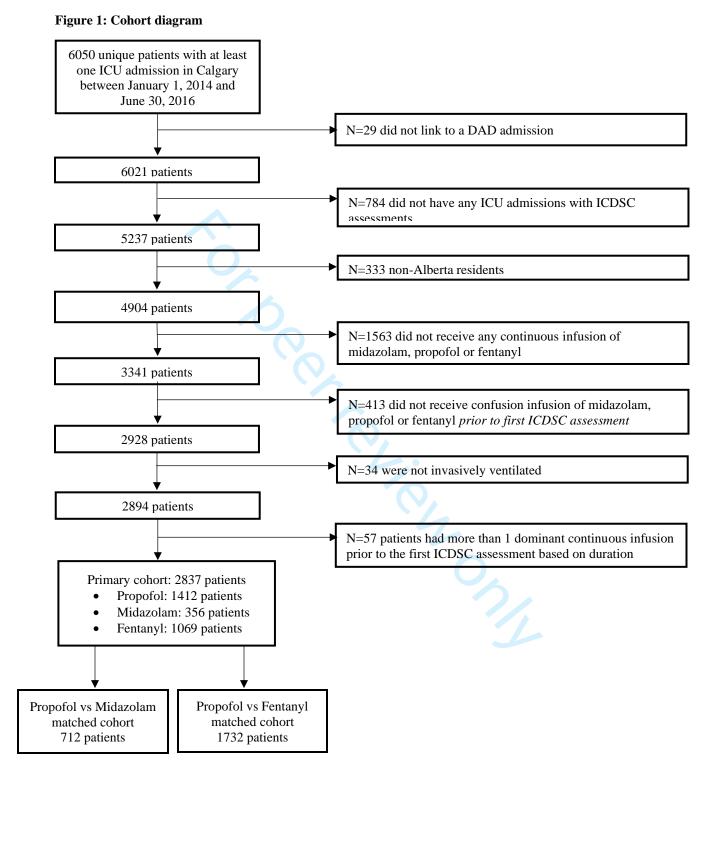

Figure Legends:

Figure 1: Cohort diagram

Figure 2: Propensity score-matched odds ratios of delirium by dominant sedation strategy prior to first ICDSC assessment

Figure 3: Forest plot of propensity score-matched mean or rate ratios of secondary outcomes and sedation strategy

Figure 2: Propensity score-matched odds ratios of delirium by dominant sedation strategy prior to first ICDSC assessment

Sedation Strategy		Odds Ratio (95% CI)	p-v
Propofol	•	1.00 (reference group)	
Fentanyl	1	1.22 (1.00-1.48)	0
Midazolam	⊢ • – • •	1.46 (1.06-2.00)	0
	0.0 0.5 1.0 1.5 2.0 Odds Ratio (95% CI)		

1 2				
3 4	Figure 3: Forest plot of propensity se	core-matched mean or rate ratios	of secondary outcomes and	sedation
5	strategy			
6 7	Secondary Outcomes		Mean or Rate Ratio (95% CI)	
8 9	ICU LOS			p-value
10	Propofol		1.00 (reference group)	-
11 12	Fentanyl	⊢⊶⊸⊣	1.11 (1.02-1.22)	0.02
13	Midazolam	⊢ •−−1	1.04 (0.90-1.19)	0.61
14 15	Hospital LOS			
16	Propofol		1.00 (reference group)	-
17	Fentanyl	⊢ ⊷––	1.20 (1.08-1.33)	<0.001
18 19	Midazolam	F	1.01 (0.86-1.18)	0.91
20	Duration of invasive ventilation			
21 22	Propofol		1.00 (reference group)	-
23	Fentanyl	⊢ ≁−−1	1.20 (1.07-1.35)	0.003
24 25	Midazolam	⊢	1.22 (1.02-1.45)	0.03
26	Number of delirium days			
27 28	Propofol		1.00 (reference group)	-
29	Fentanyl	<u> </u>	1.15 (1.00-1.32)	0.05
30	Midazolam		1.11 (0.91-1.35)	0.32
31 32	0.0	0.5 1.0 1.5 2	1	
33	0.0	Mean or Rate Ratio (95% CI)		
34 35				
36				
37 38				
39				
40 41				
42				
43 44				
44 45				
46				
47 48				
49				
50 51				
52				
53				
54 55				
56				
57 58				
59	Francisco			
60	For peer review on	ly - http://bmjopen.bmj.com/site/a	about/guidelines.xhtml	

2	
3	
4	
5	
4 5 6 7	
7	
8	
9	
10	
11	
12	
13	
14 15	
15 16	
16 17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
20 21 22 23 24 25 26 27 28 29	
28	
29	
30	
31	
32	
33	
34	
35	
36 27	
37 38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56 57	
57 58	
58 59	
29	

1

Table S1: Secondary outcomes by sedation strategy	prior to first ICDSC assessment
---	---------------------------------

Propensity score- matched mean ratio or rate ratio (95% CI) ¹	ICU LOS	Hospital LOS	Duration of invasive ventilation	Number of delirium days
Sedation prior to first				
ICDSC assessment				
Propofol	1.00 (reference	1.00 (reference	1.00 (reference	1.00 (reference
	group)	group)	group)	group)
Fentanyl	1.06 (0.85-1.33)	1.25 (0.97-1.61)	1.00 (0.74-1.35)	1.03 (0.69-1.55)
Midazolam	0.83 (0.65-1.06)	0.98 (0.75-1.28)	1.00 (0.73-1.38)	0.88 (0.59-1.31)
Propofol + Fentanyl	1.17 (1.05-1.30)	1.20 (1.05-1.38)	1.37 (1.18-1.58)	1.08 (0.90-1.31)
Propofol + Midazolam	1.16 (0.99-1.36)	0.86 (0.68-1.08)	1.59 (1.28-1.99)	1.11 (0.87-1.41)
Fentanyl + Midazolam	1.40 (1.17-1.67)	1.27 (1.02-1.57)	1.95 (1.54-2.46)	1.28 (0.97-1.69)
All 3	1.73 (1.52-1.98)	1.39 (1.18-1.63)	2.47 (2.06-2.97)	1.35 (1.10-1.67)

class, senal replac f score and spc. ¹Propensity score based on age, sex, admission class, Charlson comorbidity category (0, 1, 2+), admission APACHE II score, vasoactive medications, continuous renal replacement therapy. 1:1 nearest-neighbor matching without replacement using the logit of the propensity score and specified caliper width equal to 0.2 of the standard deviation of the logit of the propensity score

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

י ר	
2	
3	
4	
5	
6	
7	
8	
9	
9	
10	
11	
12	
10 11 12 13 14 15 16 17	
14	
15	
16	
17	
17	
18	
19	
20	
21	
22	
23	
23	
24	
25	
23 24 25 26 27 28	
27	
28	
29	
30	
31	
27	
32	
33	
34 35 36	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
52	
55 54	
55	
56	
57	

58

59

Table S2: Propensity score matched models of the relationship between mortality of	outcomes and dominant
sedation strategy prior to first ICDSC assessment	

Outcome	Dominant	Mortality, n (%)	Propensity score-matched
	Sedation		OR (95% CI) ²
	Strategy		
ICU	Propofol	94 (6.7)	1.00 (reference)
Mortality	Fentanyl	104 (9.7)	1.50 (1.07-2.12)
	Midazolam	39 (11.0)	1.20 (0.74-1.97)
Hospital Mortality	Propofol	157 (11.1)	1.00 (reference)
ivioi tailty	Fentanyl	166 (15.5)	1.27 (0.97-1.67)
	Midazolam	59 (16.6)	1.14 (0.76-1.70)
Died within 30 days of	Propofol	148 (10.5)	1.00 (reference)
ICU admission	Fentanyl	148 (13.8)	1.35 (1.02-1.79)
	Midazolam	50 (14.0)	1.02 (0.67-1.57)
Died within 1 year of ICU	Propofol	268 (19.0)	1.00 (reference)
admission	Fentanyl	248 (23.2)	1.13 (0.90-1.43)
	Midazolam	91 (25.6)	1.01 (0.72-1.42)
Died within	Propofol	308 (21.8)	1.00 (reference)
1.5 years of	Fentanyl	276 (25.8)	1.12 (0.90-1.40)
ICU	Midazolam	109 (30.6)	1.01 (0.74-1.39)
admission		, ,	

Ez oriz

Supplementary Table 3: Table of baseline characteristics for sensitivity analyses

	Propofol	Fentanyl	Midazolam	Propofol	Propofol +	Fentanyl +	All 3
	(n=887)	(n=158)	(n=124)	+ Fentanyl (n=854)	Midazolam (n=224)	Midazolam (n=222)	(n=368)
Characteristic							
Age, median (IQR)	58 (46- 69)	64 (54-74)	66 (54-74)	55 (40- 67)	51 (35-60)	61 (51-71)	52 (40- 65)
Male, n (%)	506 (57.0)	79 (50.0)	79 (63.7)	532 (62.3)	145 (64.7)	133 (59.9)	248 (67.4)
Admission reason, n (%)							
Medical	518 (58.5)	59 (37.3)	87 (70.2)	236 (27.7)	176 (78.6)	121 (54.5)	232 (63.0)
Surgical	163 (18.4)	72 (45.6)	30 (24.2)	299 (35.1)	7 (3.1)	81 (36.5)	87 (23.6)
Neurological	169 (19.1)	10 (6.3)	6 (4.8)	102 (12.0)	37 (16.5)	3 (1.4)	10 (2.7)
Trauma	35 (4.0)	17 (10.8)	1 (0.8)	216 (25.3)	4 (1.8)	17 (7.7)	39 (10.6)
Location admitted from			Z				
Emergency Room	520 (58.6)	53 (33.5)	49 (39.5)	367 (43.0)	168 (75.0)	93 (41.9)	186 (50.5)
Operating Room/Recovery	170 (19.2)	62 (39.2)	27 (21.8)	320 (37.5)	6 (2.7)	65 (29.3)	86 (23.4)
Hospital Ward	166 (18.7)	39 (24.7)	43 (34.7)	140 (16.4)	40 (17.9)	49 (22.1)	77 (20.9)
Another Hospital	17 (1.9)	3 (1.9)	2 (1.6)	13 (1.5)	7 (3.1)	7 (3.2)	8 (2.2)
Other	14 (1.6)	1 (0.6)	3 (2.4)	14 (1.6)	3 (1.3)	8 (3.6)	11 (3.0)
Charlson score, n (%)							
0	338 (38.1)	47 (29.7)	30 (24.2)	387 (45.3)	106 (47.3)	74 (33.3)	143 (38.9)
1	204 (23.0)	35 (22.2)	19 (15.3)	171 (20.0)	55 (24.6)	50 (22.5)	92 (25.0)
2+	345 (38.9)	76 (48.1)	75 (60.5)	296 (34.7)	63 (28.1)	98 (44.1)	133 (36.1)

BMJ Open

Charlson score, median (IQR)	1 (0-3)	1 (0-3)	2 (1-4)	1 (0-2)	1 (0-2)	1 (0-3)	1 (0-2)
Admission SOFA score, median (IQR)	6 (4-8)	8 (5-10)	8 (5-10)	6 (4-9)	7 (5-9)	9 (6-11)	8 (5-11)
Admission APACHE II score, median (IQR)	18 (14- 23)	20 (15-26)	23 (16-28)	17 (12- 22)	20 914-25)	22 (16-29)	21 (14- 26)
Vasoactive medications, n (%)	356 (40.1)	105 (66.5)	81 (65.3)	477 (55.9)	117 (52.2)	175 (78.8)	263 (71.5)
Continuous renal replacement therapy, n (%)	35 (3.9)	10 (6.3)	9 (7.3)	41 (4.8)	7 (3.1)	32 (14.4)	36 (9.8)

<u>10 (6.3)</u> 9 (7.3) 41 (4.8) 7 (3.1) 32 (14.4)

STROBE Statement—Checklist of items that should be included in reports of cohort studies

	Item No	Recommendation	Page No
Title and abstract	1	(<i>a</i>) Indicate the study's design with a commonly used term in the title or the abstract	1, 2
		(b) Provide in the abstract an informative and balanced summary of what	
		was done and what was found	
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	3
Objectives	3	State specific objectives, including any prespecified hypotheses	3
Methods			1
Study design	4	Present key elements of study design early in the paper	4
Setting	5	Describe the setting, locations, and relevant dates, including periods of	4
betting		recruitment, exposure, follow-up, and data collection	
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of	4
	Ũ	participants. Describe methods of follow-up	
		(b) For matched studies, give matching criteria and number of exposed	
		and unexposed	
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders,	5,6
v arrables	/	and effect modifiers. Give diagnostic criteria, if applicable	,
Data sources/	8*	For each variable of interest, give sources of data and details of methods	4, 6
		of assessment (measurement). Describe comparability of assessment	., .
measurement		methods if there is more than one group	
Bias	0	Describe any efforts to address potential sources of bias	6
	9		5
Study size	10	Explain how the study size was arrived at	4,6
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If	4,0
	10	applicable, describe which groupings were chosen and why	6,
Statistical methods	12	(<i>a</i>) Describe all statistical methods, including those used to control for confounding	Supplement methods
		(b) Describe any methods used to examine subgroups and interactions	
		(c) Explain how missing data were addressed	
		(d) If applicable, explain how loss to follow-up was addressed	
		(e) Describe any sensitivity analyses	
Results			
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers	7,
i articipanto	15	potentially eligible, examined for eligibility, confirmed eligible, included	Figure 1
		in the study, completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	
Descriptions 1-1	1 1 4	(c) Consider use of a flow diagram	4,7
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical,	Table 1
		social) and information on exposures and potential confounders	
		(b) Indicate number of participants with missing data for each variable of interest	
		(c) Summarise follow-up time (eg, average and total amount)	7
Outcome data	15*	Report numbers of outcome events or summary measures over time	

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Main results	16	(<i>a</i>) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included	Table 2,3
		(b) Report category boundaries when continuous variables were categorized	
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a	
		meaningful time period	
Other analyses	17	Report other analyses done-eg analyses of subgroups and interactions, and sensitivity	7
		analyses	
Discussion			
Key results	18	Summarise key results with reference to study objectives	8
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or	10
		imprecision. Discuss both direction and magnitude of any potential bias	
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations,	8,9,10
		multiplicity of analyses, results from similar studies, and other relevant evidence	
Generalisability	21	Discuss the generalisability (external validity) of the study results	8,9,10
Other informati	on		
Funding	22	Give the source of funding and the role of the funders for the present study and, if	11
		applicable, for the original study on which the present article is based	

*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at http://www.strobe-statement.org.

BMJ Open

Sedation strategy and ICU Delirium: A multi-center, population-based propensity score-matched cohort study

Journal:	BMJ Open
Manuscript ID	bmjopen-2020-045087.R3
Article Type:	Original research
Date Submitted by the Author:	05-Jul-2021
Complete List of Authors:	Casault, Colin; University of Calgary Cumming School of Medicine, Department of Critical Care Medicine Soo, Andrea; University of Calgary Cumming School of Medicine, Critical Care Medicine Lee, Chel; University of Calgary Cumming School of Medicine, Department of Critical Care Couillard, Philippe; University of Calgary Cumming School of Medicine, Critical Care Medicine Niven, Daniel; University of Calgary Cumming School of Medicine, Critical Care Medicine Stelfox, Tom; University of Calgary Cumming School of Medicine, Department of Critical Care Fiest, Kirsten; University of Calgary Cumming School of Medicine, Critical Care Medicine
Primary Subject Heading :	Intensive care
Secondary Subject Heading:	Anaesthesia, Intensive care, Patient-centred medicine
Keywords:	Adult intensive & critical care < ANAESTHETICS, Health & safety < HEALTH SERVICES ADMINISTRATION & MANAGEMENT, Quality in health care < HEALTH SERVICES ADMINISTRATION & MANAGEMENT, Adult intensive & critical care < INTENSIVE & CRITICAL CARE, Delirium & cognitive disorders < PSYCHIATRY

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

review only

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Sedation strategy and ICU Delirium: A multi-center, population-based propensity score-matched cohort study

Colin Casault_a, MD; Andrea Soo_a, PhD; Chel Hee Lee, PhD; Philippe Couillard_a, MD; Daniel J Niven_{a,b}, MD/PhD; Tom Stelfox_{a,b}, MD/PhD; Kirsten M. Fiest_{a,b,c}, PhD.

a: Department of Critical Care Medicine, University of Calgary and Alberta Health Services, Calgary Alberta, Canada. b: Department of Community Health Sciences and O'Brien Institute for Public Health, University of Calgary, Calgary, Alberta, Canada c: Department of Psychiatry and Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada

Address for Correspondence: Colin Casault Department of Critical Care, University of Calgary Calgary, Alberta, Canada T2N-1N4 (587) 432-6762 casaultc@gmail.com

Abstract: 298 words Manuscript: 356 words Tables: 4 Figures: 3

Conflicts of Interest: No author has a conflict of interest to declare.

Keywords: Delirium, ICU sedation, fentanyl sedation, midazolam sedation

Objectives: We examined the relationship between dominant sedation strategy, risk of delirium, and patient-centered outcomes in adults admitted to intensive care units(ICUs).

Design: Retrospective propensity-matched cohort study.

Setting: Mechanically-ventilated adults (\geq 18 years) admitted to four Canadian hospital medical/surgical ICUs from 2014 – 2016 in Calgary, Alberta, Canada.

Participants: 2837 mechanically-ventilated adults (\geq 18 years) requiring admission to a medical/surgical ICU were evaluated for the relationship between sedation strategy and delirium.

Interventions: None.

Primary and secondary outcome measures: The primary exposure was dominant sedation strategy, defined as the sedative infusion, including midazolam, propofol or fentanyl, with the longest duration before the first delirium assessment. The primary outcome was 'ever delirium' identified using the Intensive Care Delirium Screening Checklist (ICDSC). Secondary outcomes included mortality, length of stay (LOS), ventilation duration, and days with delirium. The cohort was analyzed in two propensity score (patient characteristics and therapies received) matched cohorts (propofol vs. fentanyl and propofol vs. midazolam).

Results: 2,837 patients (60.7% male; median age 57 years (interquartile range 43-68)) were considered for propensity matching. In propensity score-matched cohorts(propofol vs. midazolam, n=712; propofol vs. fentanyl, n=1,732), the odds of delirium were significantly higher with midazolam (odds ratio (OR) 1.46 (95% confidence interval(CI) 1.06-2.00)) and fentanyl (OR 1.22 (95% CI 1.00-1.48)) compared to propofol dominant sedation strategies. Dominant sedation strategy with midazolam and fentanyl were associated with a longer duration of ventilation compared to propofol. Fentanyl was also associated with increased ICU mortality(OR 1.50 (1.07-2.12)) ICU and hospital LOS compared to a propofol dominant sedation strategy.

Conclusions: We identified a novel association between fentanyl dominant sedation strategies and an increased risk of delirium, a composite outcome of delirium or death, duration of mechanical ventilation, ICU LOS, and hospital LOS. Midazolam dominant sedation strategies were associated with increased delirium risk and mechanical ventilation duration.

Article Summary:

- We examine the effects of midazolam and fentanyl sedation strategies on delirium and patient-centered outcomes using a large cohort of general intensive care patients.
- To reduce bias, we used a propensity score matching process on an extensive database.
- One fundamental limitation is secondary to the concurrent use of multiple overlapping sedation strategies, which may impact the results.
- Based on the limitations and the nature of cohort studies, this study as hypothesis-generating.

Introduction:

Delirium in critically ill patients is an acute confusional state marked by severe disorganization of cognition, fluctuating course, attentional deficit, and a disturbance of awareness¹. Older age, severity of illness, presence of mechanical ventilation, coma, and sedative medications place over 50% of ICU patients at risk for developing delirium²⁻⁶. Delirium in the ICU is common and may prolong hospital stay, increase mortality risk and contribute to long-term cognitive impairment^{7 8}. With a burgeoning elderly population, ICU admission requiring mechanical ventilation is estimated to increase by 80% by 2026; therefore understanding potential contributors to delirium is paramount^{9 10}.

Over-sedation in the ICU, with benzodiazepines, in particular, may be harmful^{11,12}. Prospective cohort and randomized controlled trials support shorter durations of mechanical ventilation, more rapid awakening with propofol or dexmedetomidine than midazolam ¹³⁻¹⁷. Similarly, a population-based study by Lonardo *et al.* demonstrated higher mortality, longer duration of mechanical ventilation, and longer ICU length of stay (LOS) in patients managed with benzodiazepines compared to propofol¹¹. Lonardo *et al.* postulated midazolam's mortality effect might be due to increased rates of delirium. Delirium is associated with mortality, and some evidence supports patients treated with benzodiazepines may demonstrate higher rates of delirium in the ICU^{8 13 18 19}. However, the association between benzodiazepines and delirium is inconsistent⁶.

Sedation strategies often employ both a sedative, like propofol, and an analgesic, like fentanyl, simultaneously to achieve the desired effect. However, studies evaluating the clinical effects of these sedation strategies are lacking. Additional research is necessary to understand the effects of sedation strategies on delirium, hospital length of stay (LOS), and survival outcomes. Our study examined the relationship between dominant sedation strategy (continuously infused propofol, fentanyl, and/or midazolam), delirium, and important patient-centered outcomes, in a multi-center population-based sample of mechanically-ventilated adults admitted to ICU. *Methods:*

Ethics Approval Statement:

This retrospective cohort study was reported in compliance with the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement²⁰ and approved by the conjoint health research ethics board at the University of Calgary (REB17-0389).

Patient & Public Involvement Statement:

BMJ Open

2	
3	Neither patients, nor the public were not involved in the design, collection, compilation or completion of this research
4	
5	study.
6 7	Ch. J. C. Hing & Demulation
8	Study Setting & Population:
9	We identified consecutive mechanical ventilated adults (\geq 18 years) admitted to four medical-surgical ICUs
10	
11	in Calgary, Alberta, Canada between January 1, 2014, to June 30th, 2016. Patients were excluded if:
12	
13	1) Their ICU electronic health data did not link to an appropriate inpatient (hospital) admission
14	2) They did not have any ICU admissions with at least 1 Intensive Care Delirium Screening Checklist
15	2) They did not have any reo admissions with at least 1 mensive care Demitain Screening checknist
16 17	(ICDSC) assessment (details described in the Outcome Measures section)
18	
19	3) They were non-Alberta residents (to allow for mortality outcome follow-up post hospital discharge)
20	4) They did not receive at least 1 continuous infusion of midazolam, propofol or fentanyl prior to the first
21	4) They did not receive at least reolitinuous infusion of initiazolarii, proporor of remanyr prior to the first
22	ICDSC assessment.
23	
24 25	5) They were never invasively ventilated during their ICU stay.
26	6) They did not have a single dominant continuous infusion prior to the first ICDSC assessment (see
27	b) They did not have a single dominant continuous infusion prior to the first ICDSC assessment (see
28	definition of dominant sedation strategy in the <i>Exposure Measure</i> section below for further detail).
29	
30	If the patient was readmitted to ICU more than once during the study period, then only the first admission
31 32	with at least 1 ICDSC assessment was used. The ICUs are staffed by accredited intensive care physicians which
33	with at least 1 10DSC assessment was used. The 100s are standed by accredited intensive care physicians which
34	provide mechanical ventilation, vasoactive medications, and invasive monitoring.
35	
36	Data sources:
37	Study data was derived from three electronic databases ²¹⁻²³ . eCritical Alberta, a database and electronic
38	Study data was derived nom three electronic databases certical Arberta, a database and electronic
39 40	medical record, that prospectively captures detailed clinical and demographic information ²² . The discharge abstract
41	
42	database (DAD) captures data on all hospitalized patients, including admission date, discharge, survival status, and
43	up to 25 diagnostic codes from the International Classification of Diseases, 10th revision, Canadian enhancement.
44	up to 25 diagnostic codes from the international classification of Diseases, 10 ⁻ revision, Canadian enhancement.
45	Out of hospital deaths were obtained from Alberta Vital Statistics, which captures all deaths occurring in Alberta.
46	
47 48	Data from Alberta Vital Statistics was available up to December 30, 2017, which provided at least 18 months of
49	follow-up from the ICU admission date.
50	tonow-up from the re-o admission date.
51	Exposures and Definitions:
52	
53	The main study exposure was dominant sedation strategy prior to the first ICDSC assessment. A sedation
54 55	strategy was defined as a continuous analgo-sedative infusion limited to midazolam, fentanyl, and propofol.
56	success was defined as a continuous anargo-sedative infusion minited to infudzorani, remanyi, and proporor.

Infusions were selected based on a screening survey which demonstrated small populations utilizing alternative sedation strategies. There were seven possible combinations for the sedation strategy prior to the first ICDSC assessment: 1) propofol only, 2) fentanyl only, 3) midazolam only, 4) propofol and fentanyl, 5) propofol and midazolam, 6) fentanyl and midazolam, and 7) all three agents. A high number of patients received more than 1 agent, therefore we classified patients into a dominant sedation strategy, defined as the longest continuous duration of infusion prior to the first ICDSC assessment, which consists of three categories for the primary analyses. For example, if fentanyl was provided for the longest duration, fentanyl was considered the dominant sedation strategy. It is possible the patient could have received propofol or midazolam (or neither) for a duration less than fentanyl. If the patient received two agents for the same duration, the patient was excluded as no strategy was dominant. As sensitivity analyses, all seven possible combinations of the sedation strategy used prior to the first ICDSC assessment were considered.

Outcome Measures:

The primary outcome was categorized as 'ever/never delirium' during ICU admission compatible with previously established delirium outcome measures⁷. All ICU patients with a Richmond Agitation Sedation Scale(RASS)²⁴ score \geq -3 were evaluated twice daily using the ICDSC tool²⁵ and received a protocolized sedation awakening trial. The ICDSC is a validated delirium assessment tool²⁵. Ever delirium patients were those with an *ICDSC score* \geq 4; never delirium were those with an *ICDSC score* <4. Total number of days with an *ICDSC score* \geq 4 defined delirium duration. Duration of delirium (days) was examined in secondary analyses.

Delirium motor subtypes were identified using the RASS, based on previously published criteria¹⁸, and associated positive ICDSC score of \geq 4. The scale is scored from -5 points (unarousable) to 0 points (calm) to +4 points (combative), where scores between -3 to 0 indicate hypoactive delirium, scores between 1 to 3 indicate hyperactive delirium, and scores that fluctuate between hypoactive and hyperactive indicate mixed delirium. All ICDSC scores \geq 4 were linked to the closest RASS score within 4 hours of charting. If there was no RASS score documented within 4 hours of the ICDSC score, the sub-type was considered "unable to be classified". If there was a RASS score within 4 hours of the ICDSC score but the RASS was -5, -4 or +4, the sub-type was considered "unable to be assessed". If at least 1 assessment indicated hypoactive delirium and at least 1 assessment indicated hyperactive delirium the sub-type was considered mixed for that specific patient.

BMJ Open

Secondary outcomes were mortality in the ICU and hospital, duration of mechanical ventilation, and ICU & hospital lengths of stay (LOS). Patient mortality was also reported at 30-days and 1-year. Duration of invasive mechanical ventilation was defined as the time a patient required the use of invasive ventilator.

Statistical Analysis:

Baseline characteristics were summarized using median with interquartile range (IQR) and frequency with percent and compared between sedation strategies using chi-squared tests and Kruskal-Wallis rank sum tests, as appropriate. For the primary outcome analysis, logistic regression was used to assess the association between dominant sedation strategy (propofol vs midazolam vs fentanyl) and risk of developing delirium. The relationship between dominant sedation strategy and delirium duration was analyzed using negative binomial models. The relationship between dominant sedation strategy and mortality outcomes were analyzed using logistic regression models. The relationship between dominant sedation strategy and LOS outcomes (ICU and hospital) were analyzed using linear regression models with a log-transformation of ICU LOS and hospital LOS. Primary analyses for all outcomes were based on forming two propensity score-matched cohorts: 1) propofol vs fentanyl and 2) propofol vs midazolam.

The study team considered the following prior to matching including, all measured baseline covariates, all baseline covariates that are associated with treatment assignment (eg. sedation strategy), all baseline covariates that affect the outcome (ie. potential confounders) or all covariates that affect both treatment assignment and outcome (ie. true confounders). Therefore, age, sex, reason for admission, admission APACHE II, the charlson comorbidity index(0,1,2+), use of vasoactives and renal replacement represented covariates which affected the outcome variables and therefore were controlled to ensure patient severity and medical issues did not confound the outcome of the treatment assignment.

The cohorts were formed based on 1:1 nearest-neighbor matching without replacement using the logit of the propensity score and specified caliper width equal to 0.2 of the standard deviation of the logit of the propensity score²⁶. Sensitivity analyses were based on the full cohort with models adjusted a priori for the same patient characteristics used in the propensity scores. The above analyses were repeated for the 7-category sedation strategy prior to the first ICDSC assessment. For these analyses, we formed six pairwise propensity score-matched cohorts similar to the primary analyses, matching with patients on propofol only for each of the other 6 categories of sedation strategy prior to the first ICDSC assessment. A two-sided p-value < 0.05 was considered statistically

significant. Analyses were conducted in R, version 3.5.1.²⁷ Propensity-score matching was performed using the R package "MatchIt", version 3.0.2. Additionally, to control for the competing effects of delirium and death, a sensitivity analysis of a composite endpoint of delirium or death was calculated.

Results:

There were 2,837 patients in the study cohort (Figure 1), which included 1412 patients (49.8%) receiving a propofol dominant strategy, 356 patients (12.5%) receiving a midazolam dominant strategy and 1069 patients (37.7%) receiving a fentanyl dominant strategy. For those receiving propofol dominant sedation, it was common to receive a single agent of only propofol (62.8%). While among those receiving fentanyl and midazolam dominant sedation strategies, single agent use was less common with 14.8% and 34.8% only receiving a single agent, respectively." Most patients were male (60.7%) with a median age of 57 (IQR 43-68) years and admitted for a medical reason (50.4%). The median Charlson comorbidity score was 1 (IQR 0-2), admission SOFA score 7 (IQR 4-9) and admission APACHE II score 19 (IQR 14-25). Patients who received a midazolam dominant sedation strategy were more likely admitted for medical reasons (72.8%) and had higher Charlson comorbidity scores, admission SOFA scores, admission SOFA scores and admission APACHE II scores than those receiving propofol and fentanyl dominant sedation strategies. Patients receiving midazolam dominant strategies were also more likely to receive vasoactive medications (68.8%) compared to those predominantly receiving propofol (45.3%) and fentanyl dominant sedation strategies (64.5%). (Table 1).

Due to missing patient characteristics for 5 patients (0.2%), propensity scores were calculated for 1,409 patients receiving propofol dominant strategies, 1,067 patients receiving fentanyl dominant sedation strategies and 356 patients receiving midazolam dominant sedation strategies. Of the patients receiving fentanyl dominant sedation strategies, 201 (18.8%) could not be matched to a patient receiving propofol dominant sedation strategies within the specified caliper width of 0.2; therefore, this resulted in a matched cohort for propofol and fentanyl of 1,732 patients. Of the patients receiving midazolam dominant sedation strategies, all 356 patients could be matched to a patient receiving propofol and fentanyl of 1,732 patients. Of the patients receiving midazolam dominant sedation strategies, all 356 patients could be matched to a patient receiving propofol dominant sedation strategies; therefore, this resulted in a matched cohort for propofol and fentanyl of 1,732 patients receiving propofol dominant sedation strategies; therefore, this resulted in a matched cohort for patients with propofol and minant sedation strategies of 712 patients. After matching, the baseline characteristics were balanced(Table 1). The median time from admission to first ICDSC in hours were similar between the propofol(median time = 17.1hrs (IQR = 8.5-34.7)), midazolam((median time =17.6 hrs (IQR = 8.8-41.2)) and fentanyl (median time =16.5 hrs (8.8-35.4) dominant strategies. Additionally, the median number of ICDSC

BMJ Open

assessments per ICU day was similar for propofol(1.4 (IQR =1.0-1.8), fentanyl(1.4 (IQR 1.0-1.8), midazolam(1.3 (IQR 1.0-1.7) dominant sedation strategies.

In the propensity score-matched cohorts, there was a statistically significant association between delirium and midazolam dominant(odds ratio[OR] 1.46 (95% confidence interval 1.06-2.00); p=0.02) as well as fentanyl dominant (OR 1.22 (95% CI 1.00-1.48); p=0.05) sedation strategies compared to propofol dominant sedation strategies(Figure 2). To control for the effects of death on delirium rates, a sensitivity analysis of the matched cohort was performed using a composite outcome of delirium or death. A statistically significant association between the composite outcome of delirium and death with midazolam dominant(OR 1.53 (95% CI 1.10-2.12; p=0.011) and fentanyl dominant(OR 1.27 (95% CI 1.04-1.55; p=0.020) strategies was observed, however not for propofol dominant strategies. Sensitivity analyses based on the 7-category sedation strategy prior to the first ICDSC assessment showed an increased odds of delirium for those on more than one agent compared to those on propofol only (Table 2). Among those who ever experienced delirium, the distribution of delirium subtypes was similar between dominant sedation strategies (Table 3). Based on the propensity score-matched cohorts, a fentanyl dominant sedation strategy was associated with longer duration of mechanical ventilation, longer ICU and hospital LOS and more delirium days compared to a propofol dominant sedation strategy, while a midazolam dominant sedation strategy was associated with a longer duration of mechanical ventilation compared to a propofol dominant sedation strategy(Figure 3). Sensitivity analyses of the secondary outcomes and cohort characteristics based on the 7-category sedation strategy can be found in the supplementary results (Supplementary Digital Content - Table 1 & Table 2, respectively). There was a statistically significant association between fentanyl dominant sedation strategy and ICU(OR=1.50 (1.07-2.12)) and 30-day mortality(OR=1.35 (1.02-1.79)) in propensity score-matched analyses(Supplementary Digital Content - Table 3). An additional sensitivity analysis of the same propensity scorematched cohort evaluating sedation strategy dominance for greater than 6 hours can be found in Table 4. This analysis demonstrated a statistically significant association between fentanyl dominant strategies and a composite of delirium or death, ICU mortality, hospital mortality, 30 day mortality, 1 year mortality, hospital length of stay and duration of mechanical ventilation.

Discussion:

Sedative strategies may increase the risk of adverse patient complications such as delirium, or prolonged mechanical ventilation. We found a midazolam dominant sedation strategy was associated with increased risk of

developing delirium, duration of mechanical ventilation, and a composite of delirium and death. Alternatively, fentanyl was associated with multiple detrimental outcomes including an increased risk of delirium, a composite outcome of delirium or death, ICU & hospital LOS and duration of mechanical ventilation.

The association between benzodiazepine-based sedation strategies and delirium has been suggested in prior literature ^{8 17 18}. The importance of these findings should not be understated as patients with delirium suffer prolonged hospital stays, an increased risk of mortality and long term cognitive impairment^{7 8}. Sedation using multiple agents was also associated with increased delirium risk, duration of mechanical ventilation, ICU LOS and hospital LOS. Whether these effects are a direct result from the sedation strategy, the resulting delirium or as a result of other aspects of their critical illness is unclear.

We also re-confirmed the association between midazolam dominant sedation strategies and longer mechanical ventilation but not mortality as reported by Lonardo *et al.*¹¹. The mechanism between the association of benzodiazepines and mortality is unclear, however prolonged mechanical ventilation is a known risk factor for mortality²⁸. A meta-analysis by Ho *et al.* comparing propofol to other sedation strategies did not demonstrate an impact on mortality; however, it did not specifically look at midazolam compared to other benzodiazpines²⁹. The heterogeneity in mortality outcomes may be attributable to variation in sedation depth, as early deep sedation is an independent predictor of delayed time to extubation and long term mortality¹². Therefore, not only agent choice but also sedation depth might contribute to the variation in mortality risk observed with benzodiazepines.

Sedation with midazolam and fentanyl is often selected for patients with significant hemodynamic instability to avoid the negative ionotropic and vasodilatory effects of propofol. In our study, those receiving midazolam dominant sedation strategies demonstrated significantly higher SOFA scores, APACHE II scores on admission and were more likely to receive vasoactive medications and continuous renal replacement. All of these may impact mortality when unaccounted for and may explain the heterogeneity observed in the literature³⁰. For example, Lonardo *et al.* did not control for the presence of renal replacement which has been associated with a high rate of mortality in critically ill patients^{11 31}. Our use of detailed clinical data for risk adjustment may help explain the differences in mortality compared to prior reports.

A fentanyl dominant sedation strategy was significantly associated with an increased risk of delirium, a composite of delirium or death, ICU LOS, hospital LOS and duration of mechanical ventilation. Prior literature shows associations with delayed extubation when given in the first 48 hours, which supports our findings¹². What is

Page 11 of 27

BMJ Open

unclear is whether our result is a direct effect of fentanyl, an indirect effect from resulting complications of fentanyl use, for example a pulmonary embolism or pneumonia, or simply an observed association driven by an unidentified confounder. Fentanyl dominant strategies were associated with increased risk of ICU mortality, 30-day mortality, and at hospital discharge but not 1 year. It is difficult to know what to make of these observations. The relationship between fentanyl use and ICU mortality has been incompletely explored in the literature. The mortality risk associated with fentanyl use may be attributable to prolongations in mechanical ventilation²⁸. In our data, the effect of mortality appeared strongest in those receiving only fentanyl and was less robust when used in combination. It is possible those patients who received fentanyl monotherapy were more critically ill. The baseline characteristics of the fentanyl only subgroup revealed these patients that were older, had a higher vasopressor and CRRT use compared to a propofol only but not a midazolam only strategy(Table S3). However, when fentanyl was the dominant strategy for greater than 6 hours compared to the other two strategies, the association between fentanyl and negative patient centred outcomes was more consistent. This may suggest the detrimental association between fentanyl dominant strategies and patient centred outcomes observed is time dependent. Another possibility could be the immunomodulatory effects of narcotics. The mu-opioid receptor is expressed on macrophages and Tlymphocytes, and chronic administration may increase the risk of bacterial infection³²⁻³⁴. Therefore, large doses of fentanyl may contribute to further immune dysregulation thereby placing critically ill patients at risk of infection. A final possibility is the use of fentanyl in the provision of palliative symptom control, therefore the mortality association is a marker of this practice. Further study is required to better delineate the true nature of the association between fentanyl and deleterious patient outcomes in the ICU.

Our studies strength is our large cohort size supported by granular patient detail extracted from a prospectively collected, clinical database representing multiple ICUs and the covariates were rigorously controlled using a propensity matched model²². The multicenter study design provides a pragmatic view of how sedation strategies are utilized in clinical practice. Limitations of our study include the possibility of confounding bias due to unmeasured impactful covariates or confounding by indication. Patients receiving midazolam dominant strategies were clearly more critically ill compared to those receiving propofol dominant strategies manifest by higher APACHE II scores, greater vasopressor requirements, and higher rates of renal replacement. To compensate, we conducted propensity score-matched analyses adjusted for known covariates. Additionally, fentanyl and midazolam are often used concurrently and teasing apart the isolated effects of each medication may be challenging. Adjustment

with our statistical model should minimize this effect, however, it is possible that unrecognized confounders which are not accounted for in the model could introduce unrecognized bias. Randomized controlled trials would better assess this limitation.

Moreover, we focused primarily on the presence or absence of continuous infusions and did not quantify the impact of independent drug boluses. However, this effect would lessen the association with our primary outcome suggesting our observed associations are conservative. Another limitation is the use of drug duration as a surrogate for the impact of the sedation strategy rather than in vivo plasma concentrations. Patient factors may impact midazolam metabolism due to differences in age, hepatic or renal dysfunction or co-administration of medications with similar metabolic pathways³⁵⁻³⁷. Finally, the definition of dominant sedation strategy based on longest duration of infusion prior to first ICDSC may be considered arbitrary. It is also possible that the current definition classifies some patients as having one dominant sedation strategy when multiple infusions were discontinued in a noticeably short time frame. However, defining sedation in the setting of multiple agents has been incompletely explored in the literature, therefore novel definitions are required. Our data closely reflects multiple findings previously reported with both midazolam and fentanyl sedation. Furthermore, when restricted to patients who received a dominant sedation strategy for greater than 6 hours, the association between fentanyl dominant strategies and negative patient outcomes was more apparent. This reduces the possibility our findings are pure chance. When thresholds for longer durations of sedation dominance were used, the effects became inconsistent, however may be secondary to the effects of statistical analysis on progressively smaller populations.

Conclusion:

This multi-center, propensity score-matched cohort study demonstrates a novel association between fentanyl dominant sedation strategies and negative outcomes in the ICU. Fentanyl dominant sedation strategies were associated with an increased risk of delirium, a composite of delirium or death, duration of ventilation, ICU LOS and hospital LOS. We also confirmed previous reports including an increased risk of delirium and duration of mechanical ventilation with midazolam dominant sedation strategies. This study highlights the need for additional research to further evaluate potentially negative effects of fentanyl and midazolam based sedation strategies.

Sources of Funding:

This project was unfunded.

BMJ Open

Disclosures:

The authors have no conflicts of interest.

Acknowledgements:

The authors would like to thank the Hotchkiss Brain institute, the O'Brien Institute for Public Health, and the University of Calgary Departments of Critical Care, Community Health Sciences and Psychiatry for their on-going support. Moreover, we would like to thank the reviewers and editorial team for their hard work and consideration.

Contributorship Statement: Dr CC was involved in the concept, study protocol, study oversight, statistical modeling, and all aspects of writing the manuscript. Drs AS & CHL were involved in the statistical modeling and contributed to the methods section of the manuscript. Drs KF, DN, TS, PC were involved in developing the concept, study protocol, study oversight and contributed to the discussion of the manuscript.

Data Sharing Statement: Raw data were generated at the University of Calgary. Derived data supporting the findings of this study are available from the corresponding author CC on request.

References:

- 1. Association AP. Diagnostic and Statistical Manual of Mental Disorders(DSM-5). Arlington, VA: American Psychiatric Association 2013.
- 2. Ely EW, Inouye SK, Bernard GR, et al. Delirium in mechanically ventilated patients: validity and reliability of the confusion assessment method for the intensive care unit (CAM-ICU). JAMA 2001;286(21):2703-10.
- 3. Dubois MJ, Bergeron N, Dumont M, et al. Delirium in an intensive care unit: a study of risk factors. *Intensive Care Med* 2001;27(8):1297-304.
- Pandharipande P, Cotton BA, Shintani A, et al. Prevalence and risk factors for development of delirium in surgical and trauma intensive care unit patients. *J Trauma* 2008;65(1):34-41. doi: 10.1097/TA.0b013e31814b2c4d
- Girard TD, Kress JP, Fuchs BD, et al. Efficacy and safety of a paired sedation and ventilator weaning protocol for mechanically ventilated patients in intensive care (Awakening and Breathing Controlled trial): a randomised controlled trial. *Lancet* 2008;371(9607):126-34. doi: 10.1016/S0140-6736(08)60105-1

6. Zaal IJ, Devlin JW, Peelen LM, et al. A systematic review of risk factors for delirium in the ICU. *Crit Care Med* 2015;43(1):40-7. doi: 10.1097/CCM.00000000000625

- 7. Thomason JW, Shintani A, Peterson JF, et al. Intensive care unit delirium is an independent predictor of longer hospital stay: a prospective analysis of 261 non-ventilated patients. *Crit Care* 2005;9(4):R375-81. doi: 10.1186/cc3729
- 8. Ely E, Shintani A, Truman B, et al. Delirium as a predictor of mortality in mechanically ventilated patients in the intensive care unit. *JAMA* 2004;291(14):1753-62.
- Needham DM, Bronskill SE, Calinawan JR, et al. Projected incidence of mechanical ventilation in Ontario to 2026: Preparing for the aging baby boomers. *Crit Care Med* 2005;33(3):574-9.
- 10. Jacobs P, Noseworthy TW. National estimates of intensive care utilization and costs: Canada and the United States. *Crit Care Med* 1990;18(11):1282-6.
- 11. Lonardo NW, Mone MC, Nirula R, et al. Propofol is associated with favorable outcomes compared with benzodiazepines in ventilated intensive care unit patients. *Am J Respir Crit Care Med* 2014;189(11):1383-94. doi: 10.1164/rccm.201312-22910C
- Shehabi Y, Bellomo R, Reade MC, et al. Early intensive care sedation predicts long-term mortality in ventilated critically ill patients. *Am J Respir Crit Care Med* 2012;186(8):724-31. doi: 10.1164/rccm.201203-0522OC
- Riker RR, Shehabi Y, Bokesch PM, et al. Dexmedetomidine vs midazolam for sedation of critically ill patients: a randomized trial. JAMA 2009;301(5):489-99. doi: 10.1001/jama.2009.56
- 14. R B-v, Mar Sanchez-Soria M, Morales-Garcia C, et al. Prolonged sedation of critically ill patients with midazolam or propofol: impact on weaning and costs. *Crit Care Med* 1997;25(1):33-40.
- 15. Aitkenhead AR, Pepperman ML, Willatts SM, et al. Comparison of propofol and midazolam for sedation in critically ill patients. *Lancet* 1989;2(8665):704-9.
- 16. Chamorro C, de Latorre FJ, Montero A, et al. Comparative study of propofol versus midazolam in the sedation of critically ill patients: results of a prospective, randomized, multicenter trial. *Crit Care Med* 1996;24(6):932-9.
- Barr J, Fraser GL, Puntillo K, et al. Clinical practice guidelines for the management of pain, agitation, and delirium in adult patients in the intensive care unit. *Crit Care Med* 2013;41(1):263-306. doi: 10.1097/CCM.0b013e3182783b72
- Pandhairpande P, Shintani A, Peterson J, et al. Lorazepam is an independent risk factor for transitioning to delirium in intensive care unit patients. *Anesthesiology* 2006;104(1):21-26.
- 19. Cammarano WB, Pittet JF, Weitz S, et al. Acute withdrawal syndrome related to the administration of analgesic and sedative medications in adult intensive care unit patients. *Crit Care Med* 1998;26(4):676-84.
- 20. von Elm E, Altman DG, Egger M, et al. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies. *The Lancet* 2007;370(9596):1453-57. doi: 10.1016/s0140-6736(07)61602-x
- 21. Chiasson TC, Manns BJ, Stelfox HT. An economic evaluation of venous thromboembolism prophylaxis strategies in critically ill trauma patients at risk of bleeding. *PLoS Med* 2009;6(6):e1000098. doi: 10.1371/journal.pmed.1000098

1	
2	
3 ⊿	
4	
2 3 4 5 6 7 8 9	
7	
8	
9	
10	
11	
12	
13	
12 13 14 15 16 17	
15	
16	
1/ 10	
18 19	
20	
20	
22	
23	
24	
25	
26	
27	
28	
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37	
30 21	
37	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42 43	
43 44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54 55	
55 56	
50 57	
58	
59	
60	

22. Brundin-Mather R, Soo A, Zuege DJ, et al. Secondary EMR data for quality improvement and
research: A comparison of manual and electronic data collection from an integrated
critical care electronic medical record system. J Crit Care 2018;47:295-301. doi:
10.1016/j.jcrc.2018.07.021

- 23. Stelfox HT, Soo A, Niven DJ, et al. Assessment of the Safety of Discharging Select Patients Directly Home From the Intensive Care Unit: A Multicenter Population-Based Cohort Study. JAMA Intern Med 2018;178(10):1390-99. doi: 10.1001/jamainternmed.2018.3675
- 24. Sessler CN, Gosnell MS, Grap MJ, et al. The Richmond Agitation-Sedation Scale: validity and reliability in adult intensive care unit patients. *Am J Respir Crit Care Med* 2002;166(10):1338-44. doi: 10.1164/rccm.2107138
- 25. Bergeron N, Dubois MJ, Dumont M, et al. Intensive Care Delirium Screening Checklist: evaluation of a new screening tool. *Intensive Care Med* 2001;27(5):859-64.
- 26. Austin PC. Optimal caliper widths for propensity-score matching when estimating differences in means and differences in proportions in observational studies. *Pharm Stat* 2011;10(2):150-61. doi: 10.1002/pst.433
- 27. Team RC. R: A language and environment for statistical computing. . 2018
- 28. Feng Y, Amoateng-Adjepong Y, Kaufman D, et al. Age, duration of mechanical ventilation, and outcomes of patients who are critically ill. *Chest* 2009;136(3):759-64. doi: 10.1378/chest.09-0515
- 29. Ho KM, Ng JY. The use of propofol for medium and long-term sedation in critically ill adult patients: a meta-analysis. *Intensive Care Med* 2008;34(11):1969-79. doi: 10.1007/s00134-008-1186-5
- 30. Soo A, Zuege DJ, Fick GH, et al. Describing organ dysfunction in the intensive care unit: a cohort study of 20,000 patients. *Crit Care* 2019;23(1):186. doi: 10.1186/s13054-019-2459-9
- 31. Uchino S, Kellum JA, Bellomo R, et al. Acute renal failure in critically ill patients: a multinational, multicenter study. *JAMA* 2005;294(7):813-8. doi: 10.1001/jama.294.7.813
- 32. Risdahl JM, Khanna KV, Peterson PK, et al. Opiates and infection. *J Neuroimmunol* 1998;83(1-2):4-18.
- 33. Roy S, Loh HH. Effects of opioids on the immune system. *Neurochem Res* 1996;21(11):1375-86.
- 34. Roy S, Wang J, Kelschenbach J, et al. Modulation of immune function by morphine: implications for susceptibility to infection. *J Neuroimmune Pharmacol* 2006;1(1):77-89. doi: 10.1007/s11481-005-9009-8
- 35. Barr J, Zomorodi K, Bertaccini EJ, et al. A double-blind, randomized comparison of i.v. lorazepam versus midazolam for sedation of ICU patients via a pharmacologic model. *Anesthesiology* 2001;95(2):286-98.
- 36. Swart EL, Zuideveld KP, de Jongh J, et al. Comparative population pharmacokinetics of lorazepam and midazolam during long-term continuous infusion in critically ill patients. *Br J Clin Pharmacol* 2004;57(2):135-45.
- Oldenhof H, de Jong M, Steenhoek A, et al. Clinical pharmacokinetics of midazolam in intensive care patients, a wide interpatient variability? *Clin Pharmacol Ther* 1988;43(3):263-9.

Tables:

Table 1: Baseline Characteristics

	Overall co	ohort	1		sedation strat		
					s. Midazolam		vs. Fentanyl
				matched co		matched c	1
	Propofol	Fentanyl	Midazolam	Propofol	Midazolam	Propofol	Fentanyl
	(n=1412)	(n=1069)	(n=356)	(n=356)	(n=356)	(n=866)	(n=866)
Characteristic							
Age, median (IQR)	56 (42- 67)	59 (44-69)	59 (46-71)	58 (48- 69)	59 (46-71)	57 (46- 68)	57 (42- 69)
Male, n (%)	843 (59.7)	656 (61.4)	223 (62.6)	227 (63.8)	223 (62.6)	533 (61.5)	520 (60.0)
Admission reason, n (%)							
Medical	791 (56.0)	379 (35.5)	259 (72.8)	253 (71.1)	259 (72.8)	426 (49.2)	379 (43.8)
Surgical	265 (18.8)	405 (37.9)	69 (19.4)	74 (20.8)	69 (19.4)	256 (29.6)	248 (28.6)
Neurological	245 (17.4)	73 (6.8)	19 (5.3)	18 (5.1)	19 (5.3)	76 (8.8)	73 (8.4)
Trauma	109 (7.7)	211 (19.7)	9 (2.5)	11 (3.1)	9 (2.5)	108 (12.5)	166 (19.2)
Location admitted from							
Emergency Room	833 (59.0%)	413 (38.6%)	190 (53.4%)	202 (56.7)	190 (53.4)	441 (50.9)	369 (42.6)
Operating Room/Recovery	278 (19.7%)	399 (37.3%)	59 (16.6%)	63 (17.7)	59 (16.6)	232 (26.8)	271 (31.3)
Hospital Ward	254 (18.0%)	209 (19.6%)	91 (25.6%)	85 (23.9)	91 (25.6)	165 (19.1)	180 (20.8)
Another Hospital	26 (1.8%)	24 (2.2%)	7 (2.0%)	4 (1.1)	7 (2.0)	17 (2.0)	23 (2.7)
Other	21 (1.5%)	24 (2.2%)	9 (2.5%)	2 (0.6)	9 (2.5)	11 (1.3)	23 (2.7)
Charlson score, n (%)							
0	582 (41.2%)	422 (39.5%)	121 (34.0%)	127 (35.7)	121 (34.0)	322 (37.2)	336 (38.8)
1	317 (22.5%)	239 (22.4%)	70 (19.7%)	61 (17.1)	70 (19.7)	201 (23.2)	207 (23.9)
2+	513 (36.3%)	408 (38.2%)	165 (46.3%)	168 (47.2)	165 (46.3)	343 (39.6)	323 (37.3)
Charlson score, median (IQR)	1 (0-2)	1 (0-2)	1 (0-3)	1 (0-3)	1 (0-3)	1 (0-3)	1 (0-2)
Admission SOFA score, median (IQR)	6 (4-8)	7 (5-10)	8 (6-11)	8 (5-10)	8 (6-11)	7 (4-9)	7 (4-10)
Admission APACHE II score, median (IQR)	18 (13- 24)	19 (14-25)	23 (16-28)	21 (16- 27)	23 (16-28)	19 (14- 24)	19 (13- 26)
Vasoactive medications, n (%)	639 (45.3%)	690 (64.5%)	245 (68.8%)	241 (67.7)	245 (68.8)	526 (60.7)	488 (56.4)
Continuous renal replacement therapy, n (%)	59 (4.2%)	78 (7.3%)	33 (9.3%)	28 (7.9)	33 (9.3)	52 (6.0)	73 (8.4)

1 2
2 3 4
5 6
7 8
9 10
10 11 12
12 13 14
14 15 16
17 17 18
19 20
20 21 22
22 23 24
24 25 26
20 27 28
29 30
31 32
33 34
35 36
37 38
39 40
41 42
43 44
45 46
47 48
49 50
51 52
53 54
55 56
57 58
59 60

Ta	ble 2: Sensitivity Analyses examining the relationship between delirium and individual sedation agents
pri	ior to first ICDSC assessment

Overall Cohort			Matched cohorts				
Sedation agent prior to first ICDSC assessment	Number of patients	Ever Delirium, n (%)	Adjusted OR (95% CI) ¹	Number of patients per group	Ever Delirium for propofol patients from matched cohorts, n (%)	Ever Delirium, n (%)	Propensity score-matched OR for Ever delirium(95% CI) ²
Propofol	887	509 (57.4)	1.00 (reference group)	N/A ³	N/A ³	N/A ³	1.00 (reference group)
Fentanyl	158	91 (57.6)	1.04 (0.71-1.52)	152	74 (48.7)	87 (57.2)	1.41 (0.90-2.22)
Midazolam	124	77 (62.1)	1.11 (0.73-1.69)	122	69 (56.6)	75 (61.5)	1.23 (0.74-2.05)
Propofol + Fentanyl	854	543 (63.6)	1.32 (1.06-1.65)	565	323 (57.2)	347 (61.4)	1.19 (0.94-1.51)
Propofol + Midazolam	224	163 (72.8)	1.72 (1.23-2.43)	223	143 (64.1)	162 (72.6)	1.49 (1.00-2.23)
Fentanyl + Midazolam	222	160 (72.1)	1.72 (1.22-2.46)	214	119 (55.6)	153 (71.5)	2.00 (1.34-3.00)
All 3	368	269 (73.1)	1.84 (1.38-2.47)	335	199 (59.4)	241 (71.9)	1.75 (1.27-2.42)

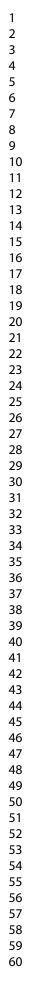
Table 3: Delirium subtype by dominant sedation strategy prior to first ICDSC assessment among patients experiencing delirium for the propensity score-matched cohorts

Dominant sedation	strategy				
Propofol vs. Fentany	Propofol vs. Fentanyl matched cohort		Propofol vs. Midazolam matched cohort		
patients experiencing delirium		patients experiencing	patients experiencing delirium		
Propofol (n=529)	Fentanyl (n=569)	Propofol (n=228)	Midazolam (n=257)		
47 (8.9)	40 (7.0)	15 (6.6)	25 (9.7)		
210 (39.7)	228 (40.1)	104 (45.6)	106 (41.2)		
254 (48.0)	289 (50.8)	103 (45.2)	123 (47.9)		
18 (3.4)	12 (2.1)	6 (2.6)	3 (1.2)		
	Propofol vs. Fentany patients experiencing Propofol (n=529) 47 (8.9) 210 (39.7) 254 (48.0)	47 (8.9) 40 (7.0) 210 (39.7) 228 (40.1) 254 (48.0) 289 (50.8)	Propofol vs. Fentanyl matched cohort patients experiencing deliriumPropofol vs. Midazol patients experiencing Propofol (n=529)Propofol (n=529)Fentanyl (n=569)Propofol (n=228)47 (8.9)40 (7.0)15 (6.6)210 (39.7)228 (40.1)104 (45.6)254 (48.0)289 (50.8)103 (45.2)		

Table 4: Sensitivity analyses based on those on a single sedation strategy or those whose sedation strategy was
dominant for ≥ 6 hours over the other 2 strategies.

Outcome	Dominant Sedation Strategy	Propensity score- matched odds ratio, mean ratio or rate ratio (95% CI) ¹
Delirium ever	Propofol	1.00 (reference group)
	Fentanyl(n=476)	1.29 (0.99-1.69)
	Midazolam(n=231)	1.64 (1.12-2.41)
Delirium or ICU death	Propofol	1.00 (reference group)
	Fentanyl(n=476)	1.38 (1.05-1.81)
	Midazolam(n=231)	1.75 (1.18-2.60)
ICU Mortality	Propofol	1.00 (reference group)
	Fentanyl(n=476)	1.82 (1.18-2.84)

	Midazolam(n=231)	1.31 (0.73-2.39)
Hospital Mortality	Propofol	1.00 (reference group)
	Fentanyl(n=476)	1.69 (1.19-2.42)
	Midazolam(n=231)	1.50 (0.92-2.49)
Died within 30 days of ICU	Propofol	1.00 (reference group)
admission	Fentanyl(n=476)	1.84 (1.27-2.68)
	Midazolam(n=231)	1.14 (0.69-1.89)
Died within 1 year of ICU	Propofol	1.00 (reference group)
admission	Fentanyl(n=476)	1.38 (1.02-1.86)
	Midazolam(n=231)	1.16 (0.77-1.76)
Died within 1.5 years of ICU	Propofol	1.00 (reference group)
admission	Fentanyl(n=476)	1.25 (0.94-1.66)
	Midazolam(n=231)	1.25 (0.84-1.85)
ICU length of stay, mean ratio	Propofol	1.00 (reference group)
(95% CI)	Fentanyl(n=476)	1.23 (1.09-1.39)
	Midazolam(n=231)	1.01 (0.86-1.20)
Hospital length of stay, mean	Propofol	1.00 (reference group)
ratio (95% CI)	Fentanyl(n=476)	1.31 (1.13-1.51)
	Midazolam(n=231)	1.01 (0.83-1.22)
Duration of invasive	Propofol	1.00 (reference group)
ventilation, mean ratio (95%	Fentanyl(n=476)	1.35 (1.14-1.59)
CI)	Midazolam(n=231)	1.17 (0.94-1.46)
Number of delirium days, rate	Propofol	1.00 (reference group)
ratio (95% CI)	Fentanyl(n=476)	1.19 (0.99-1.43)
	Midazolam(n=231)	1.11 (0.85-1.44)


¹Data presented as odds ratios unless otherwise indicated.

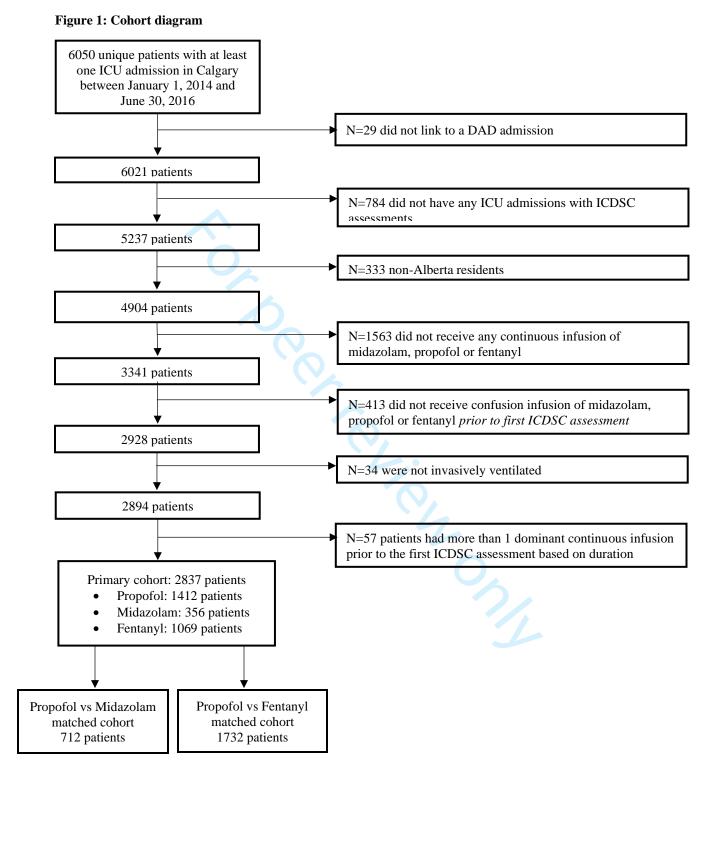

Figure Legends:

Figure 1: Cohort diagram

Figure 2: Propensity score-matched odds ratios of delirium by dominant sedation strategy prior to first ICDSC assessment

Figure 3: Forest plot of propensity score-matched mean or rate ratios of secondary outcomes and sedation strategy

Figure 2: Propensity score-matched odds ratios of delirium by dominant sedation strategy prior to first ICDSC assessment

Sedation Strategy		Odds Ratio (95% CI)	p-v
Propofol	•	1.00 (reference group)	
Fentanyl	1	1.22 (1.00-1.48)	0
Midazolam	⊢ • • • •	1.46 (1.06-2.00)	0
	0.0 0.5 1.0 1.5 2.0 Odds Ratio (95% CI)		

1 2				
3 4	Figure 3: Forest plot of propensity se	core-matched mean or rate ratios	of secondary outcomes and	sedation
5	strategy			
6 7	Secondary Outcomes		Mean or Rate Ratio (95% CI)	
8 9	ICU LOS			p-value
10	Propofol		1.00 (reference group)	-
11 12	Fentanyl	⊢⊶⊸⊣	1.11 (1.02-1.22)	0.02
13	Midazolam	⊢ •−−1	1.04 (0.90-1.19)	0.61
14 15	Hospital LOS			
16	Propofol		1.00 (reference group)	-
17	Fentanyl	⊢ ⊷––	1.20 (1.08-1.33)	<0.001
18 19	Midazolam	F	1.01 (0.86-1.18)	0.91
20	Duration of invasive ventilation			
21 22	Propofol		1.00 (reference group)	-
23	Fentanyl	⊢ ≁−−1	1.20 (1.07-1.35)	0.003
24 25	Midazolam	⊢	1.22 (1.02-1.45)	0.03
26	Number of delirium days			
27 28	Propofol		1.00 (reference group)	-
29	Fentanyl	<u> </u>	1.15 (1.00-1.32)	0.05
30	Midazolam		1.11 (0.91-1.35)	0.32
31 32	0.0	0.5 1.0 1.5 2	1	
33	0.0	Mean or Rate Ratio (95% CI)		
34 35				
36				
37 38				
39				
40 41				
42				
43 44				
44 45				
46				
47 48				
49				
50 51				
52				
53				
54 55				
56				
57 58				
59	Francisco			
60	For peer review on	ly - http://bmjopen.bmj.com/site/a	about/guidelines.xhtml	

2	
3	
4	
5	
4 5 6 7	
7	
8	
9	
10	
11	
12	
13	
14 15	
15 16	
16 17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
20 21 22 23 24 25 26 27 28 29	
28	
29	
30	
31	
32	
33	
34	
35	
36 27	
37 38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55 56	
56 57	
57 58	
58 59	
29	

1

Table S1: Secondary outcomes by sedation strategy	prior to first ICDSC assessment
---	---------------------------------

Propensity score- matched mean ratio or rate ratio (95% CI) ¹	ICU LOS	Hospital LOS	Duration of invasive ventilation	Number of delirium days
Sedation prior to first				
ICDSC assessment				
Propofol	1.00 (reference	1.00 (reference	1.00 (reference	1.00 (reference
	group)	group)	group)	group)
Fentanyl	1.06 (0.85-1.33)	1.25 (0.97-1.61)	1.00 (0.74-1.35)	1.03 (0.69-1.55)
Midazolam	0.83 (0.65-1.06)	0.98 (0.75-1.28)	1.00 (0.73-1.38)	0.88 (0.59-1.31)
Propofol + Fentanyl	1.17 (1.05-1.30)	1.20 (1.05-1.38)	1.37 (1.18-1.58)	1.08 (0.90-1.31)
Propofol + Midazolam	1.16 (0.99-1.36)	0.86 (0.68-1.08)	1.59 (1.28-1.99)	1.11 (0.87-1.41)
Fentanyl + Midazolam	1.40 (1.17-1.67)	1.27 (1.02-1.57)	1.95 (1.54-2.46)	1.28 (0.97-1.69)
All 3	1.73 (1.52-1.98)	1.39 (1.18-1.63)	2.47 (2.06-2.97)	1.35 (1.10-1.67)

class, senal replac f score and spc. ¹Propensity score based on age, sex, admission class, Charlson comorbidity category (0, 1, 2+), admission APACHE II score, vasoactive medications, continuous renal replacement therapy. 1:1 nearest-neighbor matching without replacement using the logit of the propensity score and specified caliper width equal to 0.2 of the standard deviation of the logit of the propensity score

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

י ר	
2	
3	
4	
5	
6	
7	
8	
9	
9	
10	
11	
12	
10 11 12 13 14 15 16 17	
14	
15	
16	
17	
17	
18	
19	
20	
21	
22	
23	
23	
24	
25	
23 24 25 26 27 28	
27	
28	
29	
30	
31	
27	
32	
33	
34 35 36	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
52	
55 54	
55	
56	
57	

58

59

Table S2: Propensity score matched models of the relationship between mortality of	outcomes and dominant
sedation strategy prior to first ICDSC assessment	

Outcome	Dominant	Mortality, n (%)	Propensity score-matched		
	Sedation		OR (95% CI) ²		
	Strategy				
ICU	Propofol	94 (6.7)	1.00 (reference)		
Mortality	Fentanyl	104 (9.7)	1.50 (1.07-2.12)		
	Midazolam	39 (11.0)	1.20 (0.74-1.97)		
Hospital	Propofol	157 (11.1)	1.00 (reference)		
Mortality	Fentanyl	166 (15.5)	1.27 (0.97-1.67)		
	Midazolam	59 (16.6)	1.14 (0.76-1.70)		
Died within 30 days of	Propofol	148 (10.5)	1.00 (reference)		
ICU	Fentanyl	148 (13.8)	1.35 (1.02-1.79)		
admission	Midazolam	50 (14.0)	1.02 (0.67-1.57)		
Died within 1 year of ICU	Propofol	268 (19.0)	1.00 (reference)		
admission	Fentanyl	248 (23.2)	1.13 (0.90-1.43)		
	Midazolam	91 (25.6)	1.01 (0.72-1.42)		
Died within	Propofol	308 (21.8)	1.00 (reference)		
1.5 years of	Fentanyl	276 (25.8)	1.12 (0.90-1.40)		
ICŮ	Midazolam	109 (30.6)	1.01 (0.74-1.39)		
admission		()			

Ez oriz

Supplementary Table 3: Table of baseline characteristics for sensitivity analyses

	Propofol	Fentanyl	Midazolam	Propofol	Propofol +	Fentanyl +	All 3
	(n=887)	(n=158)	(n=124)	+ Fentanyl (n=854)	Midazolam (n=224)	Midazolam (n=222)	(n=368)
Characteristic							
Age, median (IQR)	58 (46- 69)	64 (54-74)	66 (54-74)	55 (40- 67)	51 (35-60)	61 (51-71)	52 (40- 65)
Male, n (%)	506 (57.0)	79 (50.0)	79 (63.7)	532 (62.3)	145 (64.7)	133 (59.9)	248 (67.4)
Admission reason, n (%)							
Medical	518 (58.5)	59 (37.3)	87 (70.2)	236 (27.7)	176 (78.6)	121 (54.5)	232 (63.0)
Surgical	163 (18.4)	72 (45.6)	30 (24.2)	299 (35.1)	7 (3.1)	81 (36.5)	87 (23.6)
Neurological	169 (19.1)	10 (6.3)	6 (4.8)	102 (12.0)	37 (16.5)	3 (1.4)	10 (2.7)
Trauma	35 (4.0)	17 (10.8)	1 (0.8)	216 (25.3)	4 (1.8)	17 (7.7)	39 (10.6)
Location admitted from			Z				
Emergency Room	520 (58.6)	53 (33.5)	49 (39.5)	367 (43.0)	168 (75.0)	93 (41.9)	186 (50.5)
Operating Room/Recovery	170 (19.2)	62 (39.2)	27 (21.8)	320 (37.5)	6 (2.7)	65 (29.3)	86 (23.4)
Hospital Ward	166 (18.7)	39 (24.7)	43 (34.7)	140 (16.4)	40 (17.9)	49 (22.1)	77 (20.9)
Another Hospital	17 (1.9)	3 (1.9)	2 (1.6)	13 (1.5)	7 (3.1)	7 (3.2)	8 (2.2)
Other	14 (1.6)	1 (0.6)	3 (2.4)	14 (1.6)	3 (1.3)	8 (3.6)	11 (3.0)
Charlson score, n (%)							
0	338 (38.1)	47 (29.7)	30 (24.2)	387 (45.3)	106 (47.3)	74 (33.3)	143 (38.9)
1	204 (23.0)	35 (22.2)	19 (15.3)	171 (20.0)	55 (24.6)	50 (22.5)	92 (25.0)
2+	345 (38.9)	76 (48.1)	75 (60.5)	296 (34.7)	63 (28.1)	98 (44.1)	133 (36.1)

BMJ Open

Charlson score, median (IQR)	1 (0-3)	1 (0-3)	2 (1-4)	1 (0-2)	1 (0-2)	1 (0-3)	1 (0-2)
Admission SOFA score, median (IQR)	6 (4-8)	8 (5-10)	8 (5-10)	6 (4-9)	7 (5-9)	9 (6-11)	8 (5-11)
Admission APACHE II score, median (IQR)	18 (14- 23)	20 (15-26)	23 (16-28)	17 (12- 22)	20 914-25)	22 (16-29)	21 (14- 26)
Vasoactive medications, n (%)	356 (40.1)	105 (66.5)	81 (65.3)	477 (55.9)	117 (52.2)	175 (78.8)	263 (71.5)
Continuous renal replacement therapy, n (%)	35 (3.9)	10 (6.3)	9 (7.3)	41 (4.8)	7 (3.1)	32 (14.4)	36 (9.8)

<u>10 (6.3)</u> 9 (7.3) 41 (4.8) 7 (3.1) 32 (14.4)

STROBE Statement—Checklist of items that should be included in reports of cohort studies

	Item No		
Title and abstract	1	(<i>a</i>) Indicate the study's design with a commonly used term in the title or the abstract	1, 2
		(b) Provide in the abstract an informative and balanced summary of what	
		was done and what was found	
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	3
Objectives	3	State specific objectives, including any prespecified hypotheses	3
Methods			
Study design	4	Present key elements of study design early in the paper	4
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	4
Participants	6	(<i>a</i>) Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up	4
		(<i>b</i>) For matched studies, give matching criteria and number of exposed and unexposed	
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	5,6
Data sources/	8*	For each variable of interest, give sources of data and details of methods	4, 6
measurement		of assessment (measurement). Describe comparability of assessment	
		methods if there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	6
Study size	10	Explain how the study size was arrived at	5
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If	4,6
		applicable, describe which groupings were chosen and why	(
Statistical methods	12	(<i>a</i>) Describe all statistical methods, including those used to control for confounding	6, Supplement methods
		(b) Describe any methods used to examine subgroups and interactions	
		(c) Explain how missing data were addressed	
		(d) If applicable, explain how loss to follow-up was addressed	
		(e) Describe any sensitivity analyses	
Results			
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed eligible, included	7, Figure 1
		in the study, completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	
		(c) Consider use of a flow diagram	
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders	4, 7 Table 1
		(b) Indicate number of participants with missing data for each variable of interest	
		(c) Summarise follow-up time (eg, average and total amount)	
Outcome data	15*	Report numbers of outcome events or summary measures over time	7 Table 2, 3,

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Main results	16	(<i>a</i>) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included	
		(b) Report category boundaries when continuous variables were categorized	
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a	
		meaningful time period	
Other analyses	17	Report other analyses done-eg analyses of subgroups and interactions, and sensitivity	7
		analyses	
Discussion			
Key results	18	Summarise key results with reference to study objectives	8
Limitations 19	19	Discuss limitations of the study, taking into account sources of potential bias or	10
		imprecision. Discuss both direction and magnitude of any potential bias	
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations,	8,9,10
		multiplicity of analyses, results from similar studies, and other relevant evidence	
Generalisability	21	Discuss the generalisability (external validity) of the study results	8,9,10
Other informati	on		
Funding	22	Give the source of funding and the role of the funders for the present study and, if	11
		applicable, for the original study on which the present article is based	

*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at http://www.strobe-statement.org.