

Supporting Information

for Adv. Sci., DOI: 10.1002/advs.202100498

High-performance Ammonium Cobalt Phosphate Nanosheet Electrocatalyst for Alkaline Saline Water Oxidation

Zhongxin Song ^a, Kaixi (Cathy) Wang ^{bc}, Qian Sun ^b, Lei Zhang ^b, Junjie Li ^b, Dingjiu Li ^a, Pok-Wai Sze ^a, Yue Liang ^a, Xueliang Sun ^b, Xian-Zhu Fu ^a, Jing-Li Luo ^{a,*}

Supporting Information

High-performance Ammonium Cobalt Phosphate Nanosheet Electrocatalyst for Alkaline Saline Water Oxidation

Zhongxin Song^{*a*}, Kaixi (Cathy) Wang^{*bc*}, Qian Sun^{*b*}, Lei Zhang^{*b*}, Junjie Li^{*b*}, Dingjiu Li^{*a*}, Pok-Wai Sze^{*a*}, Yue Liang^{*a*}, Xueliang Sun^{*b*}, Xian-Zhu Fu^{*a*}, Jing-Li Luo^{*a*,*}

Figure S1. The XPS spectrum and element composition of as-prepared Gly-NCP.

Figure S2. The CV curves at different scan rates for NCP, EG-NCP, Gly-NCP nanosheets and the reference of IrO₂.

Figure S3. The ECSA normalized LSV curves for NCP, EG-NCP, Gly-NCP nanosheets (scan rate: 10 mVs^{-1})

Figure S4. The LSV curves for NCP, EG-NCP, Gly-NCP nanosheets in (a) 1.0 M KOH and (b) 1.0 M KOH+0.5 M NaCl before *j*R correction (scan rate: 10 mV s⁻¹).

Figure S5. The LSV curve for overall alkaline saline water electrolysis of Gly-NCP//Pt and $IrO_2//Pt$ under two electrode system (scan rate: 10 mVs⁻¹).

Figure S6. The SEM image and EDS maps of Gly-NCP electrode after 20 hours of stability test in 1.0 M KOH+0.5 M NaCl.

Figure S7. The Ion-Chromatography traces of diluted electrolyte (a) and relative content of residual Cl⁻ in KOH+NaCl electrolyte (b) before and after 20 h OER test catalyzed by Gly-NCP at 10 mA cm⁻².

Figure S8. (a) XANES spectra and (b) FT-EXAFS spectra of as-prepared NCP, EG-NCP, Gly-NCP nanosheets and the reference of LiCoPO₄.

Figure S9. The CV curve of Gly-NCP electrode in 1.0 M KOH+0.5 M NaCl (scan rate: 50 mVs⁻¹).

Electrocatalysts	Electrolyte	Overpotential	Tafel slope mVdec ⁻¹	Stability	Reference
3D core-shell NiMoN@NiFeN	1.0 M KOH + 0.5 M NaCl	286 mV@ 100 mA cm ⁻²	-	Current increase <10% after 100 h	[1]
Na ₂ Co _{1-x} Fe _x P ₂ O ₇	0.5 M NaCl + 0.1 M KOH	285 mV @ 100 mA cm ⁻²	56	40 mV increase after 100 h	[2]
Ni ₂ P-Fe ₂ P	1 M KOH seawater	305 mV @ 100 mA cm ⁻²	-	36 h stable at 100 mA cm ⁻²	[3]
NiFe/NiS _x -Ni foam	1 M KOH+ 0.5 M NaCl	380 mV @ 1500 mA cm ⁻²	-	500 h stable at 400-1000 mA cm ⁻²	[4]
S-(Ni,Fe)OOH	1 M KOH+ 0.5 M NaCl	278 mV @ 100 mA cm ⁻²	48.9	100 h stable at 100 mA cm ⁻²	[5]
NiFe-LDH	0.1 M KOH+0.5m NaCl	$359 \text{ mV} @ 10 \\ \text{mA cm}^2$	50	480 mV increase after 2h operation	[6]
NiCo-DEA	seawater	Onset potential of 1.31 V	51	Keep 96% current after 8h at 1.5 V	[7]
NiNS	Overall seawater splitting	48.3 mA cm ⁻² at 1.8 V	112	Stable during 12 h operation	[8]
Gly-NCP	1.0 M KOH + 0.5 M NaCl	268 mV @ 100 mA cm ⁻²	39	13 mV increase after 20h operation	This work

Table S1. Comparison of electrocatalytic activity towards seawater oxidation for recently reported electrocatalysts

References

L. Yu, Q. Zhu, S. W. Song, B. McElhenny, D. Z. Wang, C. Z. Wu, Z. J. Qin, J. M. Bao, Y. Yu, S.
 Chen, Z. F. Ren, *Nat. Commun.* 2019, 10, 10.

[2] H. J. Song, H. Yoon, B. Ju, D. Y. Lee, D. W. Kim, Acs Catalysis 2020, 10, 702.

[3] L. Wu, L. Yu, F. Zhang, B. McElhenny, D. Luo, A. Karim, S. Chen, Z. Ren, *Adv. Funct. Mater.*2021, 31, 2006484.

[4] Y. Kuang, M. J. Kenney, Y. T. Meng, W. H. Hung, Y. J. Liu, J. E. Huang, R. Prasanna, P. S. Li,
Y. P. Li, L. Wang, M. C. Lin, M. D. McGehee, X. M. Sun, H. J. Dai, *Proc. Natl. Acad. Sci. U. S. A.* 2019, 116, 6624.

[5] L. Yu, L. Wu, B. McElhenny, S. Song, D. Luo, F. Zhang, Y. Yu, S. Chen, Z. Ren, *Energy Environ. Sci.* **2020**, 13, 3439.

[6] F. Dionigi, T. Reier, Z. Pawolek, M. Gliech, P. Strasser, *ChemSusChem* 2016, 9, 962.

[7] J. J. Zheng, *Electrochim. Acta* **2017**, 247, 381.

[8] Y. Q. Zhao, B. Jin, A. Vasileff, Y. Jiao, S. Z. Qiao, *Journal of Materials Chemistry A* 2019, 7, 8117.