Supporting Information For:

Novel TPP⁺ carrier to target mitochondria without uncoupling oxidative phosphorylation

Chaitanya A. Kulkarni,^{†,} Brian D. Fink,[‡] Bettine E. Gibbs^{†,⊥}, Pratik R. Chheda[†], Meng Wu^{‡,§}, William I. Sivitz[‡] and Robert J. Kerns^{*,†}

[†]Division of Medicinal and Natural Products Chemistry, Department of Pharmaceutical Sciences and Experimental Therapeutics, University of Iowa, Iowa City, Iowa, 52242 USA.

^{*}Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Iowa and the Iowa City Veterans Affairs Medical Center, Iowa City, Iowa, 52246 USA.

[§]University of Iowa High Throughput Screening Facility (UIHTS), University of Iowa, Iowa City, Iowa,

52242 USA

Table of Contents

Supplemental Tables	Page 4
Supplemental Table S1	Page 4
Supplemental Table S2	Page 5
Supplemental Table S3	Page 6
Supplemental Table S4	Page 7
Supplemental Figures	Page 8
Supplemental Figure S1	Page 8
Supplemental Figure S2	Page 9
Supplemental Figure S3	Page 10
Supplemental Figure S4	Page 11
Supplemental Figure S5	Page 12
Supplemental Figure S6	Page 14
Supplemental Figure S7	Page 14
Supplemental Figure S8	Page 15
Supplemental Figure S9	Page 15
Supplemental Figure S10	Page 16
Supplemental Figure S11	Page 16
Supplemental Figure S12	Page 17
Supplemental Figure S13	Page 17
Supplemental Figure S14	Page 18
Supplemental Figure S15	Page 18
Supplemental Figure S16	Page 19
Supplemental Figure S17	Page 19
Supplemental Figure S18	Page 20
Supplemental Figure S19	Page 20
Supplemental Figure S20	Page 21
Supplemental Figure S21	Page 21
Supplemental Figure S22	Page 22
Supplemental Figure S23	Page 22
Supplemental Figure S24	Page 23
Supplemental Figure S25	Page 23
Supplemental Figure S26	Page 24
Supplemental Figure S27	Page 24
Supplemental Figure S28	Page 25
Supplemental Figure S29	Page 25
Supplemental Figure S30	Page 26
Supplemental Figure S31	Page 26
Supplemental Figure S32	Page 27
Supplemental Figure S33	Page 27

Supplemental Figure S34 Supplemental Figure S35 Supplemental Figure S36 Supplemental Figure S37 Supplemental Figure S38 Supplemental Figure S39 Supplemental Figure S40 Supplemental Figure S41 Supplemental Figure S42 Supplemental Figure S43 Supplemental Figure S44 Supplemental Figure S45 Supplemental Figure S46 Supplemental Figure S47 Supplemental Figure S48 Supplemental Figure S49 Supplemental Figure S50 Supplemental Figure S51 Supplemental Figure S52 Supplemental Figure S53 Supplemental Figure S54 Supplemental Figure S55 Supplemental Figure S56 Supplemental Figure S57 Supplemental Figure S58 Supplemental Figure S59 Supplemental Figure S60 Supplemental Figure S61

Page 28 Page 28 Page 29 Page 29 Page 30 Page 30 Page 31 Page 31 Page 32 Page 32 Page 33 Page 33 Page 34 Page 34 Page 35 Page 35 Page 36 Page 36 Page 37 Page 37 Page 38 Page 38 Page 39 Page 39 Page 40 Page 40 Page 41 Page 41

Supplemental Tables:

Sr.	R ₁	Hückel	Sr.	R ₂	Hückel
No.		charge	No.		charge
1	-H	0.326	15	Pentafluorophenyl	0.305
	Electron Withdrawing		16	4-Pyridyl	0.360
2	-CF ₃	0.523			
3	$-NO_2$	0.388			
4	-CN	0.377			
5	-COOH	0.349			
6	-SO ₃ H	0.326			
7	-COOCH ₃	0.349			
8	-Cl	0.328			
9	-F	0.328			
	Electron Donating				
10	-NH ₂	0.294			
11	-OH	0.299			
12	-OCH ₃	0.299			
13	-CH ₃	0.310			
14	-NHCOCH ₃	0.288			

Supplemental Table S1: Hückel charge calculations for charge density on the phosphorus atom of various aryl-modified TPP⁺-decyl conjugates.

Sr. No.	R	Linker	cLogP
1	-OCH ₃	Decyl	8.399
2	$-CH_3$	Decyl	9.425
3	-H	Decyl	8.531
4	-C1	Decyl	10.307
5	-F	Decyl	8.990
6	-CF ₃	Decyl	11.335
7	-OCH ₃	Butyl	5.747
8	$-CH_3$	Butyl	6.773
9	-H	Butyl	5.879
10	-C1	Butyl	7.655
11	-F	Butyl	6.337
12	-CF ₃	Butyl	8.683
13	-OCH ₃	Benzyl	6.138
14	$-CH_3$	Benzyl	7.164
15	-H	Benzyl	6.270
16	-C1	Benzyl	8.046
17	-F	Benzyl	6.729
18	-CF ₃	Benzyl	9.074

Supplemental Table S2: LogP calculation for all first generation modified TPP⁺ compounds

Sr.	R ₁	R ₂	Hückel	Sr.	R ₃	Hückel
No.			charge	No.		charge
	Electron Donating			5	Phenyl	0.326
1	-OCH ₃	-H	0.299	6	1-Naphthyl	0.363
2	-H	-OCH ₃	0.324			
	Electron Withdrawing		-			
3	-F	-H	0.328			
4	-H	-F	0.325			

Supplemental Table S3: Hückel charge calculations for charge density on the phosphorus atom for sets of modified TPP-decyl compounds which attempt to vary either Hückel charge or lipophilicity, while keeping the other variable constant.

Sr. No.	R ₁	R ₂	R ₃	cLogP
1	-H	-H	-H	8.531
2	-OCH ₃	-H	-H	8.399
3	-H	-OCH ₃	-H	8.510
4	-F	-H	-H	8.990
5	-H	-F	- H	9.101
6	-OCH ₃	-H	-NH ₂	6.970
7	-H	-H	$-NH_2$	7.102
8	-CF ₃	-H	$-NH_2$	9.906
9	-OCH ₃	-H	-COOH	7.479
10	-H	-H	-COOH	7.611
11	-CF ₃	-H	-COOH	10.415

Supplemental Table S4: LogP calculation for second generation TPP⁺ compounds.

Supplementary Figures:

Supplemental Figure S1: Electrostatic potential map of triphenylphosphine with para-methoxy substitution (left), no substitution (center) and para-trifluoromethyl substitution (right). As the methoxy groups donate electrons through resonance effect, they increase the electron density on the phosphorus, thereby making the phosphorus atom electron rich, as shown by increase in the red color over triphenylphosphine. On the other hand, the trifluoromethyl groups withdraw electrons from the phosphorus, making it less electron rich (less red) than the unsubstituted triphenylphosphine.

Supplemental Figure S2: Panel of first-generation aryl modified TPP⁺ conjugates with the decyl, butyl and benzyl linker chains.

Para-methoxy substitution

Meta-methoxy substitution

Supplemental Figure S3: Resonance of a para substituent and meta substituent and how it affects the charge density of the phosphorus atom in triphenylphosphine.

H-TPP-DC (11)

4-OMe-TPP-DC (9)

4-F-TPP-DC (**13**)

3-OMe-TPP-DC (30)

3-F-TPP-DC (**31**)

Tris(1-Napthyl)-P-DC (33)

Supplemental Figure S4: The second-generation aryl modified TPP⁺ conjugates. Compounds **30**, **31**, **33** were designed to alter either Hückel Charge or Lipophilicity as one variable while keeping the other variable constant as compared to cognate first-generation analogs, compounds **9**, **13** and **11** respectively.

Supplemental Figure S5: Mitochondrial accumulation of first-generation aryl modified TPP⁺-decyl analogs assessed by TPP⁺ ion-selective electrode measurements. Mitochondrial substrate combination (SGM) was added to the chamber first. Then TPP⁺ electrode response (blue trace; plotted on left Y-axis) was calibrated with $3 \times 0.5 \mu$ M additions of the investigated compound, followed by addition of mouse liver mitochondria

(mito) (0.1 mg/mL) and the experiment terminated when steady state reading was achieved. Corresponding oxygen consumption per unit mass (red trace; plotted on right Y-axis) was recorded with Clark-type oxygen electrode. The compounds tested were (A) tetraphenylphosphonium chloride (TPP); (B) 4-OMe-TPP-DC (**9**); (C) 4-CH₃-TPP-DC (**10**); (D) H-TPP-DC (**11**); (E) 4-Cl-TPP-DC (**12**); (F) 4-F-TPP-DC (**13**); (G) 4-CF₃-TPP-DC (**14**).

Supplemental Figure S6: ¹H NMR of 4-OMe-TPP-DC (9)

Supplemental Figure S7: ¹H NMR of 4-CH₃-TPP-DC (**10**)

Supplemental Figure S8: ¹H NMR of 4-CI-TPP-DC (**12**)

Supplemental Figure S9: ¹H NMR of 4-F-TPP-DC (**13**)

Supplemental Figure S10: ¹⁹F NMR of 4-F-TPP-DC (13)

Supplemental Figure S11: ¹H NMR of 4-CF₃-TPP-DC (14)

Supplemental Figure S12: ¹⁹F NMR of 4- CF₃-TPP-DC (14)

Supplemental Figure S13: ¹H NMR of 4-OMe-TPP-BU (15)

Supplemental Figure S14: ¹H NMR of 4-CH₃-TPP-BU (16)

Supplemental Figure S15: ¹H NMR of H-TPP-BU (17)

Supplemental Figure S16: ¹H NMR of 4-CI-TPP-BU (18)

Supplemental Figure S17: ¹H NMR of 4-F-TPP-BU (**19**)

Supplemental Figure S18: ¹⁹F NMR of 4-F-TPP-BU (19)

Supplemental Figure S19: ¹H NMR of 4-CF₃-TPP-BU (**20**)

Supplemental Figure S20: ¹⁹F NMR of 4- CF₃-TPP-BU (20)

Supplemental Figure S21: ¹H NMR of 4-OMe-TPP-BZ (22)

Supplemental Figure S22: ¹H NMR of 4-CH₃-TPP-BZ (23)

Supplemental Figure S23: ¹H NMR of H-TPP-BZ (24)

Supplemental Figure S24: ¹H NMR of 4-CI-TPP-BZ (25)

Supplemental Figure S25: ¹H NMR of 4-F-TPP-BZ (26)

Supplemental Figure S26: ¹⁹F NMR of 4-F-TPP-BZ (26)

Supplemental Figure S27: ¹H NMR of 4-CF₃-TPP-BZ (27)

Supplemental Figure S28: ¹⁹F NMR of 4- CF₃-TPP-BZ (27)

Supplemental Figure S29: ¹H NMR of 3-OMe-TPP-DC (30)

Supplemental Figure S30: ¹H NMR of 3-F-TPP-DC (**31**)

Supplemental Figure S31: ¹⁹F NMR of 3-F-TPP-DC (**31**)

Supplemental Figure S32: ¹H NMR of Tri-Nap-P-DC-I (33)

Supplemental Figure S33: ¹H NMR of Br-DC-Phthalimide (**36**)

Supplemental Figure S34: ¹H NMR of H-TPP-DC-Pthalimide (**37**)

Supplemental Figure S35: ¹H NMR of 4-CF₃-TPP-DC-Pthalimide (**38**)

Supplemental Figure S36: ¹⁹F NMR of 4-CF₃-TPP-DC-Pthalimide (**38**)

Supplemental Figure S37: ¹H NMR of H-TPP-DC-NH₂ (**39**)

Supplemental Figure S38: ¹H NMR of 4-CF₃-TPP-DC-NH₂ (**40**)

Supplemental Figure S39: ¹⁹F NMR of 4-CF₃-TPP-DC-NH₂ (**40**)

Supplemental Figure S40: HPLC chromatogram of 4-OMe-TPP-DC (15)

Supplemental Figure S41: HPLC chromatogram of 4-CH₃-TPP-DC (10)

Supplemental Figure S42: HPLC chromatogram of 4-Cl-TPP-DC (12)

Supplemental Figure S43: HPLC chromatogram of 4-F-TPP-DC (13)

Supplemental Figure S44: HPLC chromatogram of 4-CF₃-TPP-DC (14)

Supplemental Figure S45: HPLC chromatogram of 4-OMe-TPP-BU (15)

Supplemental Figure S46: HPLC chromatogram of 4-CH₃-TPP-BU (16)

Supplemental Figure S47: HPLC chromatogram of H-TPP-BU (17)

Supplemental Figure S48: HPLC chromatogram of 4-Cl-TPP-BU (18)

Supplemental Figure S49: HPLC chromatogram of 4-F-TPP-BU (19)

Supplemental Figure S50: HPLC chromatogram of 4-CF₃-TPP-BU (20)

Supplemental Figure S51: HPLC chromatogram of 4-OMe-TPP-BZ (22)

Supplemental Figure S52: HPLC chromatogram of 4-CH₃-TPP-BZ (23)

Supplemental Figure S53: HPLC chromatogram of H-TPP-BZ (24)

Supplemental Figure S54: HPLC chromatogram of 4-CI-TPP-BZ (25)

Supplemental Figure S55: HPLC chromatogram of 4-F-TPP-BZ (26)

Supplemental Figure S56: HPLC chromatogram of 4-CF₃-TPP-BZ (27)

Supplemental Figure S57: HPLC chromatogram of 3-OMe-TPP-DC (30)

Supplemental Figure S58: HPLC chromatogram of 3-F-TPP-DC (31)

Supplemental Figure S59: HPLC chromatogram of Tri-Nap-P-DC-I (33)

Supplemental Figure S60: HPLC chromatogram of H-TPP-DC-TAMRA (42)

Supplemental Figure S61: HPLC chromatogram of 4-CF₃-TPP-DC-TAMRA (43)