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Appendix 

CBCT scan information 

All CBCT scans were acquired using a NewTom VGi scanner, with a tube voltage of 

75 kV - 110 kV and tube current of 1 mA - 32 mA. All CBCT scans contained axial 

slices of 512 x 512 voxels with a size of 0.3 mm.  

CNN architecture 

In this study we employed a MS-D network that was originally developed by Pelt and 

Sethian (Pelt and Sethian 2018). This MS-D network uses dilated convolutional filters 

to capture relevant patterns at different image scales. In addition, all layers of the MS-

D network are densely connected, which means that relevant patterns can be directly 

passed to deeper layers in the network. As a result, the MS-D network consists of far 

fewer trainable parameters than alternative CNN architectures such as U-Net or ResNet. 

This reduces the risk of overfitting on the training data (Pelt and Sethian 2018), without 

suffering from lower segmentation performances (Minnema et al. 2019). Moreover, the 

MS-D network has demonstrated strong performance in improving the quality of 

tomographic data (Pelt et al. 2018). A schematic overview of an MS-D network with a 

depth of 3 and a width of 1 is presented in Figure 1A. A detailed description of the MS-

D network can be found in (Pelt and Sethian 2018). 

Implementation and training details 

The depth and the dilation factors of the network were adopted from the study by 

Minnema et al. (Minnema et al. 2019). Specifically, the depth was 100, and the dilation 

factor was 1 for the first convolutional layer and increased by 1 for each subsequent 

layer. After 10 layers, the dilation factor was reset to 1, and the same scheme was 

applied. The network width was chosen as 1.  

Three different experiments were designed to evaluate the MS-D network’s 

segmentation performance. The first experiment was multi-class segmentation, in 

which the MS-D network was trained to simultaneously segment 3 labels: (1) jaw, (2) 



teeth, and (3) background. The second and third experiments were binary segmentation, 

where the MS-D network segmented either jaw, or teeth, respectively. 

In this study, training the MS-D network was performed following a modified 

version of the k-fold cross-validation scheme. The k-fold cross-validation is typically 

used to tune the hyper-parameters of the network (Anguita et al. 2012). In the standard 

procedure, the data sets are split into k folds. The data in k-1 folds are used for training 

and 1 remaining fold is used for validation. This process is repeated until all folds are 

used exactly once as validation set. The hyper-parameters of the network can then be 

chosen based on the highest possible performance on the validation set. The model is 

subsequently tested on an independent hold-out test set.  

However, this typical k-fold cross-validation scheme can lead to unreliable results 

when the hold-out test set consists of few CBCT scans, as it heavily depends on the 

properties of the randomly chosen CBCT scans in the hold-out test set. In order to 

overcome the limitation of available data for testing, we applied a 4-fold cross-

validation scheme on the test set (Fig. 1B), while using a hold-out validation set. More 

specifically, 28 CBCT scans were divided into 4 subsets (S1, S2, S3, and S4), each 

containing 7 scans. The number of slices was 2226, 2214, 2216, and 2187 in S1, S2, 

S3, and S4 respectively. Each experiment followed a 4-fold cross-validation scheme, 

which means that 3 subsets were used for training and 1 subset was used for testing. 

This process was repeated 4 times such that each CBCT scan was used for testing 

exactly once. Performing a 4-fold cross-validation scheme on the test set allowed us to 

evaluate the segmentation performance of the MS-D network on all CBCT scans (28 in 

total), thus making the evaluation robust to differences between the CBCT scans and 

insensitive to the random choice of test set. 

An independent hold-out validation set was used to determine the optimal number 

of epochs for training. This validation set consisted of 2 CBCT scans which were not 

included in the 4-fold cross-validation scheme. The number of epochs was chosen as 

20 for all training iterations, as the segmentation performance on the validation set did 

not improve when trained longer. It should be noted that the validation set consisted of 

relatively few CBCT scans. However, because the MS-D network has a low risk of 

overfitting the training data (Pelt and Sethian 2018), and only a single hyper-parameter 

was tuned (i.e., number of epochs), 2 CBCT scans were sufficient to reliably determine 



the number of epochs in our study.  

The MS-D network was implemented by Hendriksen (Hendriksen 2019) and the 

python code for training the MS-D network is publicly available at 

https://github.com/ahendriksen/msd_pytorch. Implementation of the MS-D network 

was performed using the deep learning platform PyTorch (version 0.3.1) in Python 

(version 3.6.1). Training and testing were performed on 2D axial CBCT slices using a 

batch size of 1 and the default Adam optimizer (Kingma and Ba 2014) on a Linux 

desktop computer (HP Workstation Z840) with 64 GB RAM, a Xeon E5-2687 v4 3.0 

GHZ CPU and a GTX 1080 Ti GPU card. Each training epoch took approximately 1 

hour. 

CNN performance evaluation 

The segmentation performance of the MS-D network was evaluated using the Dice 

similarity coefficient (DSC) which is a well-known metric in the medical image 

segmentation domain (Zou et al. 2004). DSCs were calculated on the patient level, 

which means that a single DSC was calculated for each segmented CBCT volume.  

All segmented CBCT scans (i.e., MS-D network segmentations and gold standard 

segmentations) were also converted into 3D models using 3D Slicer software (3D 

Slicer). Surface deviations between the MS-D network-based 3D models and the gold 

standard 3D models were calculated to evaluate the accuracy of the MS-D segmentation 

around the edges of bony structures. These surface deviations were analyzed within the 

range of -5.0 mm and +5.0 mm using GOM Inspect software (GOM Inspect 2018, GOM 

GmbH, Braunschweig, Germany). Additionally, mean absolute deviations (MADs) 

were calculated between all the MS-D network-based 3D models and the corresponding 

gold standard 3D models. 

After the 4 iterations of the cross-validation scheme, the performance of the MS-

D network was averaged over the 28 segmented CBCT scans. All results are presented 

as means ± standard deviation (SD). The data analysis was performed using GraphPad 

Prism 8 (GraphPad). Equivalence tests were performed with a threshold difference of 

0.005. If the 90% CIs were within (-0.005, 0.005), the two groups were considered to 

be equivalent with a confidence of 95%.   



Appendix Table. Mean absolute surface deviation of jaw and teeth 3D models 

Patient ID 

Jaw segmentation Teeth segmentation 

Multiclass 

(mm) 

Binary 

(mm) 

Multiclass 

(mm) 

Binary 

(mm) 

P1 0.407 0.403 0.184 0.170 

P2 0.443 0.450 0.238 0.211 

P3 0.484 0.538 0.230 0.203 

P4 0.540 0.527 0.227 0.197 

P5 0.364 0.408 0.251 0.208 

P6 0.371 0.372 0.132 0.126 

P7 0.345 0.340 0.133 0.141 

P8 0.438 0.434 0.168 0.132 

P9 0.297 0.327 0.152 0.124 

P10 0.401 0.432 0.189 0.178 

P11 0.369 0.324 0.297 0.149 

P12 0.615 0.630 0.258 0.267 

P13 0.330 0.345 0.244 0.194 

P14 0.524 0.516 0.199 0.197 

P17 0.375 0.416 0.178 0.136 

P18 0.446 0.483 0.159 0.118 

P19 0.415 0.454 0.280 0.156 

P20 0.308 0.333 0.255 0.179 

P21 0.371 0.368 0.110 0.090 

P22 0.268 0.265 0.146 0.132 

P23 0.469 0.488 0.352 0.321 

P24 0.273 0.296 0.168 0.118 

P25 0.387 0.434 0.202 0.157 

P26 0.370 0.336 0.186 0.160 

P27 0.378 0.349 0.291 0.168 

P28 0.198 0.244 0.100 0.077 

P29 0.490 0.669 0.166 0.134 

P30 0.257 0.305 0.206 0.128 

min 0.198 0.244 0.100 0.077 

max 0.615 0.669 0.352 0.321 

Mean ± SD 0.390±0.093 0.410±0.103 0.204±0.061 0.163±0.051 

Each fold contained 7 CBCT scans. S1: Patient 1-7; S2: Patient 8-14; S3: Patient 17-23; S4: Patient 24-30. 



 

 

 

 
 

 

Appendix Figure. The conflicting labels induced by the binary segmentation (12 

CBCT slices from patient 1). The conflicting labels are marked in red. The blue 

color represents the segmented jaw and the green color represents the segmented 

teeth. 
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