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APPENDIX A AN EXTENSION OF THE ONE-SEX MULTIGENERATIONAL
MODEL WITH MARRIAGE

In this section, I extend Matras’ two-generation social reproduction model in equation (7) to multi-

ple generations. Specifically, I add parameters that characterize the likelihood of marriage in each

generation and grandparents’ socioeconomic characteristics. The model is specified as

sj|ikl,c = fikl,c ·mikl,c · rikl,c · pYn=j|Yn−1=i,Yn−2=k,Yn−3=l,Ȳ=c (a.1)

where sj|ikl,c denotes the number of men in the offspring generation who are in class j (j = 1, ...J)

with fathers in class i (i = 1, ..., I), grandfathers in class k (k = 1, ...,K), and great-grandfathers

in class l (l = 1, ..., L); mikl,c denotes the probability of getting married (or the average number

of marriages) for men in the parent generation, fikl,c; and rikl,c denotes the expected number of

sons born to men, in each marriage, in the parent generation. The extra subscript c (c = 1, ..., C)

refers to this person’s ancestral traits that do not change over generations (e.g., an indicator of

remote family history of slavery or royalty). More generally, if the model parameters depend on

the socioeconomic status of all prior generations, Ȳn−1 = {Y1, Y2, · · · , Yn−1}, the model can be

expressed as

sYn =
∑
Y1

· · ·
∑
Yn−1

fȲn−1
·mȲn−1

· rȲn−1
· pYn|Ȳn−1

(a.2)

To predict the number of descendants in the nth generation, we rely on the recursive relationship

shown in equation (8). The resulting model is written as,

s
(n)
Yn

=
∑
Y1

· · ·
∑
Yn−1

fY1 ·mY1 · rY1 · pY2|Y1 ·mȲ2
· rȲ2

· pY3|Ȳ2
· · ·mȲn−1

· rȲn−1
· pYn|Ȳn−1

=
∑
Y1

· · ·
∑
Yn−1

fY1 ·
n−1∏
i=1

mȲi
· rȲi

· pYi+1|Ȳi
(a.3)

The marriage (m), fertility (r), and social mobility (p) terms can be modeled by generalized linear

models as functions of independent variables. For example, marriage outcomes are often assumed

to be dichotomous if the probability of getting married is considered, or non-negative counts if the

number of marriages is considered. The latter applies to populations that have high rates of multi-

partner fertility or polygamy. The marriage term thus can be characterized by a logit or negative

binomial function. Reproduction outcomes are often assumed to follow a Poisson distribution with
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a possible overdispersion parameter and modeled by the negative binomial function. The mobility

term can be modeled by multinomial logistic models when multiple categories of social statuses are

used as the dependent variable. This model is restricted to influences of the father, grandfather, and

great-grandfather, but similar recursive models can incorporate influences from more generations

or paternal and maternal sides of the family.

When the marriage component is added, the Kitagawa method can still be used to partition

the social reproduction effect in equation (20) into demography and mobility effects. Below, I

illustrate the method assuming that m, r, and p depend only on the socioeconomic characteristics

of the parent generation, but the method can also be used when characteristics of more generations

are considered. I first partition the SRE into the demographic part that combines marriage and

reproduction effects and the mobility part.

SREk|j = (mkrk −mjrj) ·
(pY2=k|Y1=k + pY2=k|Y1=j)

2
+

(mkrk +mjrj)

2
· (pY2=k|Y1=k − pY2=k|Y1=j).

(a.4)

For the term (mkrk−mjrj), I repeat the Kitagawa decomposition method and separate the marriage

and reproduction effects:

SREk|j =

(
(mk −mj) ·

(rk + rj)

2
+ (rk − rj) ·

(mk +mj)

2

)
·

(pY2=k|Y1=k + pY2=k|Y1=j)

2

+
(mkrk +mjrj)

2
· (pY2=k|Y1=k − pY2=k|Y1=j).

(a.5)

Let m̄ =
mk+mj

2 , r̄ =
rk+rj

2 , mr =
mkrk+mjrj

2 , and p̄ =
pY2=k|Y1=k+pY2=k|Y1=j

2 , and the above

equation can be further simplified as

SREk|j = (mk −mj) · r̄ · p̄︸ ︷︷ ︸
marriage effect

+ (rk − rj) · m̄ · p̄︸ ︷︷ ︸
reproduction effect

+mr · (pY2=k|Y1=k − pY2=k|Y1=j)︸ ︷︷ ︸
mobility effect

. (a.6)

The marriage effect shows differences in SRE attributed to differences in marriage rates of high-

status and low-status fathers, fixing the reproductive rates of fathers and mobility probabilities

of their offspring at the mean levels, r̄ and p̄. The reproduction effect shows differences in SRE

attributed to differences in reproductive rates of high-status and low-status fathers, fixing the

marriage rates of fathers and mobility probabilities of their offspring at the mean levels, m̄ and

p̄. The mobility effect refers to differences in SRE due to differences in mobility probabilities of

offspring from high-status and low-status fathers, fixing fathers’ demographic rates at the mean

S-2



level, mr. We can also use Das Gupta’s 1993 decomposition method discussed in Section 4.3 to

decompose SRE as follows. The Das Gupta’s method is particularly useful when the demographic

rates contains multiple factors.

marriage effect =

[
rk · pY2=k|Y1=k + rj · pY2=k|Y1=j

3
+
rk · pY2=k|Y1=j + rj · pY2=k|Y1=k

6

]
· (mk −mj)

(a.7)

reproduction effect =

[
mk · pY2=k|Y1=k +mj · pY2=k|Y1=j

3
+
mk · pY2=k|Y1=j +mj · pY2=k|Y1=k

6

]
· (rk − rj)

(a.8)

mobility effect =

[
mk · rk +mj · rj

3
+
mk · rj +mj · rk

6

]
· (pY2=k|Y1=k − pY2=k|Y1=j) (a.9)
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APPENDIX B AGE-CLASSIFIED MODELS

Regular mobility models often ignore the age structure of the parent or the offspring generation.

Such a simplification does not affect our understanding of the long-term behaviors of a Markov

chain, namely, the chances that individuals will achieve a certain social class conditional on their

parent’s or ancestor’s social status. Yet, the distribution of fathers or sons, even after accounting

for the reproduction factor, reflects only the overall size of each generation, not the population

structure at a given point in time. From a demographic perspective, all accurate representations of

population growth—or “transformations of occupation structure” (Duncan 1966a)—depend on age-

specific fertility and mortality rates. In his classic work on population projection, P. H. Leslie (1945:

183) showed that “the age distribution of the survivors and descendants of the original population

at successive intervals of time” can be derived from simple matrix multiplication, assuming the

regime of mortality and fertility is time-constant or year-to-year change in mortality and fertility is

known. Keyfitz (1964) introduced this method to the study of human populations. Specifically, let

ri,t refer to age-specific fertility rates, often based on five-year age groups, for social class i and age

group t; ri,t is a positive number for men within the reproductive age range and zero otherwise. In

addition, let 5Li,t+5

5Li,t
refer to the life table function of surviving from age t to t+ 5 for social class i.

The social reproduction models shown in equation (7) thus can be represented as

sj,1 =
I∑
i=1

T∑
t=1

fi,t · ri,t · pY2=j|Y1=i (j = 1, 2, ..., J) (a.10)

sj,t+5 = sj,t · 5Lj,t+5

5Lj,t
(a.11)

fi,t+5 = fi,t · 5Li,t+5

5Li,t
(a.12)

Note that this model assumes social attainment is completed at birth, and no intragenerational

mobility is allowed for either the father or son generation. Predictions based on these assumptions

may detract from the exact number of incumbents in each social class, but this will not affect

conclusions regarding the overall social trend from an intergenerational perspective. The matrix

forms of similar models based on the Leslie matrix are described in Matras (1967) and Mare (1997).
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APPENDIX C A GENERALIZATION OF THE SRE DECOMPOSITION METHOD

In this section, I generalize the decomposition method for parent and grandparent SRE described

in Section 4.3 to multiple generations. First, following the decomposition method for grandparents

illustrated in equations (23)–(26), we can derive the decomposition for four generations. To simplify

the notations below, I use r1, r2, r3 to indicate the reproduction of the great-grandparent, grandpar-

ent, and parent generation, respectively, and p1, p2, and p3 to indicate the mobility probability of

grandparents, parents, and offspring generation conditional on all prior generations, respectively.27

The total effect of great-grandparents is thus expressed as

TSREGGPk|j =
∑
Y2

∑
Y3

r1 · p1 · r2 · p2 · r3 · p3 −
∑
Y2

∑
Y3

r′1 · p′1 · r′2 · p′2 · r′3 · p′3

which can then be partitioned using Das Gupta’s method for rates of six factors. For example,

the demography effect from the first generation r1 versus r′1 is:

demography effect (1) =
∑
Y2

∑
Y3

[
p1r2p2r3p3 + p′1r

′
2p
′
2r
′
3p
′
3

6

+

p1r2p2r3p
′
3 + p1r2p2r

′
3p3 + p1r2p

′
2r3p3 + p1r

′
2p2r3p3 + p′1r2p2r3p3

+ p′1r
′
2p
′
2r
′
3p3 + p′1r

′
2p
′
2r3p

′
3 + p′1r

′
2p2r

′
3p
′
3 + p′1r2p

′
2r
′
3p
′
3 + p1r

′
2p
′
2r
′
3p
′
3

30

+

p1r2p2r
′
3p
′
3 + p1r2p

′
2r3p

′
3 + p1r2p

′
2r
′
3p3 + p1r

′
2p2r3p

′
3 + p1r

′
2p2r

′
3p3

+p1r
′
2p
′
2r3p3 + p′1r2p2r3p

′
3 + p′1r2p2r

′
3p3 + p′1r2p

′
2r3p3 + p′1r

′
2p2r3p3

+p′1r
′
2p
′
2r3p3 + p′1r

′
2p2r

′
3p3 + p′1r

′
2p2r3p

′
3 + p′1r2p

′
2r
′
3p3 + p′1r2p

′
2r3p

′
3

+ p′1r2p2r
′
3p
′
3 + p1r

′
2p
′
2r
′
3p3 + p1r

′
2p
′
2r3p

′
3 + p1r

′
2p2r

′
3p
′
3 + p1r2p

′
2r
′
3p
′
3

60

]
· (r1 − r′1) (a.13)

Demography effects (2)–(3) and mobility effects (1)–(3) can be derived easily by interchanging the

terms in equation (a.13). The total effect of great-grandparents is equal to the sum of all separate

effects.

Overall, the total effect of an N th ancestor defined in equation (19) can be decomposed into 2N

terms, including demographic effects and mobility effects from each of the N prior generations. Be-

low, I apply the decomposition method of rates as the product of P factors proposed by Das Gupta

(1993). To simplify the notations for demographic and mobility parameters in each generation, I

27For example, r1 = rk, r′1 = rj , r2 = rkk, r′2 = rjj , r3 = rkkk, r′3 = rkjj , p1 = pY2=k|Y1=k, p′1 = pY2=j|Y1=j ,
p2 = pY3=k|Y2=k,Y1=k, p′2 = pY3=k|Y2=j,Y1=j , p3 = pY4=k|Y3=k,Y2=k,Y1=k, and p′3 = pY4=k|Y3=k,Y2=j,Y1=j .
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denote the demographic parameter in the nth generation (n = 1 · · ·N) as follows,

rn = rYn|Ȳn−1,k
and r′n = rYn|Ȳn−1,j

.

I use r and r′ to differentiate between two ancestors in the founding generation with social status

k and j, respectively. Similarly, the mobility parameters in the nth generation are

pn = pYn+1|Ȳn,k
and p′n = pYn+1|Ȳn,j

.

Suppose the elements r and p are members of the set A = {r1, · · · , rN , p1, · · · , pN} and r′ and

p′ are members of set A′. The set A, excluding one element An (e.g., rn), is defined as A\An

(or A\rn). The TSRE
(n)
k|j =

∑
Y2
· · ·
∑

Yn−1
r1 · · · rN−1 · p1 · · · pN−1 − r′1 · · · r′N−1 · p′1 · · · p′N−1 can

be decomposed into the sum of the demography effect (n) and mobility effect (n) from the nth

generation. For example, Das Gupta (1993: 15–16) described the decomposition of (r1 · · · rN−1 ·

p1 · · · pN−1)− (r′1 · · · r′N−1 · p′1 · · · p′N−1) as

demography effect (n) =
N∑
t=1

sum of all (2N − 1) terms with (2N − t) from the set A\rn and (t− 1)
from the set A′\r′n or (2N − t) terms from A′\r′n and (t− 1) from A\rn

2N ·
(

2N−1
t−1

)
· (rn − r′n) (a.14)

More formally, I introduce the following notations to define the demography effect in equation

(a.14). Let B2N−t denote subsets of A\An with a cardinality of 2N − t (i.e., |B| = 2N − t). Given

that there are
(

2N−1
2N−t

)
of such subsets, each subset i is denoted by

B2N−t,i = {B2N−t,i : B2N−t,i ∈ A\An}.

The complement of the set B2N−t,i can be written as B̄2N−t,i, which satisfies that B̄2N−t,i = Bt−1,i

with the cardinality of t− 1. Taking our illustration of the total effect of grandparents with N = 2

as an example, the set B21 = {r2, p2} is one subset with cardinality 2 of the set A\r1 = {r2, p1, p2}.

Other subsets include B22 = {r2, p1} and B23 = {p1, p2}, where the total number of subsets with

cardinality 2 is
(

3
2

)
= 3. The complement set of B21 in the counterpart set of A′ is B̄′21 = B′11 = {p′1}.

S-6



demography effect (n) =

N∑
t=1

(2N−1
2N−t)∑
i=1

 ∏
B∈B2N−t

B2N−t,i ·
∏

B′∈B′t−1

B′t−1,i +
∏

B′∈B′2N−t

B′2N−t,i ·
∏

B∈Bt−1

Bt−1,i


2N ·

(
2N−1
t−1

)
· (rn − r′n) (a.15)

Likewise, if the set B is a subset of A\pn, the mobility effect can be written as

mobility effect (n) =

N∑
t=1

(2N−1
2N−t)∑
i=1

 ∏
B∈B2N−t

B2N−t,i ·
∏

B′∈B′t−1

B′t−1,i +
∏

B′∈B′2N−t

B′2N−t,i ·
∏

B∈Bt−1

Bt−1,i


2N ·

(
2N−1
t−1

)
· (pn − p′n) (a.16)
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APPENDIX D EQUILIBRIUM EFFECTS

In this section, I show the equilibrium of Markov chain models with demography. Recall that in

regular Markovian mobility models with a time-invariant transition matrix, the effect of a fam-

ily’s initial social status will disappear in the long run. After enough generations, the probability

distribution of descendants from high-status and low-status families will converge to the same equi-

librium. However, as illustrated in the paper, this property does not hold when considering families’

reproductive behaviors. According to the definition in equation (27), the long-term mobility effect

in equation (27) is defined as

LSRE = lim
t→∞

S
(t)
k|k

S
(t)
k|j

 .

Now we assume S(t) = F(0) ·Ct, where C = R ·P, a combination of the reproduction and mobility

components. According to the Perron-Frobenius theorem, C would be a square matrix with positive

entries and a unique dominant eigenvalue.28 The long-term behavior of S(t) would depend on the

largest eigenvalue of C.

To see this, we assume C has n linearly independent left eigenvectors v1,v2 . . .vn with cor-

responding eigenvalues of λ1, λ2, . . . λn. Assume the eigenvalues are ordered so that |λ1| > · · · ≥

|λn−1| ≥ |λn|. For the social class distribution in the first generation S(1), we can write this vector

as the linear combination of the eigenvectors of C:

S(1) = a1v1 + a2v2 + · · ·+ anvn (a.17)

where a1 · · · an are scalars and a1 6= 0. Then, multiplying both sides by C produces

S(1) ·C = (a1v1 + a2v2 + · · ·+ anvn) ·C (a.18)

Using the spectral decomposition theorem,

S(1) ·C = a1(λ1v1) + a2(λ2v2) + · · ·+ an(λnvn). (a.19)

28This assumption implies that the number of social classes is the same for fathers and sons, and the marriage,
fertility, and mobility matrices have no structural 0s. That is, men in different social classes may get married and
have sons, and all sons may stay in the same social class as their fathers or move to other classes.
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Repeating the multiplication on both sides produces

S(1) ·Ct−1 = a1(λt−1
1 v1) + a2(λt−1

2 v2) + · · ·+ an(λt−1
n vt) = S(t). (a.20)

As λ1 is assumed to be larger in absolute value than the other eigenvalues, it follows that each of the

fractions λ2
λ1
, λ3λ1 . . .

λn
λ1

is less than 1 in absolute value. Each of the factors
(
λ2
λ1

)t−1
,
(
λ3
λ1

)t−1
. . .
(
λn
λ1

)t−1

must converge to 0 as t− 1 approaches infinity. Therefore, we have the following relationship

S(t) ' a1

(
λt−1

1 v1

)
. (a.21)

For the initial vector F(0) = [f1, f2, · · · , fn], let F
(0)
k = [0, · · · fk = 1, · · · 0] and F

(0)
j = [0, · · · fj =

1, · · · 0], so that the entire initial cohort is located in a single class. Assume a1 = a1k, when S(1) =

F
(0)
k C, and a1 = a1j , when S(1) = F

(0)
j C. After t generations, the long-term social reproduction

effect would converge to

LSRE = lim
t→∞

(
a1kλ

t−1
1 v1

a1jλ
t−1
1 v1

)
=
a1k

a1j
. (a.22)
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APPENDIX E ADDITIONAL RANDOM MATING FUNCTIONS

In the main analysis, I define the random mating rule as follows:

µij(N
m,Nf ) =

Nm
i Nf

j

(Nm + Nf )/2
(a.23)

where Nm =
∑

i N
m
i and Nf =

∑
j Nf

j . Compared to the assortative mating rule, random mating

assumes the number of marriages between men in class i and women in class j is only constrained

by the abundance of mates.

The random mating rule can be defined differently depending on our assumption about the

constraint imposed by the size of male and female populations. For example, random mating rules

can be defined as

µij(N
m,Nf ) =

Nm
i + Nf

j

2
(arithmetic mean)

µij(N
m,Nf ) =

√
Nm
i Nf

j (geometric mean)

µij(N
m,Nf ) = aNm

i + (1− a)Nf
j , 0 ≤ a ≤ 1, (weighted mean)

µij(N
m,Nf ) = Nm

i (male dominance)

µij(N
m,Nf ) = Nf

j (female dominance)

µij(N
m,Nf ) = min(Nm

i ,N
f
j ) (minimum abundance)

These functions are all considered as random mating because the number of marriages does not

depend on parameters related to individual preferences between different class groups.
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APPENDIX F ADDITIONAL TABLES USED IN THE ILLUSTRATIVE EX-
AMPLES
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Appendix Table S1. Two-Generation Reproduction and Social Mobility Models, Historical Data

Mobility Model: Son’s Occupation

Gross Reproduction Rate (Multinomial Logistic Regression, Base = 1. Upper nonmanual)

(Poisson Regression) 2. Lower nonmanual 3. Upper manual 4. Lower manual 5. Farming

Father’s Occupation

2. Lower nonmanual -0.100*** (0.02) 0.607*** (0.05) 0.371*** (0.079) 0.108* (0.061) -0.161* (0.093)

3. Upper manual 0.004 (0.015) 0.732*** (0.048) 2.234*** (0.057) 1.686*** (0.048) 1.145*** (0.065)

4. Lower manual -0.004 (0.014) 0.675*** (0.047) 1.595*** (0.06) 2.418*** (0.045) 1.432*** (0.061)

5. Farming 0.161*** (0.012) -0.908*** (0.043) 0.280*** (0.056) 0.667*** (0.039) 3.803*** (0.047)

Intercept 0.956*** (0.011) 0.037 (0.027) -1.355*** (0.043) -0.394*** (0.031) -1.388*** (0.043)

n 27,734 78,133

Log likelihood -57,136

AIC 114,283 163,900

Source: IPUMS Linked Representative Samples, 1850–1930 (final data release June 2010).

Notes: Standard errors are in parentheses. The Gross Reproduction Rates and mobility probabilities estimated from these models are presented in Table 1.
∗p < .05;∗∗ p < .01;∗∗∗ p < .001 (two-tailed test).
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Appendix Table S2. Three-Generation Reproduction and Social Mobility Models, Historical Data

Mobility Model: Son’s Occupation

Gross Reproduction Rate (Multinomial Logistic Regression, Base = 1. Upper nonmanual)

(Poisson Regression) 2. Lower nonmanual 3. Upper manual 4. Lower manual 5. Farming

Father’s Occupation

1. Upper nonmanual (reference)

2. Lower nonmanual -0.058** (0.028) 0.196** (0.076) 0.182* (0.11) 0.203** (0.088) -0.079 (0.128)

3. Upper manual 0.013 (0.017) 0.323*** (0.054) 0.878*** (0.066) 0.721*** (0.055) 0.775*** (0.068)

4. Lower manual 0.029* (0.016) 0.411*** (0.053) 0.620*** (0.068) 1.057*** (0.053) 0.785*** (0.065)

5. Farming 0.111*** (0.015) 0.136*** (0.045) 0.183*** (0.061) 0.640*** (0.047) 1.294*** (0.054)

Grandfather’s Occupation

1. Upper nonmanual (reference)

2. Lower nonmanual -0.085*** (0.02) 0.574*** (0.052) 0.342*** (0.08) 0.077 (0.062) -0.131 (0.094)

3. Upper manual 0.004 (0.016) 0.612*** (0.051) 1.907*** (0.061) 1.443*** (0.051) 0.959*** (0.068)

4. Lower manual -0.016 (0.015) 0.545*** (0.05) 1.388*** (0.063) 2.092*** (0.048) 1.192*** (0.064)

5. Farming 0.098*** (0.013) -0.934*** (0.048) 0.290*** (0.061) 0.469*** (0.043) 3.306*** (0.05)

Intercept 0.916*** (0.014) -0.099*** (0.036) -1.625*** (0.055) -0.848*** (0.042) -2.080*** (0.058)

n 27,734 78,133

Log likelihood -57,104

AIC 114,226.5 162,099.0

Source: IPUMS Linked Representative Samples, 1850–1930 (final data release June 2010).

Notes: Standard errors are in parentheses. The Gross Reproduction Rates and mobility probabilities estimated from these models are presented in Table 2.
∗p < .05;∗∗ p < .01;∗∗∗ p < .001 (two-tailed test).
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Appendix Table S3. Two-Generation Reproduction and Social Mobility Models, Contemporary Data

Mobility Model: Son’s Occupation

Gross Reproduction Rate (Multinomial Logistic Regression, Base = 1. Upper nonmanual)

(Poisson Regression) 2. Lower nonmanual 3. Upper manual 4. Lower manual 5. Farming

Father’s Occupation

1. Upper nonmanual (reference)

2. Lower nonmanual -0.016 (0.059) 0.711*** (0.154) 0.619*** (0.157) 0.773*** (0.171) -0.419 (0.645)

3. Upper manual -0.032 (0.043) 0.789*** (0.122) 1.373*** (0.116) 1.230*** (0.132) 0.353 (0.387)

4. Lower manual -0.021 (0.047) 1.083*** (0.141) 1.496*** (0.136) 1.808*** (0.145) 1.396*** (0.36)

5. Farming 0.11 (0.072) 0.312 (0.268) 1.575*** (0.215) 1.360*** (0.24) 3.514*** (0.352)

Intercept 0.375*** (0.034) -0.535*** (0.088) -0.535*** (0.088) -0.945*** (0.101) -3.219*** (0.273)

n 2,689 4,142

Log likelihood -3,457

AIC 6,924.4 11,609.8

Source: Panel Study of Income Dynamics, 1968–2015.

Notes: Standard errors are in parentheses. The Gross Reproduction Rates and mobility probabilities estimated from these models are presented in Table 1.
∗p < .05;∗∗ p < .01;∗∗∗ p < .001 (two-tailed test).
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Appendix Table S4. Three-Generation Reproduction and Social Mobility Models, Contemporary Data

Mobility Model: Son’s Occupation

Gross Reproduction Rate (Multinomial Logistic Regression, Base = 1. Upper nonmanual)

(Poisson Regression) 2. Lower nonmanual 3. Upper manual 4. Lower manual 5. Farming

Father’s Occupation

1. Upper nonmanual (reference)

2. Lower nonmanual -0.059 (0.072) 0.17 (0.184) -0.105 (0.198) 0.306 (0.214) 0.241 (0.664)

3. Upper manual 0.029 (0.058) 0.442*** (0.156) 0.686*** (0.157) 0.620*** (0.181) 0.890* (0.507)

4. Lower manual 0.01 (0.057) 0.435*** (0.154) 0.679*** (0.154) 0.966*** (0.174) 0.703 (0.493)

5. Farming 0.129** (0.058) 0.052 (0.171) 1.049*** (0.159) 1.033*** (0.181) 1.217*** (0.472)

Grandfather’s Occupation

1. Upper nonmanual (reference)

2. Lower nonmanual -0.018 (0.059) 0.659*** (0.156) 0.547*** (0.159) 0.681*** (0.174) -0.498 (0.647)

3. Upper manual -0.051 (0.044) 0.715*** (0.126) 1.166*** (0.12) 1.031*** (0.136) 0.142 (0.394)

4. Lower manual -0.045 (0.049) 1.019*** (0.145) 1.272*** (0.14) 1.569*** (0.15) 1.177*** (0.369)

5. Farming 0.035 (0.076) 0.387 (0.278) 1.136*** (0.226) 0.985*** (0.251) 3.065*** (0.387)

Intercept 0.354*** (0.051) -0.757*** (0.131) -1.000*** (0.136) -1.509*** (0.16) -3.818*** (0.458)

n 2,690

Log likelihood -3,452.0

AIC 6,921.9

Source: Panel Study of Income Dynamics, 1968–2015.

Notes: Standard errors are in parentheses. The Gross Reproduction Rates and mobility probabilities estimated from these models are presented in Table 2.
∗p < .05;∗∗ p < .01;∗∗∗ p < .001 (two-tailed test).
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APPENDIX G R CODES USED IN THE ANALYSIS OF THE PSID DATA

1 ###################################################################

2 ### Implementation of Various Joint Demography -Social Mobility ###

3 ### Models: ###

4 ### (1) 2g and 3g mobility table construction ###

5 ### (2) Ratio and difference measures of mobility effects ###

6 ### (3) Ratio and difference measures of social reproduction ###

7 ### effects ###

8 ### (4) Effect decomposition ###

9 ### (5) Long -term social reproduction effects ###

10 ### (6) Two -sex social reproduction models ###

11 ### Supplementary to: ###

12 ### "Multigenerational Social Mobility: A Demographic Approach" ###

13 ### Author: Xi Song ###

14 ###################################################################

15 library(readstata13)

16 library(tidyr)

17 library(dplyr)

18 library(expm)

19 library(nnet)

20 library(reshape)

21 require(boot)

22 library(parallel)

23
24 psid.male <- read.dta13("psid_mobility.dta", nonint.factors=T) %>%

25 select(c(f_id , sex , occ , occ_f, occ_m, occ_ff, occ_fm, occ_mf, occ_mm, occ_gf, sex)) %>%

drop_na(occ , occ_f, occ_gf) %>% filter(sex ==1)

26
27 ######################## Table 1 ###########################

28 # Two -Generation Mobility Transition Matrix and Gross

29 # Reproduction Rates

30 ############################################################

31 # Describe 2-generation mobility table (transition matrix)

32
33 summary(m1 <- multinom(occ ~ relevel(as.factor(occ_f), ref = "1"), data = psid.male))

34
35 data.2g <- cbind(psid.male , fitted=fitted(m1))

36 mobility2g <- data.2g %>%

37 group_by(occ_f) %>%

38 summarise(son1=mean(fitted .1), son2=mean(fitted .2), son3=mean(fitted .3), son4=mean(fitted

.4), son5=mean(fitted .5))

39 with(psid.male , addmargins(table(occ_f, occ)))

40
41 # Describe fertility by occupation

42
43 sons.count <- psid.male %>% filter(f_id != 0) %>% arrange(-f_id) %>% group_by(f_id , occ_f)

%>% summarise(sons.count=n())

44
45 summary(m2 <- glm(sons.count ~ relevel(as.factor(occ_f), ref = "1"), family="poisson", data=

sons.count))

46 GRR1 <- exp(c(0, rep(coefficients(m2)[1],4))+coefficients(m2))

47
48
49 ######################## Table 2 ###########################

50 # Three -Generation Mobility Transition Matrix and Gross

51 # Reproduction Rates

52 ############################################################

53
54 # Describe 3-generation mobility table

55 summary(m3 <- multinom(occ ~ relevel(as.factor(occ_gf), ref = "1")+relevel(as.factor(occ_f),

ref = "1"), data = psid.male))

56 data.3g <- cbind(psid.male , fitted=fitted(m3))

57 mobility3g <- data.3g %>%

58 group_by(occ_gf , occ_f) %>%
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59 summarise(son1=mean(fitted .1), son2=mean(fitted .2), son3=mean(fitted .3), son4=mean(fitted

.4), son5=mean(fitted .5))

60 with(psid.male , addmargins(table(occ_f, occ , occ_gf)))

61
62 # Describe fertility by occupation

63 sons.count2 <- psid.male %>% filter(f_id != 0) %>% arrange(-f_id) %>% group_by(f_id, occ_gf,

occ_f) %>% summarise(sons.count2=n())

64
65 summary(m4 <- glm(sons.count2 ~ relevel(as.factor(occ_gf), ref = "1")+relevel(as.factor(occ_

f), ref = "1"), family="poisson", data=sons.count2))

66 intercept <- coefficients(m4)[1]

67 gf_coef <- c(0, coefficients(m4)[2:5])

68 f_coef <- c(0, coefficients(m4)[6:9])

69
70 GRR2 <- exp(intercept) * (exp(gf_coef) %x% exp(f_coef))

71
72
73 ######################## Table 3 ###########################

74 # Ratio Measures of Mobility Effects and Social Reproduction

75 # Effects by Comparing Upper Nonmanual and Lower Nonmanual

76 # Families in Producing Offspring in Upper Nonmanual

77 # Occupations

78 ############################################################

79
80 # net and total mobility effect of p

81 mobility2g <- as.matrix(mobility2g [1:5, 2:6])

82 mobility2g [1,1]/mobility2g [2,1]

83
84 # net mobility effect of gp

85 mobility3g <- as.matrix(mobility3g [1:25, 3:7])

86 mobility3g [1,1]/mobility3g [7,1] #assume p and gp in the same class

87
88 # total mobility effect of gp

89 G0.1 <- c(1,0,0,0,0)

90 G0.2 <- c(0,1,0,0,0)

91 (G0.1 %*% mobility2g %*% mobility3g [1:5 ,])[1,1]/(G0.2%*%mobility2g%*%mobility3g [6:10 ,]) [1,1]

92
93 # SRE of parents

94 SRE.f <- (GRR1 [1]*mobility2g [1 ,1])/(GRR1 [2]*mobility2g [2,1])

95
96 # NSRE of grandparents

97 NSRE.gf <- (GRR2 [1]*mobility3g [1 ,1])/(GRR2 [7]*mobility3g [7,1])

98
99 # TSRE of grandparents

100
101 G1.1 <- G0.1 %*% diag(GRR1) %*% mobility2g

102 G2.1 <- G1.1 %*% diag(GRR2 [1:5]) %*% mobility3g [1:5,]

103
104 G1.2 <- G0.2 %*% diag(GRR1) %*% mobility2g

105 G2.2 <- G1.2 %*% diag(GRR2 [6:10]) %*% mobility3g [6:10 ,]

106
107 TSRE.gf <- G2.1[1]/G2 .2[1]

108
109 # bootstrap standard errors

110
111 bs <- function(formula1 , formula2 , formula3 , formula4 , data , indices) {

112 d1 = data[indices ,]

113
114 m1 = multinom(formula1 , data=d1 , maxit =1000, trace=FALSE)

115 data.2g <- cbind(d1 , fitted=fitted(m1))

116 mobility2g <- data.2g %>% group_by(occ_f) %>%

117 summarise(son1=mean(fitted .1), son2=mean(fitted .2), son3=mean(fitted .3), son4=mean(

fitted .4), son5=mean(fitted .5))

118
119 sons.count <- d1 %>% filter(f_id != 0) %>% arrange(-f_id) %>%

120 group_by(f_id, occ_f) %>% summarise(sons.count=n())
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121 m2 = glm(formula2 , family="poisson", data=sons.count , maxit =1000, trace=FALSE)

122 GRR1 <- exp(c(0, rep(coefficients(m2)[1],4))+coefficients(m2))

123
124 m3 = multinom(formula3 , data=d1 , maxit =1000, trace=FALSE)

125 data.3g <- cbind(d1 , fitted=fitted(m3))

126 mobility3g <- data.3g %>% group_by(occ_gf , occ_f) %>%

127 summarise(son1=mean(fitted .1), son2=mean(fitted .2), son3=mean(fitted .3), son4=mean(

fitted .4), son5=mean(fitted .5))

128
129 sons.count2 <- d1 %>% filter(f_id != 0) %>% arrange(-f_id) %>% group_by(f_id, occ_gf, occ_

f) %>% summarise(sons.count2=n())

130 m4 = glm(formula4 , family="poisson", data=sons.count2 , maxit =1000, trace=FALSE)

131 GRR2 <- exp(coefficients(m4)[1]) * (exp(c(0, coefficients(m4)[2:5])) %x% exp(c(0,

coefficients(m4)[6:9])))

132
133 mobility2g = as.matrix(mobility2g [1:5, 2:6])

134 mobility.f = mobility2g [1,1]/mobility2g [2,1]

135
136 mobility3g = as.matrix(mobility3g [1:25 , 3:7])

137 n.mobility.gf = mobility3g [1,1]/mobility3g [7,1]

138
139 G0.1 <- c(1,0,0,0,0); G0.2 <- c(0,1,0,0,0)

140 t.mobility.gf = (G0.1 %*% mobility2g %*% mobility3g [1:5 ,])[1,1]/(G0.2%*%mobility2g%*%

mobility3g [6:10 ,]) [1,1]

141
142 SRE.f = (GRR1 [1]*mobility2g [1,1])/(GRR1 [2]*mobility2g [2,1])

143 NSRE.gf = (GRR2 [1]*mobility3g [1,1])/(GRR2 [7]*mobility3g [7,1])

144
145 G1.1 <- G0.1 %*% diag(GRR1) %*% mobility2g

146 G2.1 <- G1.1 %*% diag(GRR2 [1:5]) %*% mobility3g [1:5,]

147 G1.2 <- G0.2 %*% diag(GRR1) %*% mobility2g

148 G2.2 <- G1.2 %*% diag(GRR2 [6:10]) %*% mobility3g [6:10 ,]

149 TSRE.gf = G2 .1[1]/G2.2[1]

150
151 estimates = rbind(mobility.f, SRE.f, n.mobility.gf, t.mobility.gf, NSRE.gf, TSRE.gf)

152
153 return(t(estimates))

154 }

155
156 # enable parallel

157
158 cl <- makeCluster (2)

159 clusterExport(cl, "multinom")

160
161 # 1000 replications

162 set.seed (1984)

163
164 #system.time(boot(data=psid.male , statistic=bs, R=1000 , parallel = "multicore", ncpus=2,

formula=occ ~ relevel(as.factor(occ_f), ref = "1")))

165
166 results <- boot(

167 data=psid.male , statistic=bs, R=1000 , parallel = "multicore", ncpus=2, cl=cl, formula1=occ

~ relevel(as.factor(occ_f), ref = "1"), formula2=sons.count ~ relevel(as.factor(occ_f

), ref = "1"), formula3=occ ~ relevel(as.factor(occ_gf), ref = "1")+relevel(as.factor(

occ_f), ref = "1"),

168 formula4=sons.count2 ~ relevel(as.factor(occ_gf), ref = "1")+relevel(as.factor(occ_f), ref

= "1")

169 )

170
171
172 ######################## Table 4 ###########################

173 # Effect Decomposition Based on Difference Measures of

174 # Social Reproduction Effects by Comparing Upper Nonmanual

175 # and Lower Nonmanual Families in Producing Offspring in

176 # Upper Nonmanual Occupations

177 ############################################################
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178
179 # Kitagawa SRE decomposition of SRE.f

180 kita.demo.eff.f <- (GRR1[1]-GRR1 [2])*(mobility2g [1 ,1]+ mobility2g [2,1])/2

181 kita.mobi.eff.f <- (GRR1 [1]+ GRR1 [2])/2*(mobility2g [1,1]- mobility2g [2 ,1])

182
183 # Kitagawa SRE decomposition of TSRE.gf

184 kita.demo.eff.gf <- sum((GRR1 [1]*GRR2 [1:5]- GRR1 [2]*GRR2 [5+1:5])*(mobility2g [1 ,1:5]*

mobility3g [1:5 ,1]+ mobility2g [2 ,1:5]*mobility3g [5+1:5 ,1])/2)

185 kita.mobi.eff.gf <- sum((GRR1 [1]*GRR2 [1:5]+ GRR1 [2]*GRR2 [5+1:5])/2*(mobility2g [1 ,1:5]*

mobility3g [1:5,1]- mobility2g [2 ,1:5]*mobility3g [5+1:5 ,1]))

186
187 # Das Gupta SRE decomposition of TSRE.gf

188 r1 <-GRR1 [1]; r1prime <- GRR1 [2]

189 r2 <- GRR2 [1:5]; r2prime <- GRR2 [5+1:5]

190 p1 <- mobility2g [1 ,1:5]; p1prime <- mobility2g [2 ,1:5]

191 p2 <- mobility3g [1:5 ,1]; p2prime <- mobility3g [5+1:5 ,1]

192
193 das.demo.eff .1.gf <-

194 sum (((p1*r2*p2+p1prime*r2prime*p2prime)/4

195 +(p1*r2*p2prime+p1*r2prime*p2+p1prime*r2*p2+p1prime*r2prime*p2+p1prime*r2*p2prime+p1*

r2prime*p2prime)/12)*(r1-r1prime))

196 das.demo.eff .2.gf <-

197 sum (((p1*r1*p2+p1prime*r1prime*p2prime)/4

198 +(p1*r1*p2prime+p1*r1prime*p2+p1prime*r1*p2+p1prime*r1prime*p2+p1prime*r1*p2prime+p1*

r1prime*p2prime)/12)*(r2-r2prime))

199 das.mobi.eff .1.gf <-

200 sum (((r1*r2*p2+r1prime*r2prime*p2prime)/4

201 +(r1*r2*p2prime+r1*r2prime*p2+r1prime*r2*p2+r1prime*r2prime*p2+r1prime*r2*p2prime+r1*

r2prime*p2prime)/12)*(p1-p1prime))

202 das.mobi.eff .2.gf <-

203 sum (((r1*r2*p1+r1prime*r2prime*p1prime)/4

204 +(r1*r2*p1prime+r1*r2prime*p1+r1prime*r2*p1+r1prime*r2prime*p1+r1prime*r2*p1prime+r1*

r2prime*p1prime)/12)*(p2-p2prime))

205
206
207 ######################## Table 5 ###########################

208 # Long -Term Social Reproduction Effects

209 ############################################################

210
211 # Long -term SRE (we assume mobility is Markovian)

212
213 C <- diag(GRR1) %*% mobility2g

214
215 G1.1 <- G0.1 %*% C

216 G2.1 <- G1.1 %*% C

217 G5.1 <- G0.1 %*% (C %^% (5))

218 G10.1 <- G0.1 %*% (C %^% (10))

219
220 G1.2 <- G0.2 %*% C

221 G2.2 <- G1.2 %*% C

222 G5.2 <- G0.2 %*% (C %^% (5))

223 G10.2 <- G0.2 %*% (C %^% (10))

224
225 eL <- eigen(t(C)) #left eigenvector

226 L <- eL$values
227 V <- eL$vectors
228 G1.1 %*% V %*% solve(t(V)%*%V)

229 G1.2 %*% V %*% solve(t(V)%*%V)

230
231
232 ######################## Table 6 ###########################

233 # Two -Sex Assortative Mating and Force of Attraction

234 # (age 25 -60)

235 ############################################################

236
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237 psid <- read.dta13("psid_mobility.dta", nonint.factors=T) %>% select(c(f_id , m_id, occ , occ_

f, occ_m, sex)) %>% drop_na(occ , occ_f, occ_m)

238
239 child.count <- psid %>% filter(f_id != 0 | m_id != 0) %>% arrange(-f_id, -m_id) %>% group_by

(f_id, m_id , occ_f, occ_m) %>% summarise(child.count=n())

240 summary(m5 <- glm(child.count ~ relevel(as.factor(occ_f), ref = "1")+relevel(as.factor(occ_m

), ref = "1"), family="poisson", data=child.count))

241 intercept <- coefficients(m5)[1]

242 f_coef <- c(0, coefficients(m5)[2:5])

243 m_coef <- c(0, coefficients(m5)[6:9])

244
245 GRR.son <- GRR.daughter <- exp(intercept) * (exp(f_coef) %x% exp(m_coef))

246
247 mobility.samesex.son <- with(filter(psid , sex ==1), prop.table(table(occ_f, occ), 1))

248 mobility.samesex.daughter <- with(filter(psid , sex ==2), prop.table(table(occ_m, occ), 1))

249
250 mobility.samesex.son <- matrix(rep(mobility.samesex.son ,each =5), ncol =5)

251 mobility.samesex.daughter <- matrix(rep(t(mobility.samesex.daughter) ,5) , ncol=5, byrow=TRUE

)

252
253 mobility .2sex.son <- with(filter(psid , sex ==1), ftable(prop.table(table(occ_f, occ_m, occ),

c(1,2))))

254 mobility .2sex.daughter <- with(filter(psid , sex ==2), ftable(prop.table(table(occ_f, occ_m,

occ), c(1,2))))

255
256 mobility.perfect <- diag(rep(1, 5))

257 mobility.perfect.son <- matrix(rep(mobility.perfect ,each =5), ncol =5)

258 mobility.perfect.daughter <- matrix(rep(t(mobility.perfect) ,5) , ncol=5, byrow=TRUE)

259
260 N.male.0 <- apply(with(psid , table(occ_f, occ_m)), 1, sum)

261 N.female .0 <- apply(with(psid , table(occ_f, occ_m)), 2, sum)

262
263 mu.0 <- with(psid , table(occ_f, occ_m))

264 alpha <- matrix(rep(0, 25), 5, 5)

265 for (i in 1:5) for (j in 1:5) alpha[i,j] <- mu.0[i,j]*(N.male .0[i]+N.female .0[j])/(N.male .0[

i]*N.female .0[j])

266
267 random .0 <- matrix(rep(0,25), 5, 5)

268 for (i in 1:5) for (j in 1:5) random .0[i,j] <- N.male .0[i]*N.female .0[j]/sum(N.male .0)

269
270 endogamous .0 <- diag(pmin(N.male.0, N.female .0))

271
272
273 ######################## Table 7 ###########################

274 # Ratio Measures of Social Reproduction Effects Under

275 # Different Mating and Mobility Rules

276 ############################################################

277
278 mobility.list.son <- list(mobility.samesex.son , mobility .2sex.son , mobility.perfect.son)

279 mobility.list.daughter <- list(mobility.samesex.daughter , mobility .2sex.daughter , mobility.

perfect.daughter)

280
281 mating.list <- list(random.0, endogamous .0, mu.0)

282
283 TSRE.ratio <- rep(0,9)

284 TSRE.diff <- rep(0,9)

285
286 count = 1

287 for (x in 1:3) {

288 for (y in 1:3) {

289
290 new.mobility.son <- matrix(0, 25, 125)

291 new.mobility.daughter <- matrix(0, 25, 125)

292
293 for (i in 1:25) {

294 new.mobility.son[i, ((i-1)*5+1):(i*5)] <- mobility.list.son[[y]][i,]
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295 new.mobility.daughter[i, ((i-1)*5+1):(i*5)] <- mobility.list.daughter [[y]][i,]

296 }

297
298 G1.son <- t((as.vector(t(mating.list[[x]]))* GRR.son)) %*% new.mobility.son

299 G1.daughter <- t((as.vector(t(mating.list[[x]]))* GRR.daughter)) %*% new.mobility.

daughter

300
301 TSRE.ratio[count] <- (sum(G1.son[,1]+G1.daughter [,1])/(N.male .0[1]+N.female .0[1])/2)

/(sum(G1.son[,((7-1)*5+1)]+G1.daughter [,((7-1)*5+1)])/(N.male .0[2]+N.female

.0[2])/2)

302 TSRE.diff[count] <- (sum(G1.son[,1]+G1.daughter [,1])/(N.male .0[1]+N.female .0[1])/2)

-(sum(G1.son[,((7-1)*5+1)]+G1.daughter [,((7-1)*5+1)])/(N.male .0[2]+N.female

.0[2])/2)

303
304 count <- count + 1

305 }

306 }
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