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Supplementary Figures

Supplementary Fig. 1 Schematic illustrating the computation of intrinsic correlations. Each panel shows 
the binned firing rate of an example neuron in response to a given movie across 30 repeated presentations (or 
trials) of the stimulus. Top: representative neuron in LL. Bottom: representative neuron in V1. Left: ratcam 1 
movie. Right: manual slow 2 movie. By analogy to the display in Fig. 3c, the top part of each item gives the trial-
averaged firing rate (PSTH) for the chosen neuron.  For concreteness, the 11th row of the top-left matrix in Fig. 3c 
contains the same data as the red line shown here in the top-left panel. The yellow boxes indicate the vectors  
over which intrinsic correlations are computed. Note that here the vectors contain the (binned) activity of a single  
neuron over multiple trials, while in Fig. 3c (where signal correlations were discussed) the vectors contained the  
trial-averaged activity of multiple cells within an area.
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Supplementary Fig.  2 Decoding analysis for  larger pseudopopulations.  The pseudopopulation size we 
selected for our analyses (K = 20) was dictated by the need for having at least one pseudopopulation for each  
area we recorded from. By restricting our analyses to V1 and LL only (i.e., the areas that were more densely  
sampled in our recordings), we were able to confirm that our results hold for larger populations of 50 units. a The 
timescale of response discriminability, measured as the time constant of the classifier performance on held-out  
trials (i.e., green boxes in Fig. 5a), is plotted as a function of the timescale of the movies. Each dot corresponds  
to a distinct pseudopopulation. The solid lines are linear regressions (Theil-Sen robust estimator) with common 
slope and different intercept across the two areas. The inset shows the difference of the intercept between area  
LL and V1. Error bar: standard error of the difference from the linear fit (**, p=3e-3, one-tailed bootstrap test). 
Slope: 0.48, 68%CI [0.29-0.66] (percentile bootstrap, see Methods). N=18 independent combinations of movies 
and areas. V1 intercept: 40[16-68] ms. Intercept difference LL-V1: 52[32-75] ms. This analysis is equivalent to 
that shown in Fig. 5c, but using pseudopopulations of 50 units instead of 20. b Same as a, but for the timescale 
of response discriminability measured on training trials (i.e., orange boxes in Fig. 5a). Slope: 0.59[0.46-0.72]. V1  
intercept: 21[-1-44] ms. Intercept difference LL-V1: 34[20-52] ms. As shown in the inset, such difference was 
significantly larger than zero (**, p=2e-3, one-tailed bootstrap test). This analysis is equivalent to that shown in 
Supplementary  Fig.  3b,  but  using pseudopopulations of  50 units  instead of  20.  c The amount  of  classifier 
performance due to intrinsic correlations is plotted as a function of the timescale of such correlations (i.e., the 
intrinsic timescale of neuronal activity shown in Fig. 4d). This analysis is equivalent to that shown in Fig. 5d, but 
using pseudopopulations of 50 units instead of 20. The gray line represents a linear fir to the data. Slope of the  
fit: 0.17±0.03, nonzero p=2e-5, two-tailed t-test, t=5.0, df=34; intercept: 0.038±0.004, p=3e-10, two-tailed t-test,  
t=8.7, df=34. Source data are provided as Source Data files.
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Supplementary Fig. 3 Decoding analysis on training trial set. a Classifier performance on the training trial 
set,  for  two  example  movie  stimuli  and  one  example  pseudopopulation  per  area  (colored  curves).  The 
performance is plotted as a function of the lag between training bin (i.e., gray boxes in Fig. 5a) and test bin (i.e., 
orange boxes in Fig. 5a), and is fitted with either an exponential decay or a damped oscillation function (fits are  
shown as black dashed lines). These curves are equivalent to those shown in Fig. 5b, but they were obtained by 
computing classification performances on the same trials used to train the classifier (i.e., orange boxes in Fig.  
5a), rather than on held-out trials (i.e., green boxes in Fig. 5a).  b  The timescale of response discriminability, 
measured as the time constant of the exponential decay of the classifier performance on training trials, is plotted 
as a function of the timescale of the movies. Each dot corresponds to a distinct pseudopopulation. The solid 
lines are linear regressions with common slope and different intercept across the four areas. The inset shows the 
difference of the intercept for areas LM, LI and LL vs area V1 (error bars are standard errors of the differences in  
the linear regression analysis).  N=36 independent combinations of movies and areas. Common slope: 0.62,  
68%CI [0.55-0.70],  percentile bootstrap.  V1 intercept:  16[2-29]  ms. The intercept  of  the fit  was significantly  
different  for LL vs.  V1 (p=0.1,  0.12,  3e-4  (marked by ***  in the plot)  respectively for  LM, LI,  LL,  one-tailed 
bootstrap test, 104 bootstrap samples, no multiple test correction). Intercept differences were: LM 27[7-48] ms; LI 
31[5-46] ms; LL 35[24-52] ms. Source data are provided as Source Data files.
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Supplementary Fig. 4 Pixel correlations for the movies in the Allen stimulus set. a Pixel correlation matrix, 
showing the correlation coefficient between each pair of frames, for both movies in the stimulus set. Note the  
strong block structure in Natural Movie 1. b Pixel correlation functions obtained by averaging over the diagonals 
of the matrices in a. Solid lines are the empirical correlation functions, dashed lines of corresponding color are 
exponential fits. The extracted timescales are reported. Natural Movie 1 was discarded due to the presence of 
the heavy irregular tail visible in b, due to the block structure highlighted in a.
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Supplementary Fig.  5 Identification of  running and  resting  state. a Example of  spinning wheel velocity 
during the presentation of Natural Movie 3 from the first session in the Allen dataset (2 blocks of 5 trials each). 
The running condition is identified as v > 1cm/s and is colored in red, resting is in gray.  Solid lines are raw 
values, dashed lines are the corresponding smoothed averages (window size 1.7s). Solid vertical  blue lines 
marks the end of a given trial. b Zoomed plot of first trial. Overlaid green dashed line is the mask associated to 
the running state for this given trial  and session.  Vertical  line  marks the end of the trial.  c Example of the 
computation of the intersection between the first three trials of the example session. The resulting mask, bottom 
solid green line, selects the times of shared running state between the trials under exam.
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Supplementary Fig. 6 Correlation analysis for awake rat data. As Fig. 4, for the data recorded in awake rat. a 
Correlation  between  trial-averaged  population  vectors  as  a  function  of  the  temporal  lag  separating  them 
(examples  for  two  representative  movies).  Colored  lines:  empirical  data.  Dashed  lines:  fits.  b Population 
response timescales as a function of the timescales of the corresponding movie stimuli (colored markers). Each 
colored line is  a linear fit prediction of the relationship between such timescales for a given area (same color 
code as in the key). The gray line is the linear fit prediction obtained by pooling together the data of the  two 
extrastriate areas (i.e., LI and LL).  Error bars:  standard errors of the intercept of the linear fits for V1 and the 
pooled extrastriate areas. N=60 independent combinations of movies and areas. c and d Same as a and b, but 
for the intrinsic timescales of neuronal activity. Source data are provided as Source Data files.
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Supplementary Fig. 7 Subsampling analysis. a and  b 
Regression  parameters  (slope  and  intercept  difference 
between  extrastriate  and  striate)  estimated  for  the 
population response timescale in the anesthetized dataset 
in  different  subsampling  conditions  (see  Supplementary 
Text  for  details).  Each  half-violin  gives  the  distribution 
(kernel density estimate with bandwidth chosen according 
to  Scott’s  rule)  of  the  estimated  parameters  over  400 
random  subsamplings  of  a  given  size.  The  horizontal 
position  of  each  violin  (x  axis)  indicates  the  degree  of 
subsampling on the movie length, from 5s (movie length in 
the  awake  rat  data)  to  20s  (movie  length  in  the 
anesthetized  rat  data).  The  left/right  half  of  each  violin 
(also differentiated by lighter/darker shade) compares the 
effect of using only 10 random trials (the number of trials 
in the awake rat data) vs keeping all available trials in the 
anesthetized data (30). Note that,  for each subsampling 
repetition,  at  most  40  cells  were  selected  from  each 
cortical area to facilitate the comparison with the awake 
rat data. Colored dashed lines: estimates on full dataset 
reported in the paper. N=400 subsamplings per condition, 
from data composed of 36 independent combinations of 
movies and areas. Box plots  refer  to  all  data from one 
movie  length  condition.  White  dot  is  median,  thick  box 
indicates  Q1  and  Q3  (first  and  third  quartiles),  lower 
whisker  is  at  the  lowest  datum above  Q1-1.5*(Q3-Q1), 
upper whisker is at the highest datum below Q3+ 1.5*(Q3-
Q1).  c-f as  a-b, for the intrinsic timescales. Source data 
are provided as Source Data files. 
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Supplementary  Fig.  8  Conceptual  model  illustrating  the  relationship  between adaptive  and  intrinsic 
processing  and  activity  timescales. a Schematic  representation  of  model  dynamics  (see  equations  in 
Supplementary Text). b Example time course for the total synaptic input x. The stimulus and the systems were 
simulated for 3000 timesteps; here about 200 timesteps are shown for illustrative purposes. The stimulus shown 
was generated as a Gaussian process with absolute exponential kernel with a timescale 20 timesteps. Other 
stimulus instances were simulated,  with nominal  timescales of  10,  30,  and 40 timesteps.  c Example PSTH 
(average response over 1000 trials) of the simulated system in response to the stimulus instance with a nominal  
timescale of 20 timestep (shown in panel b) for different values of the adaptation strength parameter, keeping all 
other parameters fixed (in particular, γ=0.5).  e Response correlation function (autocorrelation of the PSTH) for 
the simulated conditions in panel c. Inset: estimated response timescale as a function of stimulus timescale and 
adaptation strength. The yellow box highlights the condition shown in the main panel (stimulus with 20-timesteps 
timescale). g As e, for intrinsic correlations (correlations of the simulated activity across trials). d, f, h As c, g, f, 
when varying  the  leak  rate  parameter  of  the  simulated  system and keeping  all  other  parameters  fixed  (in  
particular, β=0.6).
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Supplementary Fig. 9 Linear Model for Allen data. a y-axis: timescale of the spike autocorrelation 
during  response  to  visual  flash  (see  Discussion).  x-axis:  response  timescale  during  movie 
presentation.  Error  bars  are  square  roots  of  the  corresponding  entry  in  the  fit  covariance  matrix 
associated to the timescale. R-square and  p-value  (two-tailed t-test)  of  the angular  coefficient  are 
reported.  Only  one  statistical  test  is  performed  in  this  figure  (no  multiple  test  correction).  N=7 
independently recorded areas. b Response correlation of the linear model when simulated with the 
movie  stimulus.  Solid  lines:  empirical  correlations.  Dashed  lines:  exponential  fits.  c Response 
timescales  computed  from the linear  model  response,  displayed  versus the  anatomical  hierarchy 
score of each area. Source data are provided as Source Data files.
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Supplementary text

Subsampling analysis of anesthetized data
In order to assess the extent to which the analysis of awake, body-constrained rat data (Supplementary 
Fig.  6)  is  expected to be informative regarding the hypotheses studied elsewhere in the paper,  we 
performed a subsampling analysis of our core dataset recorded in anesthetized rat. The awake dataset 
consisted in recordings performed in three cortical areas, with about 40 single-units per area (V1: 44, 
LI: 40, TO: 38), in response to 20 movies, each of which was 5 seconds long and repeated 10 times. By 
contrast,  the  anesthetized  dataset  contained  data  from  four  cortical  areas,  with  a  less-uniform 
distribution of units per area (V1: 168, LM: 20, LI: 36, LL: 70), recorded in response to 9 movies, each 
of which was 20 seconds long and repeated 30 times. We therefore sought to understand how the 
results  from the anesthetized data would look if we limited the experimental data to a comparable 
amount  to  that  recorded in  awake rats,  especially  with respect  to  the number of  trials  and movie 
duration. To do this, we repeated the analyses reported in Fig. 4 a number of times, each time sampling 
a random subset of the available data. More in detail, for a given, desired, number of trials and movie 
duration, we proceeded as follows:

• For each movie, we selected a contiguous segment of the movie of the desired duration, taken at 
random.

• We computed the stimulus timescale based on that random segment.

• We discarded all neural data recorded outside of that movie segment.

• We selected a random subset of trials of the desired size, and discarded all other trials from the 
neural recordings.

• For each area, we selected a random neural subpopulation of at most 40 cells (or all available 
cells when these are less than 40), and discarded all others.

• On this subsampled neural dataset, we computed the response and intrinsic time scale for each 
area and each movie (this involved computing the empirical correlation functions, fitting them 
with our model selection procedure, and extracting the timescale parameter).

• We regressed the response timescale vs stimulus timescale and "macro area" (striate | extra-
striate), as in Fig. 4b.

• We regressed the intrinsic timescale vs stimulus timescale and area, as in Fig. 4d.

• For both regression analyses, we extract a slope parameter and a parameter associated with 
"intercept  difference  with  respect  to V1",  which  for  the  response  timescale  is  simply  one 
number (extrastriate-striate intercept difference) and for the intrinsic timescale is one number 
per extrastriate area (LM-V1, LI-V1, LL-V1).

• We repeated all points above 400 times, and computed the resulting distributions over the slope 
and intercept parameters.
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Finally, we visualized the distribution of the regression parameters (slope, intercept) for both types of 
timescales  (response,  intrinsic)  as  a  function  of  the  number  of  trials  and  movie  duration  used 
(Supplementary Fig. 7). As mentioned in the main text, in the subsampling condition that most closely 
approximates the awake dataset (movie duration 5 seconds, 10 trials per movie) the distributions of 
some  of  these  parameters  straddle  the  null  result  (zero)  with  a  very  large  portion  of  their  mass, 
suggesting that the analysis of the awake data is not expected to provide statistically significant results, 
just  by lack of  statistical  power,  if  the underlying effects  had the same strength they  have  in  the 
anesthetized data. More specifically, we do not expect to see any significant effect for either the slope 
or the intercept term of the  response timescales, nor for the slope of the intrinsic timescales. On the 
other  hand,  the  intercept  term of  the  intrinsic  timescales,  capturing  the  difference  of  the  intrinsic 
timescale in each of the extrastriate areas versus V1, seems fairly robust to subsampling and would thus 
be expected to yield significant results in the awake data if these were roughly homogeneous to the 
anesthetized data, and in particular if brain state did not affect correlations.  Therefore, the fact that 
intrinsic timescales do not show any difference across areas in the awake dataset (where the rats were 
forced in a resting condition) supports the conclusion drawn from the Allen dataset, that this difference 
across areas is highly dependent on the state of the animal, and specifically it is weaker during quiet 
wakefulness compared to active behavior.

A conceptual model illustrating the relationship between 
adaptive and intrinsic mechanisms and activity timescales

Model definition

In this section, we give some proof-of-principle examples of how intrinsic and adaptive dynamical 
processes  can  affect  neural  activity  timescales,  at  both  the  single-trial  and  trial-averaged  level, 
expanding on the ideas illustrated in the cartoons of Fig. 1. To do so, we make use of a simple model 
that we obtained by generalizing the model presented in  [1] to include integrator-like dynamics and 
internal noise. Briefly, we consider  an idealized setting where a time-varying sensory stimulus of a 
certain duration is presented to an animal for a certain number of trials. At each trial, the firing rate  of 
a neuron is recorded (as a function of time ). The temporal evolution of the neural response is modeled 
according to the following set of equations:

(Supplementary Equation 1)

(Supplementary Equation 2)

(Supplementary Equation 3)

where  represents the net synaptic input to the neuron at time ,  is an auxiliary "state" variable used 
to implement intrinsic suppression (see [1] for details),  is a noise term sampled independently at each 
time  step  (we  will  assume   for  some  fixed  standard  deviation  ),   is  the  ReLU 
nonlinearity,  and   are  parameters.  The  model  can  be  represented  graphically  as  in 
Supplementary Fig. 8a, and the parameters can be given the following intuitive meanings:  is a bias 
term,   is a synaptic weigth,   controls the integration time constant of the state variable,   is the 
adaptation strength (i.e., the strength of the intrinsic suppression mechanism), and  is related to the 
leak rate of the system seen, when , as a leaky integrator (or its cutoff frequency, if seen as a low-
pass filter). This model reduces to that in  [1] if we set   and  ; in other words, this model 
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extends that presented in  [1] by adding an internal noise term that is sampled independently at each 
timestep of each trial and by allowing the system to integrate its inputs over time. On the other hand, 
we note that what we present here is simpler than the model discussed in [1] because only one neuron 
is modeled (rather than a network), and therefore all quantities appearing in the equations above are 
scalars. For simplicity, in the following we will fix , ,  and  (this last value 
being the one used throughout [1]) unless specified otherwise.

Stimulus details and simulation set-up

In our simulations, we generated the input  according to a Gaussian process with absolute exponential 
kernel with a certain timescale  (see example in Supplementary Fig. 8b). In other words, a stimulus of 
length T was generated by taking a sample from a T-variate Gaussian with zero mean and covariance 

matrix   (note that, for the purpose of this simulation, time is measured in units of 

discrete time steps, so i-j can be interpreted as a time difference). This allowed us to avoid building too 
much structure into our stimuli, while still being able to control their characteristic timescales: indeed, 
by construction, the empirical timescale of such a stimulus (measured with the methods used in the rest  
of the paper) will converge to the nominal value of  when T is large.

In  the  simulation  presented  here,  the  duration  T was  fixed  to  3000 timesteps.  We generated  four 
different  stimuli,  with nominal  timescales   equal  to  10,  20,  30  and 40 timesteps.  The empirical 
timescales of the stimuli (measured by fitting a decaying exponential to the autocorrelation function of 
each stimulus) were, respectively, 9.6, 20.4, 31.3, and 38.9 timesteps. For each of these four stimuli, we 
simulated the response of the system over 1000 trials. For each trial, the stimulus was the same, but the 
internal noise of the system was sampled independently, leading to a different neural response. We used 
the response of the system across the 1000 trials to estimate the  response correlation and intrinsic 
correlation of , and to extract the corresponding response timescales and intrinsic timescales, using the 
same methods we used in the rest of the paper (see Methods for details). We studied these quantities 
(correlations, timescales) as we varied  and , the parameters of the model that control, respectively, 
the strength of the adaptation and the leak rate of the subthreshold integration mechanism.

Results

Overall, the behavior of the model changes in a complex way as a function of the parameter values, and 
a full qualitative investigation is out of the scope of the present paper. However, we will analyze here 
some particular cases that can help bolster the intuition for the elementary point we have made in Fig. 
1,  namely  that  the  presence  of  intrinsic  and  adaptive  mechanisms  will  in  general  affect  the 
characteristic  timescales  of  the  system’s  response.  The  results  of  the  simulations  are  shown  in 
Supplementary Fig. 8.

In panels c, e, and g we show the effect of changing the strength of the adaptation, controlled by the 
parameter . As adaptation was increased, the system tended to respond with overall shorter responses 
(Supplementary Fig. 8c). This was confirmed by the analysis of the correlations of the trial-averaged 
response, leading to the computation of the response timescale (Supplementary Fig. 8e and inset): as  
increased, the response was temporally decorrelated in the sense that the response timescale became 
shorter and shorter overall, and its dependence on the stimulus timescale became weaker and weaker. 
(For completeness, we also note that the cartoon traces in Fig. 1b are also obtained by running actual  
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simulations of the model discussed here, with a simple boxcar-like stimulus and appropriate choice of 
parameters  including larger   for  the dark blue trace in  Fig.  1b).  The presence of  adaptation also 
affected the shape and range of intrinsic correlations, giving rise to an oscillatory component similar to 
that  observed in  experimental  data  (cf.  Fig.  4c).  For  the range of  parameters  explored,  increasing 
adaptation also increased the intrinsic timescales. This is consistent with the interpretation of intrinsic 
timescales as a characteristic time over which the system keeps memory of its past state [2; 3].

Panels d-h in Supplementary Fig. 8 show what happens if adaptation strength is kept constant but the 
leak rate is changed. Similarly to higher adaptation, higher leak also leads to smaller overall response 
(Supplementary Fig. 8d). By comparing the example PSTHs in Supplementary Fig. 8c and d, though, it 
is evident that the decrease in response does not happen in the same way in both cases: the shape of the 
response "peaks" is roughly preserved, albeit scaled, when leak is increased, while the peaks become 
narrower in response to an increase in adaptation.  This intuition is  supported quantitatively by the 
analysis of the activity timescales (Supplementary Fig. 8f,h). While increasing the adaptation strength 
decreases the response timescales and increases the intrinsic time scale, increasing the leak rate has the 
opposite  effect:  the  response  timescale  increases  (Supplementary  Fig.  8f,  inset)  and  the  intrinsic 
timescale  decreases  (Supplementary  Fig.  8g,  inset).  Intuitively,  this  is  consistent  with  the  idea  of 
stronger leak leading to the response tracking the stimulus timescale more closely (thus the curves in 
Supplementary Fig. 8g, inset, getting closer to the identity line as leak increases), and to a shorter 
within-trial memory kept by the system about its past state. Finally, depending on the value of the leak 
rate,  we can again observe the emergence of an oscillatory component to the intrinsic correlations 
(Supplementary Fig. 8h), similar to what we observed in real data (Fig. 4c).

In summary, the conceptual model presented here provides a concrete example of how adaptation and 
intrinsic mechanisms (here exemplified by the capacity of a single neuron to integrate its inputs over 
time, although in a network setting these could also include recurrent circuit dynamics [2; 4]) can shape 
the  temporal  structure  of  the  neural  response,  by  modifying  the  trial-averaged  response  (Fig.  1b, 
Supplementary  Fig.  8c-f)  and the  intrinsic  correlations  (Supplementary  Fig.  8g-h),  and how state-
dependent processing combined with temporally uncorrelated noise can result in temporally extended 
noise correlations (i.e., intrinsic correlations) [3]. In principle, this suggests that intrinsic correlations, 
and more generally the variability of neural responses over trials, can be a useful source of information 
for improving existing models of visual cortex based on convolutional neural networks  [1; 5; 6], by 
providing independent signatures that can help constraining the space of possible mechanisms to be 
considered beyond simple feedforward processing. However, although our approach here is developed 
by  generalizing  some  ideas  from  one  of  such  state-of-the-art  visual  cortical  models  [1],  a  fuller 
investigation of visual cortical data in terms of this model goes beyond the scope of the present paper.  
Indeed, unlike in [1], in our discussion we have focused on an idealized neuron rather than a network 
arranged as a feedforward cascade. When units described by Supplementary Equations 1-3 above are 
combined  in  a  feedforward  arrangement  (or  when  an  existing  convolutional  neural  network  is 
augmented so that its neurons obey those equations for certain values of the parameters), we expect the 
effects describe here to compound across layers and to generate rich and nontrivial behaviors extending 
those reported in [1].
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