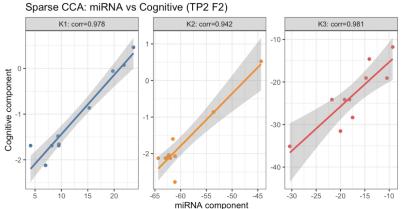

Suppl Fig 1 Cognitive vs miRNA – TP2

K1: -0.853*train_tone5 + -0.522*train_tone4

K2: -0.522*bin_3_preference_obj_2 + 0.853*context_total

K3: -0.522*bin_1_preference_obj_2 + 0.853*context_minute4

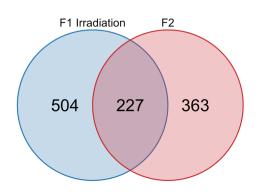


K1: -0.901*tone + 0.042*preference_obj_2 + 0.431*bin_2_preference_obj_2

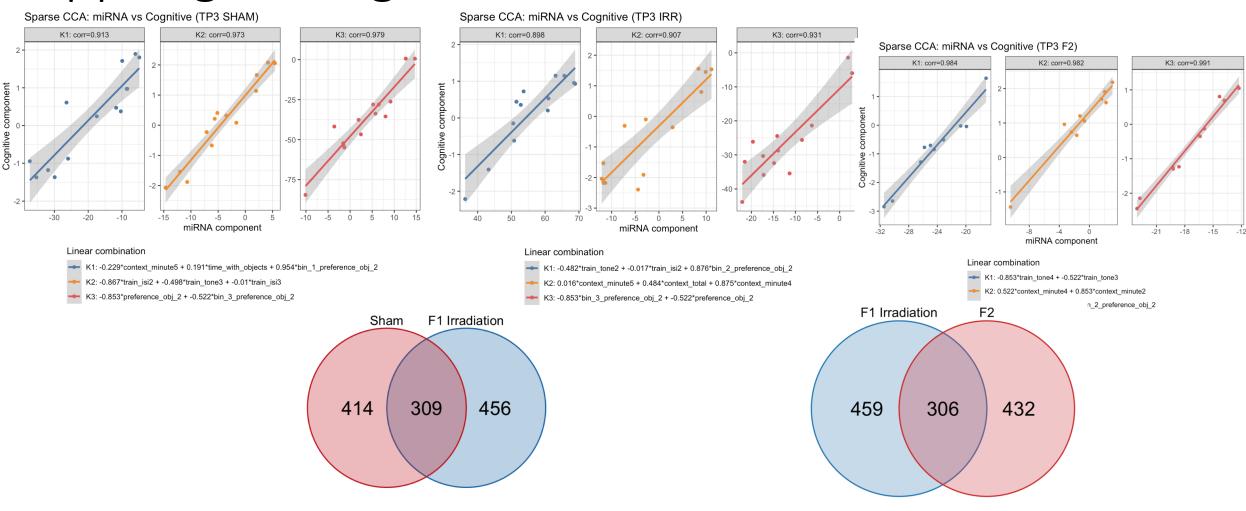
K2: 0.037*train isi4 + 0.44*train isi3 + 0.897*train tone5

K3: 0.522*context_minute1 + 0.853*train_tone4

Linear combination


- K1: -0.938*train_isi3 + -0.329*train_isi2 + -0.108*train_tone4

K3: -0.929*train_tone5 + -0.361*train_isi4 + -0.085*train_tone4


K2: -0.853*context_total + -0.522*context_minute5

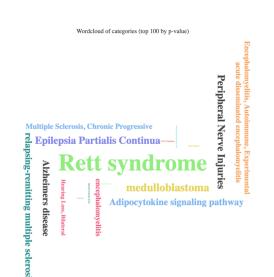
Linear combination

Suppl Fig 2 - Cognitive vs miRNA — TP3

Suppl Fig 3 - Cognitive vs miRNA — TP1

Wordcloud of categories (top 100 by p-value)

Encephalomyelitis, Autoimmune, Experimental


Alzheimers disease

Chromosome 1

encephalomyelitis

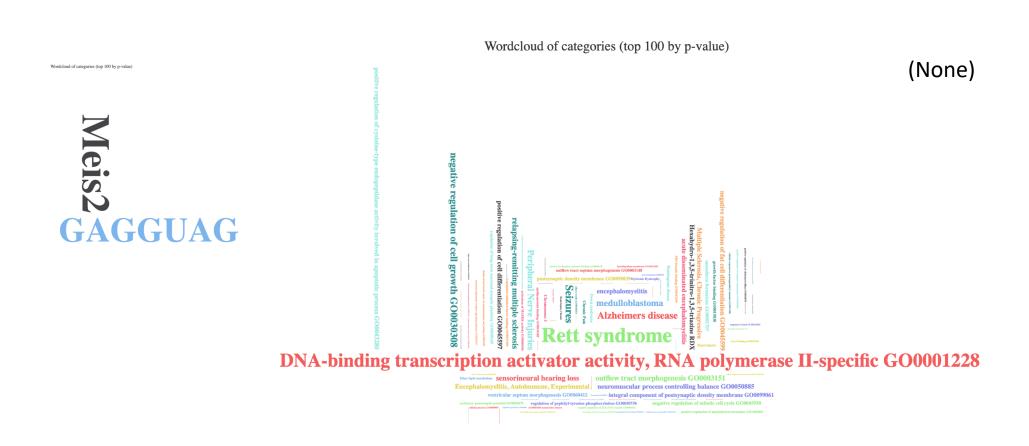
Hexahydro-1,3,5-trinitro-1,3,5-triazine RDX relapsing-remitting multiple sclerosis

F1 Sham

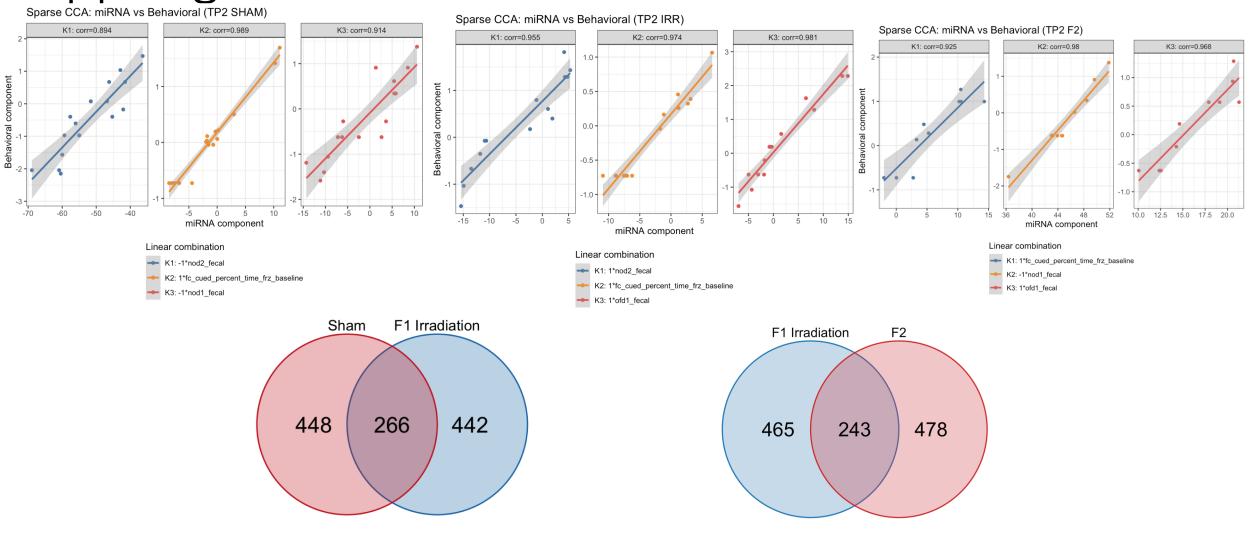
F1 IRR

Wordcloud of categories (top 100 by p-value)

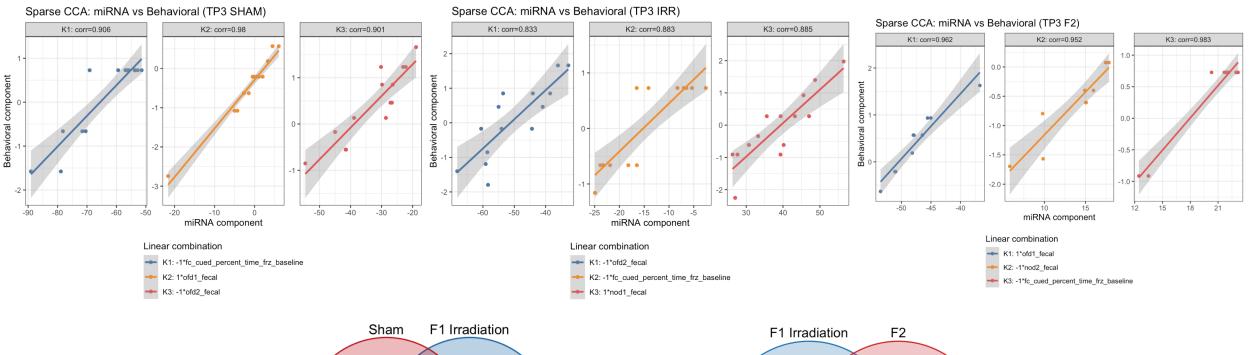
Suppl Fig 4 Cognitive vs miRNA – TP2

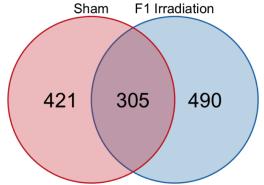


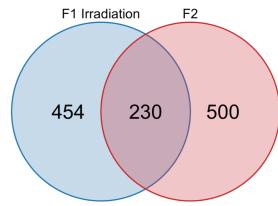
F2 IRR



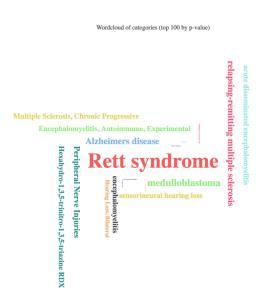
Suppl Fig 5 - Cognitive vs miRNA — TP3

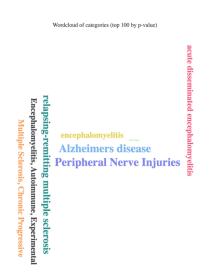

F1 Sham F2 IRR




Suppl Fig 6 – Behavioral vs miRNA – TP2

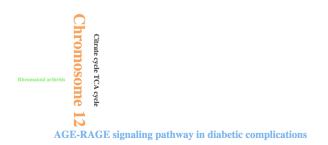
Suppl Fig 7 - Behavioral vs miRNA — TP3





Suppl Fig 8 Behavioral vs miRNA – TP1

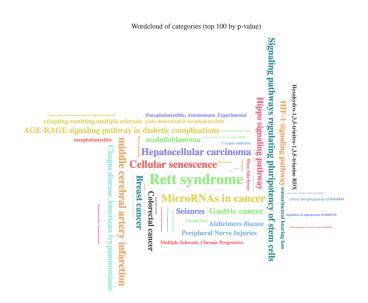
F1 Sham F1 IRR F2 IRR

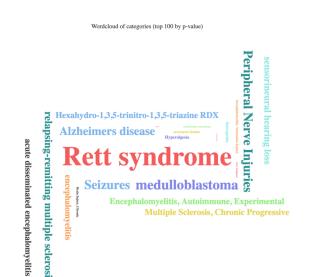

Chromosome 2

Suppl Fig 9 – Behavioral vs miRNA – TP2

F1 Sham F1 IRR F2 IRR

Wordcloud of categories (top 100 by p-value)


(None)



Tamoxifen

Suppl Fig 10 - Behavioral vs miRNA — TP3

F1 Sham F1 IRR F2 IRR

Wordcloud of categories (top 100 by p-value)

5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside AICAR

Suppl Fig 11 Lipidomics vs miRNA – TP1

K3: corr=0.958

K2

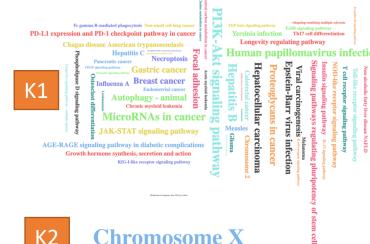
K2: corr=0.969

miRNA component

Linear combination K1: -1*x290_087_A

K2: -1*x265_147_H

K3: -1*x265_147_A



290.087 A = fatty acid which can be of multiple carbon length and/or number of double bonds

265.147 H = Micropine (sphingoid base analogue)

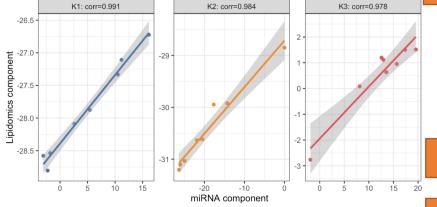
insulin-resistant humans

265.147 A = Micropine (sphingoid base analogue)

877.291 A = no identification, 564.533 A = three biological possibilities: a large 34-35 carbon oxidized unsaturated fatty acid, an oxidized diacylglycerol or a branched fatty acid esters of hydroxy fatty acids (FAHFA 18:1 18:0, Delta of 0.0212) are endogenous lipids found in adipose tissue and serum that correlate with insulin sensitivity and are reduced in

546.523 A = Most-likely a large 34-35 carbon oxidized unsaturated fatty acid or an oxidized diacylglycerol

1544.847 A = ganglioside SB1a, 290.087 H = fatty acid which can be of multiple carbon length and/or number of double bonds, 493.164 A = no ID


451.305 A = matched mass 451.2699, Delta 0.0351, lysophosphatidylethanolamine (16:0) or Lysophosphatidylcholine (O-14:1) delta 0.0013. LPC is a signal of mitochondrial stress. Both compounds are derived from their precursors by the enzymatic action of phospholipase A2, 265.147A = Micropine (sphingoid base analogue) , 1281.790 A = No ID

Sparse CCA: miRNA vs Lipidomics (TP1 IRR)

K1: corr=0.976

Lipidomics component

K1: -0.72*x877_291_A + -0.663*x564_533_A + -0.204*x546_523_A K2: -0.807*x1544_847_A + -0.539*x290_087_H + -0.241*x493_165_A

K3: -0.458*x451_305_A + -0.289*x265_147_A + 0.841*x1281_79_A

K1

(None)

(None)

Kidney

miRNA enrichment

Suppl Fig 12 Lipidomics vs miRNA – TP2

K2: corr=0.969

K3: corr=0.977

Sparse CCA: miRNA vs Lipidomics (TP2 IRR)

Sparse CCA: miRNA vs Lipidomics (TP2 SHAM)

K1: corr=0.968

LIPIDS

290.086 A = fatty acid which can be of multiple carbon length and/or number of double bonds, 888.642 A = Isobars for unsaturated Phosphatidylinositol with 38 carbons in its tail or an unsaturated triacylglycerol (TG) with 55 carbons composing its three fatty acid tails.

581.183 A = no ID , 682.283 A = no ID, 283.264 A = nacylethanolamine (15:1), (induction of inflammation, precursor of eicosanoids or Delta 0.0235, sphingolipid (m18:1), sphingolipid base analog

710.314 A = isobars corresponding to either an oxidized Phosphatidylglycerol or oxidized Phosphatidylinositol, 886.553 A = Most hits are for an unsaturated Phosphatidylinositol with 38 carbons in its tail

miRNA enrichment

(None)

miRNA component Linear combination K1: -0.923*x290_086_A + -0.385*x888_642_A K2: -0.331*x581_183_A + 0.034*x682_283_A + 0.943*x283_264_A K3: -0.923*x710_314_A + -0.385*x886_553_A

-24

581.183 A = no ID, 1572.899 A = several possible isomers of a sulfated globoside

581.309 A = either lysophosphatidylethanolamine (26:6) delta 0.0391 or Lysophosphatidylserine (22:0) delta 0.0603. Both compounds are derived from their precursors by the enzymatic action of phospholipase A2. The lysophospholipids lead to increase eicosanoid production (leukotrienes and prostaglandins), 1253.773 A = cytidine diphosphate lipid (CDP-1)

1544.867 A = possibly Ganglioside SB1a (t18:0/26:0), matched mass1544.83069, another sulfated globoside. 888.641 A = Isobars for unsaturated Phosphatidylinositol with 38 carbons in its tail or an unsaturated triacylglycerol (TG) with 55 carbons composing its three fatty acid tails.

K3: corr=0.984 K1: corr=0.985 K2: corr=0.964 -23

> Linear combination -- K1: -0.961*x581 183 A + -0.276*x1572 899 A K2: -0.961*x581 309 A + -0.276*x1253 773 A

> > K3: -0.961*x1544 867 A + -0.276*x888 641 A

miRNA component

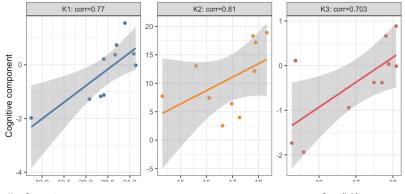
K2

K3

Diabetes Mellitus

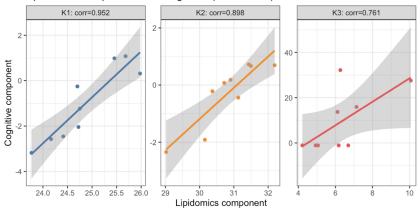
Insulin Resistance

Wordcloud of categories (top 100 by p-value)


Rheumatoid arthritis

Kidney **≤**

Suppl Fig 13 Lipidomics vs miRNA – TP3 miRNA enrichment **LIPIDS** Sparse CCA: miRNA vs Lipidomics (TP3 IRR) K1: corr=0.98 K2: corr=0.986 K3: corr=0.963 Neoplasm Metastasis K1 290.087 H = a fatty acid which can be of multiple carbon length and/or number of double bonds middle cerebral artery infarction 581.183 A = no ID -20.0 Krabbe disease -20 283.264 H = n-acylethanolamine (15:1), (induction of miRNA component inflammation, precursor of eicosanoids or Delta 0.0235, Linear combination sphingolipid (m18:1), sphingolipid base analog K1: 1*x290_087_H K2: -1*x581_183_A K3: -1*x283 264 H K1 **Rett syndrome** Sparse CCA: miRNA vs Lipidomics (TP3 SHAM) 290.087 H = fatty acid which can be of multiple carbon K1: corr=0.929 K2: corr=0.984 K3: corr=0.92 length and/or number of double bonds. 1863.995 H = Ganglioside Fuc-GM1 (NeuGC) 290.087 H = = fatty acid which can be of multiple carbon length and/or number of double bonds medulloblastoma K2 1544.867 A = possibly Ganglioside SB1a (t18:0/26:0), **Seizures** matched mass1544.83069, another sulfated globoside. Alzheimers disease 15 miRNA component 1544.867 A = possibly Ganglioside SB1a (t18:0/26:0), matched mass1544.83069, another sulfated globoside. K1: 0.04*x290 087 H + 0.999*x1863 995 H 726.589 H = isobars corresponding to either sphingomyelin K2: -0.999*x290 087 A + -0.04*x1544 867 A (d18:2/18:1, delta 0.0214) which makes up the myelin sheath around K3: 0.04*x1544 867 H + 0.999*x726 589 H neurons, diacylglycerol or phosphatidic acid


Suppl Fig 14 Cognitive vs lipidomics – TP1

Sparse CCA: Lipidomics vs Cognitive (TP1 IRR)

K	form_out	form_lipid	corr
V1	K1: -0.959 <i>bin_2_preference_obj_2</i> + -0.243tone + -0.139 <i>context_minute4</i> + -0.033 <i>context_minute5</i>	1 x290_087_A	0.7697754
V2	$ \begin{array}{l} \text{K2:-0.972} \\ \text{train_tone1} + 0.054 \\ \text{train_isi3} + 0.068 \\ train_tone5 + 0.077 \\ \text{train_tone4} + 0.204 \\ \text{train_isi4} \end{array} $	1 x290_086_H	0.8096856
V3	K3: -0.974bin_1_preference_obj_2 + -0.076train_tone2 + -0.009train_tone5 + 0.021context_minute1 + 0.122context_minute4 + 0.173train_tone1	1 x265 147 A	0.7025606

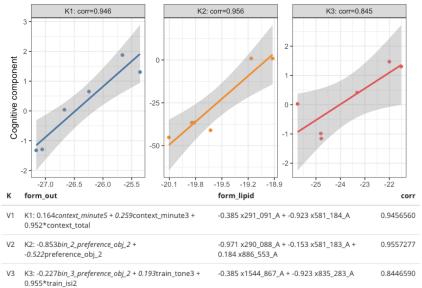
Sparse CCA: Lipidomics vs Cognitive (TP1 SHAM)

P	<	form_out	form_lipid	corr
\	/1	$\label{eq:K1:-0.959bin_2_preference_obj_2 +-0.243} \\ \text{tone} + -0.139 \\ \text{context_minute4} + -0.032 \\ \text{context_minute5} \\$	1 x290_087_A	0.7697754
١	/2	$\label{eq:K2:-0.972} K2: -0.972 train_tone1 + 0.054 train_isi3 + 0.068 train_tone5 + 0.077 train_tone4 + 0.204* train_isi4$	1 x290_086_H	0.8096856
١	/3	K3: -0.974bin_1_preference_obj_2 + -0.076train_tone2 + -0.009train_tone5 + 0.021context_minute1 + 0.122context_minute4 + 0.173train_tone1	1 x265_147_A	0.7025606

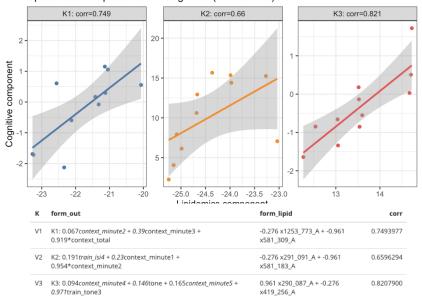
- 290.087 A = a fatty acid which can be of multiple carbon length and/or number of double bonds
- K2 290.086 H = a fatty acid which can be of multiple carbon length and/or number of double bonds
- K3 265.147 A = Micropine (sphingoid base analogue)

delta 0.0013. LPC is a signal of mitochondrial stress. Both compounds are derived from their precursors by the enzymatic action of phospholipase A2 1281.79 A = no ID 1544.847 A = possibly Ganglioside SB1a (t18:0/26:0) 290.087 H = a fatty acid which can be of multiple carbon length and/or number of double bonds

451.305 A = lysophosphatidylethanolamine (16:0) or Lysophosphatidylcholine (O-14:1)


1544.847 A = possibly Ganglioside SB1a (t18:0/26:0)
419.255 A = N-Arachidonoyl Taurine (NAT (18:0)), an arachidonyl aminoacid, N-Arachidonoyl Taurine is increased after the administration of cannabinoid agonists 886.546 A = Most hits are for an unsaturated Phosphatidylinositol with 38 carbons in its tail

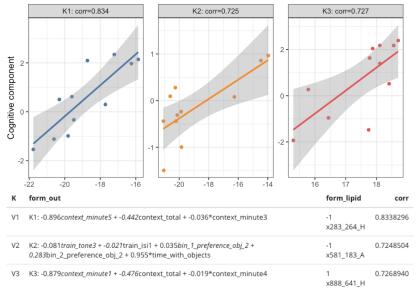
493.165 A = no ID, 581.180 A = no ID


708.574 A = Several isobaric possibilities. The largest number of hits corresponds to a Phosphatidylglycerol (PG) of various carbon chain lengths totaling 31 carbons, next would be a diacylglycerol (20:0/22:0 or 21:0/21:0)
1544.849 A = possibly Ganglioside SB1a (t18:0/26:0)

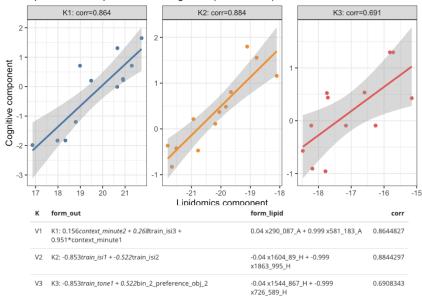
Suppl Fig 15 Cognitive vs lipidomics – TP2

Sparse CCA: Lipidomics vs Cognitive (TP2 IRR)

Sparse CCA: Lipidomics vs Cognitive (TP2 SHAM)


- X1 291.091 A = no ID 581.184 A = no ID
 - K2 290.088 H = a fatty acid which can be of multiple carbon length and/or number of double bonds 581.183 A = no ID
- 1544.867 A = possibly Ganglioside SB1a (t18:0/26:0) 835.283 A = CDP-1-hexanoyl-2-(6Z,9Z,12Zoctadecatrienoyl)-snglycerol CP1 (cytodine diphosphate lipid), I cannot find any biological activity
- 1253.773 A = cytidine diphosphate lipid (CDP-1)
 581.309 A = either lysophosphatidylethanolamine (26:6) delta 0.0391 or
 Lysophosphatidylserine (22:0) delta 0.0603. Both compounds are derived from their precursors by the enzymatic action of phospholipase A2. The lysophospholipids lead to increase eicosanoid production (leukotrienes and prostaglandins)
- 291.091 A = no ID 581.183 A = no ID

290.087 A = a fatty acid which can be of multiple carbon length and/or number of double bonds
419.256 A = either an acyl carnitine (18:4) matched mass 419.3036, delta 0.0486 or an acyl


419.256 A = either an acyl carnitine (18:4) matched mass 419.3036, delta 0.0486 or an acyl taurine (20:0) matched mass of 419.3069, delta 0.0519

Suppl Fig 16 Cognitive vs lipidomics – TP3

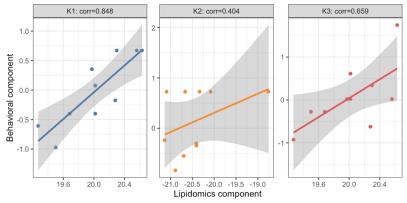
Sparse CCA: Lipidomics vs Cognitive (TP3 IRR)

Sparse CCA: Lipidomics vs Cognitive (TP3 SHAM)

283.264 H = Delta0.0129, n-acylethanolamine (15:1), (induction of inflammation, precursor of eicosanoids or Delta 0.0235, sphingolipid (m18:1), sphingolipid base analog

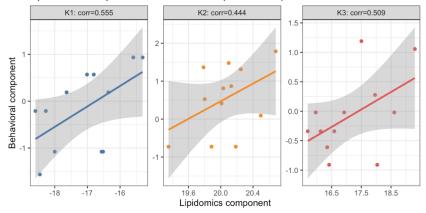
581.183 A = no ID

888.641 H = Isobars for unsaturated Phosphatidylinositol with 38 carbons in its tail or an unsaturated triacylglycerol (TG) with 55 carbons composing its three fatty acid tails.


290.087 A = a fatty acid which can be of multiple carbon length and/or number of double bonds
581.183 A = no ID

1604.89 H = several possible isomers of a sulfated globoside 1863.995 H = Ganglioside Fuc-GM1 (NeuGC)

1544.867 H = possibly Ganglioside SB1a (t18:0/26:0)
726.589 H = isobars corresponding to either sphingomyelin (d18:2/18:1, delta 0.0214) which makes up the myelin sheath around neurons, diacylglycerol or phosphatidic acid


Suppl Fig 17 Behavioral vs lipidomics – TP1

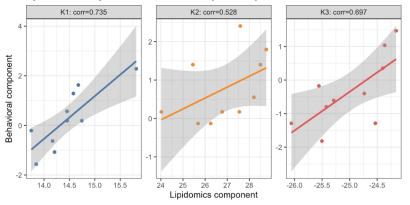
Sparse CCA: Lipidomics vs Behavioral (TP1 IRR)

К	form_out	form_lipid	corr
V1	K1: -1*nod2_fecal	1 x290_087_H	0.8482406
V2	K2: -1*fc_cued_percent_time_frz_baseline	-1 x290_087_A	0.4035642
V3	K3: -1*nod1_fecal	1 x290_087_H	0.6593617

Sparse CCA: Lipidomics vs Behavioral (TP1 SHAM)

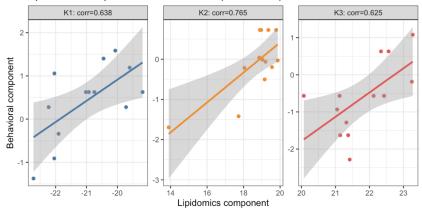
K	form_out	form_lipid	corr
V1	K1: 1*ofd1_fecal	-1 x290_086_H	0.5554043
V2	K2: 1*fc_cued_percent_time_frz_baseline	1 x290_087_H	0.4440140
V3	K3: 1*nod1_fecal	1 x265_147_A	0.5085519

- 290.087 H = a fatty acid which can be of multiple carbon length and/or number of double bonds
- K2 290.087 A = a fatty acid which can be of multiple carbon length and/or number of double bonds
- 290.087 H = a fatty acid which can be of multiple carbon length and/or number of double bonds


290.086 H= a fatty acid which can be of multiple carbon length and/or number of double bonds

290.087 H = a fatty acid which can be of multiple carbon length and/or number of double bonds

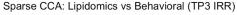
265.147 A = Delta0.0572, Micropine (sphingoid base analogue)

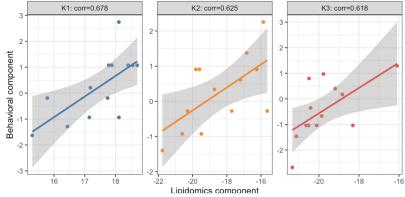

Suppl Fig 18 Behavioral vs lipidomics – TP2

Sparse CCA: Lipidomics vs Behavioral (TP2 IRR)

corr	form_lipid	form_out	K
0.7354057	-0.152 x1544_867_A + 0.971 x1863_996_A + -0.185 x888_642_A	K1: 1*ofd1_fecal	V1
0.5280724	0.385 x1544_87_A + 0.923 x2127_061_A	K2: 1*ofd2_fecal	V2
0.6965808	0.0159 x581 184 A+-0.933 x682 283 A+-0.358 x710 314 A	K3: -1*nod2 fecal	V3

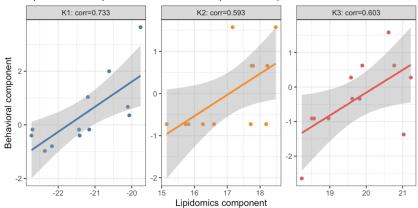
Sparse CCA: Lipidomics vs Behavioral (TP2 SHAM)


K	form_out	form_lipid	corr
V1	K1: 1*nod1_fecal	-0.978 x1253_773_A + -0.0592 x1544_867_A + -0.2 x581_309_A	0.6383476
V2	K2: -1*fc_cued_percent_time_frz_baseline	-0.157 x888_641_A + 0.0975 x1544_867_H + 0.983 x581_183_H	0.7651704
V3	K3: -1*ofd1_fecal	0.276 x1253_773_A + 0.961 x581_309_A	0.6251693


LIPIDS

Phosphatidylinositol

- 1544.867 A = possibly Ganglioside SB1a (t18:0/26:0) 1863.996 A = Ganglioside Fuc-GM1 (NeuGC)
- 1544.870 A = possibly Ganglioside SB1a (t18:0/26:0)
 2127.061 A = Matched mass, 2127.16016 Ganglioside GD1a(NeuGc/NeuGc)
 (t18:0/36:6(18Z,21Z,24Z,27Z,30Z,33Z), brain ganglioside and it shows the correct mouse sialyation of NeuGc.
- 581.184 A = no ID
 682.283 A = phosphatidylglycerophosphate (PGP). PGP is a precursor of cardiolipins in the mitochondria.
 710.314 A = isobars corresponding to either an oxidized Phosphatidylglycerol or oxidized
- 1253.773 A = cytidine diphosphate lipid (CDP-1)
 1544.867 A = possibly Ganglioside SB1a (t18:0/26:0)
 581.309 A = either lysophosphatidylethanolamine (26:6) delta 0.0391 or
 Lysophosphatidylserine (22:0) delta 0.0603. Both compounds are derived from their
 precursors by the enzymatic action of phospholipase A2. The lysophospholipids lead to
 increase eicosanoid production (leukotrienes and prostaglandins)
- 888.641 A = Isobars for unsaturated Phosphatidylinositol with 38 carbons in its tail or an unsaturated triacylglycerol (TG) with 55 carbons composing its three fatty acid tails. 1544.867 H = possibly Ganglioside SB1a (t18:0/26:0) 581.183 H = no ID
 - 1253.773 A = cytidine diphosphate lipid (CDP-1)
 581.309 A = either lysophosphatidylethanolamine (26:6) delta 0.0391 or
 Lysophosphatidylserine (22:0) delta 0.0603. Both compounds are derived from their precursors by the enzymatic action of phospholipase A2. The lysophospholipids lead to increase eicosanoid production (leukotrienes and prostaglandins)


Suppl Fig 19 Behavioral vs lipidomics – TP3

K	form_out	form_lipid	corr
V1	K1: -1*ofd1_fecal	1 x888_641_H	0.6780741
V2	K2: -1*nod1_fecal	-1 x283_264_H	0.6246149
V3	K3: 1*nod2_fecal	-1 x581_183_H	0.6177454

Sparse CCA: Lipidomics vs Behavioral (TP3 SHAM)

K	Torm_out	Torm_lipid	corr
V1	K1: -1*nod2_fecal	-0.04 x1544_867_A + -0.999 x1835_964_A	0.7329386
V2	K2: 1*fc_cued_percent_time_frz_baseline	0.04 x1544_867_H + 0.999 x726_589_H	0.5932461
V3	K3: 1*nod1_fecal	0.999 x1835_964_A + -0.04 x1863_995_H	0.6027099

LIPIDS

- 888.641 H = Isobars for unsaturated Phosphatidylinositol with 38 carbons in its tail or an unsaturated triacylglycerol (TG) with 55 carbons composing its three fatty acid tails.
- 283.264 H = Delta0.0129, n-acylethanolamine (15:1), (induction of inflammation, precursor of eicosanoids or Delta 0.0235, sphingolipid (m18:1), sphingolipid base analog
- K3 581.183 H = no ID

1544.867 A = possibly Ganglioside SB1a (t18:0/26:0) 1835.964 A = Ganglioside Fuc-GM1 (NeuGC)

1544.867 H = possibly Ganglioside SB1a (t18:0/26:0)
726.589 H = isobars corresponding to either sphingomyelin (d18:2/18:1, delta 0.0214) which makes up the myelin sheath around neurons, diacylglycerol or phosphatidic acid

K3 1835.964 A = Ganglioside Fuc-GM1 (NeuGC) 1863.995 H = Ganglioside Fuc-GM1 (NeuGC)