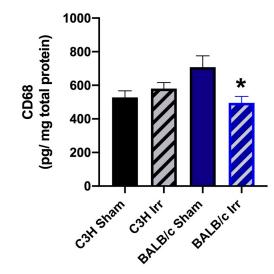
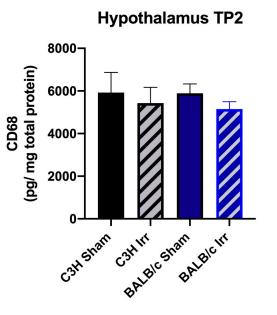
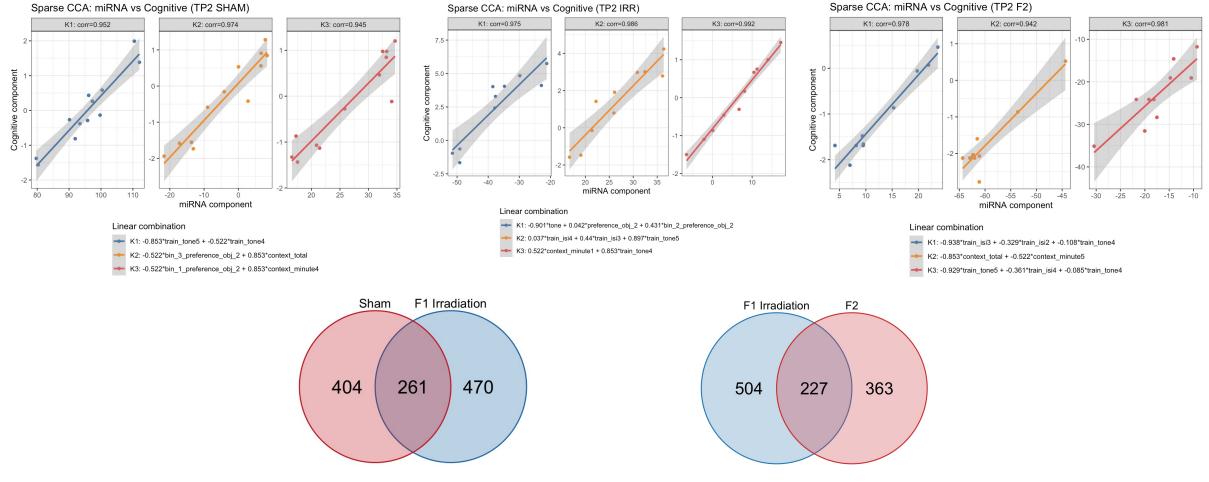

Suppl Fig 1

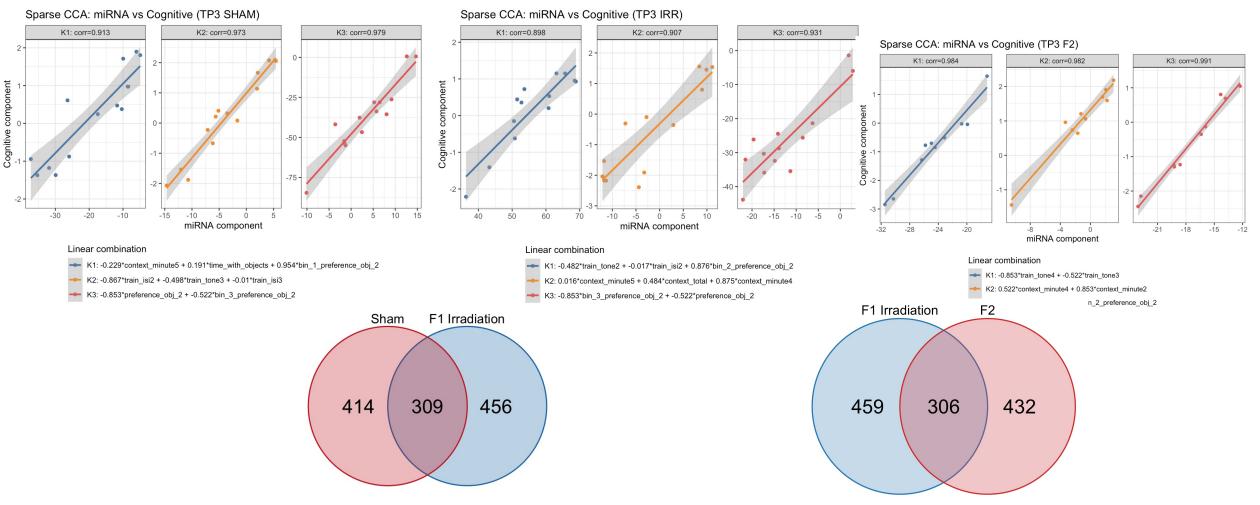

Suppl Fig 2


С

Amygdala TP2



В



Α

Suppl Fig 3 Cognitive vs miRNA – TP2

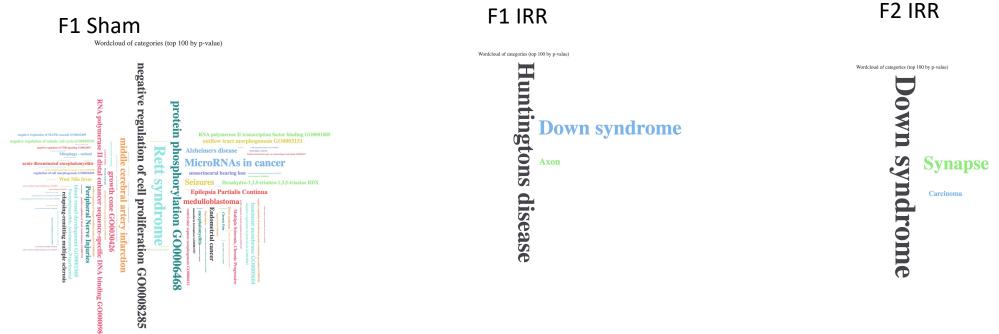
Suppl Fig 4 - Cognitive vs miRNA – TP3

Suppl Fig 5 - Cognitive vs miRNA – TP1

F1 IRR F1 Sham Wordcloud of categories (top 100 by p-value) Wordcloud of categories (top 100 by p-value) Wordcloud of categories (top 100 by p-value) Peripheral Nerve Injuries Multiple Sclerosis, Chronic Progressive **Multiple Sclerosis, Chronic Progressive** Alzheimers disease **Peripheral Nerve Injuries Epilepsia Partialis Continua-**Exosome sensorineural hearing loss ing-remitting multiple ett syndrome Alzheimers disease Chromosome 1 medulloblastoma encephalomyelitis

scle

Adipocytokine signaling pathway

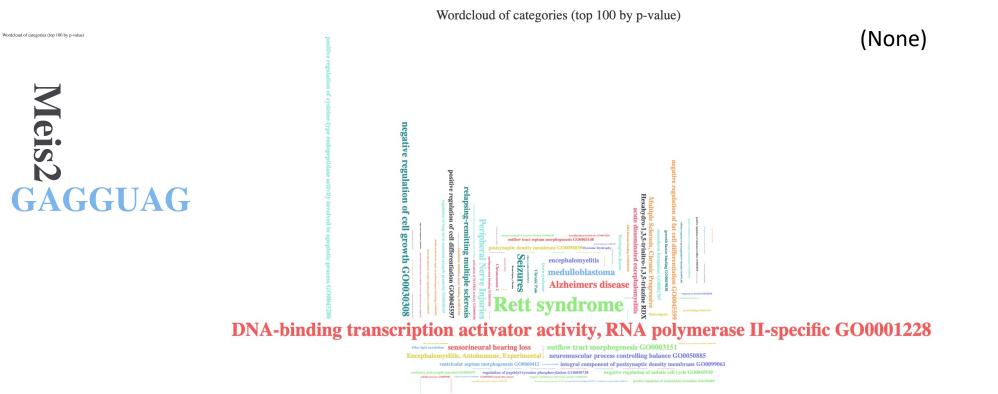

Hexahydro-1,3,5-trinitro-1,3,5-triazine RDX relapsing-remitting multiple sclerosis

F2 IRR

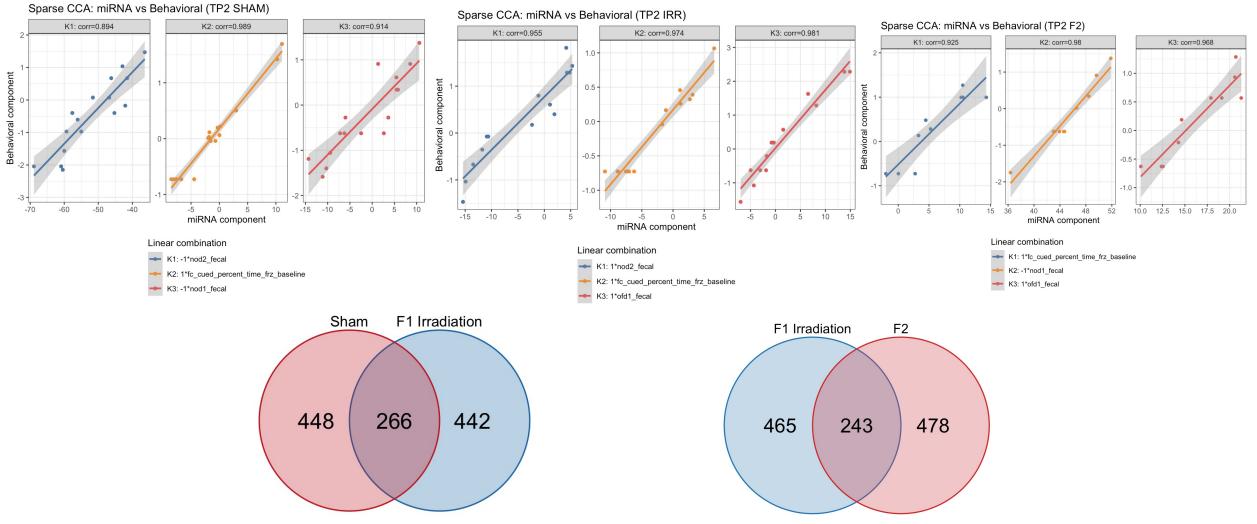
8

Mitochondrion

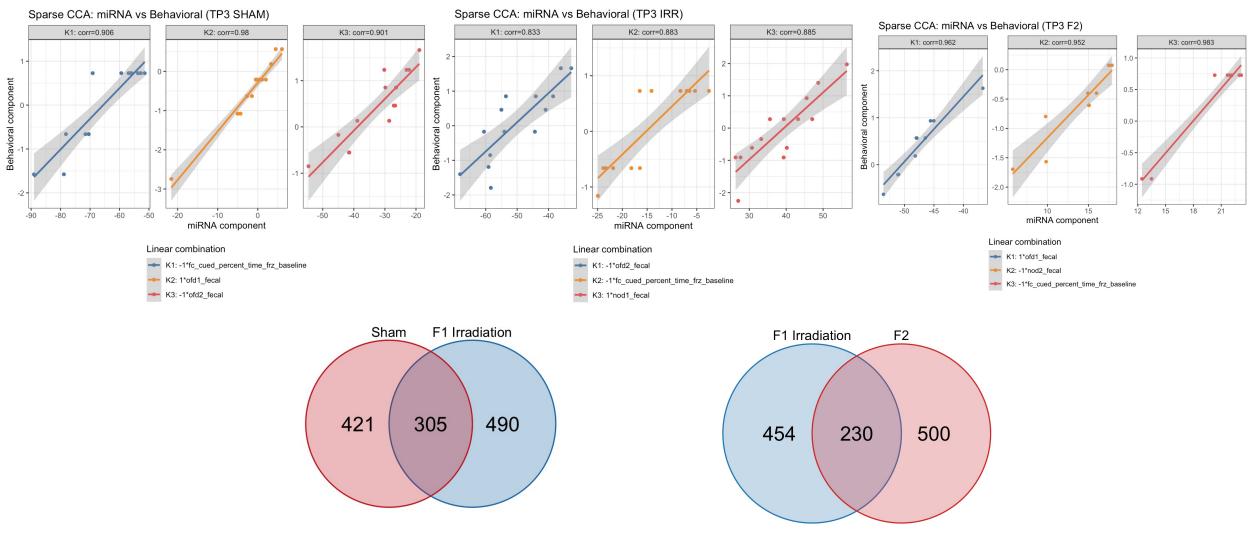
Suppl Fig 6 Cognitive vs miRNA – TP2



Suppl Fig 7 - Cognitive vs miRNA – TP3


F1 Sham

F1 IRR


F2 IRR

Suppl Fig 8 – Behavioral vs miRNA – TP2

Suppl Fig 9 - Behavioral vs miRNA – TP3

Suppl Fig 10 Behavioral vs miRNA – TP1

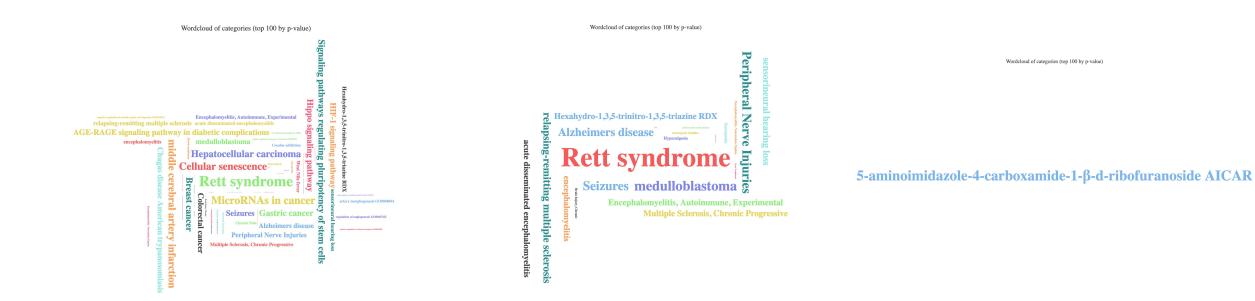

Suppl Fig 11 – Behavioral vs miRNA – TP2

F1 Sham

Wordcloud of categories (top 100 by p-value)

F1 IRR

(None)


F2 IRR

Suppl Fig 12 - Behavioral vs miRNA – TP3

F1 Sham

F1 IRR

F2 IRR

Suppl Fig 13 Lipidomics vs miRNA – TP1 miRNA enrichment LIPIDS Sparse CCA: miRNA vs Lipidomics (TP1 IRR) PD-L1 expression and PD-1 checkpoint pathway in cancer K1: corr=0.976 K2: corr=0.969 K3: corr=0.958 290.087 A = fatty acid which can be of Longevity regulating pathway multiple carbon length and/or number of Necroptosis К1 double bonds **Breast cancer** Lipidomics component K1 MicroRNAs in cancer virus carcinoma 265.147 H = Micropine (sphingoid K2 infection -20 AGE-RAGE signaling pathway in diabetic compl base analogue) 265.147 A = Micropine (sphingoid base (3 25 20 20 miRNA component analogue) Chromosome X Linear combination K1: -1*x290_087_A 877.291 A = no identification, K2: -1*x265_147_H 564.533 A = three biological possibilities: a large 34-35 (None) K3 K3: -1*x265 147 A carbon oxidized unsaturated fatty acid, an oxidized K1 Sparse CCA: miRNA vs Lipidomics (TP1 SHAM) diacylglycerol or a branched fatty acid esters of hydroxy K2: corr=0.984 K3: corr=0.978 K1: corr=0.991 fatty acids (FAHFA 18:1 18:0, Delta of 0.0212) are -26.5 K1 (None) endogenous lipids found in adipose tissue and serum

insulin-resistant humans, 546.523 A = Most-likely a large 34-35 carbon oxidized unsaturated fatty acid or an oxidized diacylglycerol -30 K2 10 15 20 miRNA component **K**3 Linear combination

--- K1: -0.72*x877 291 A + -0.663*x564 533 A + -0.204*x546 523 A

15

10

-27.0 -27.5

-28.0

-28.5

Lipidomi

- K2: -0.807*x1544_847_A + -0.539*x290_087_H + -0.241*x493_165_A
- K3: -0.458*x451 305 A + -0.289*x265 147 A + 0.841*x1281 79 A

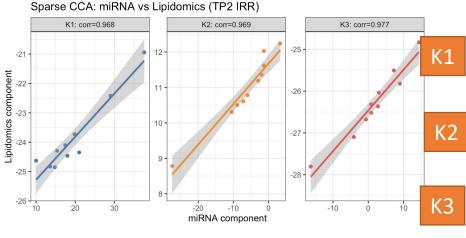
1544.847 A = no ID, 290.087 H = fatty acid which can be of multiple carbon length and/or number of double bonds, 493.164 A = no ID

that correlate with insulin sensitivity and are reduced in

451.305 A = matched mass 451.2699, Delta 0.0351, lysophosphatidylethanolamine (16:0) or Lysophosphatidylcholine (O-14:1) delta 0.0013. LPC is a signal of mitochondrial stress. Both compounds are derived from their precursors by the enzymatic action of phospholipase A2, 265.147A = Micropine (sphingoid base analogue) , 1281.790 A = No ID

Kidney

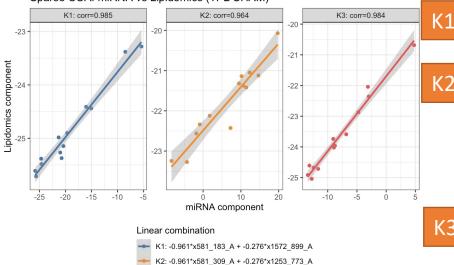
K3


Chromosome

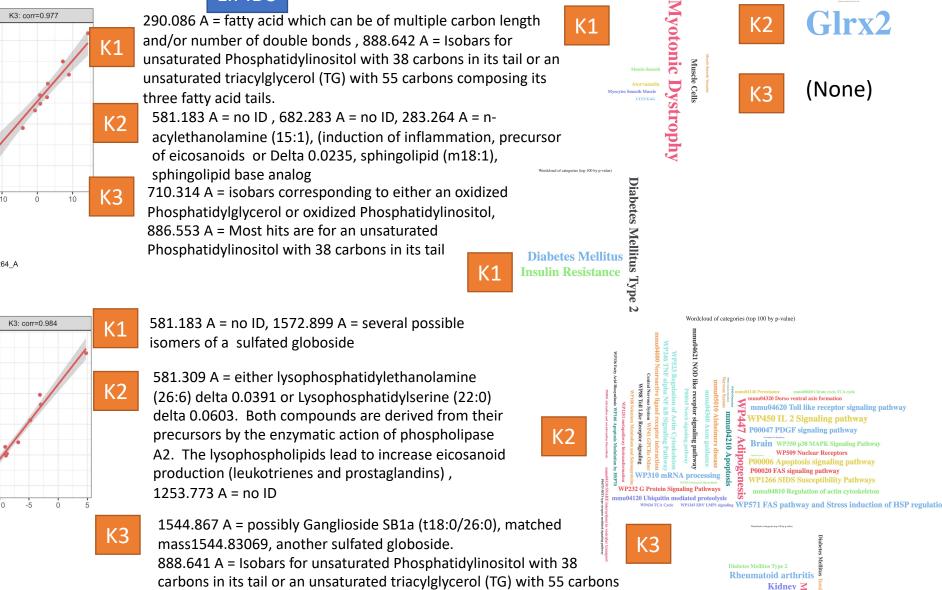
hromosome

00

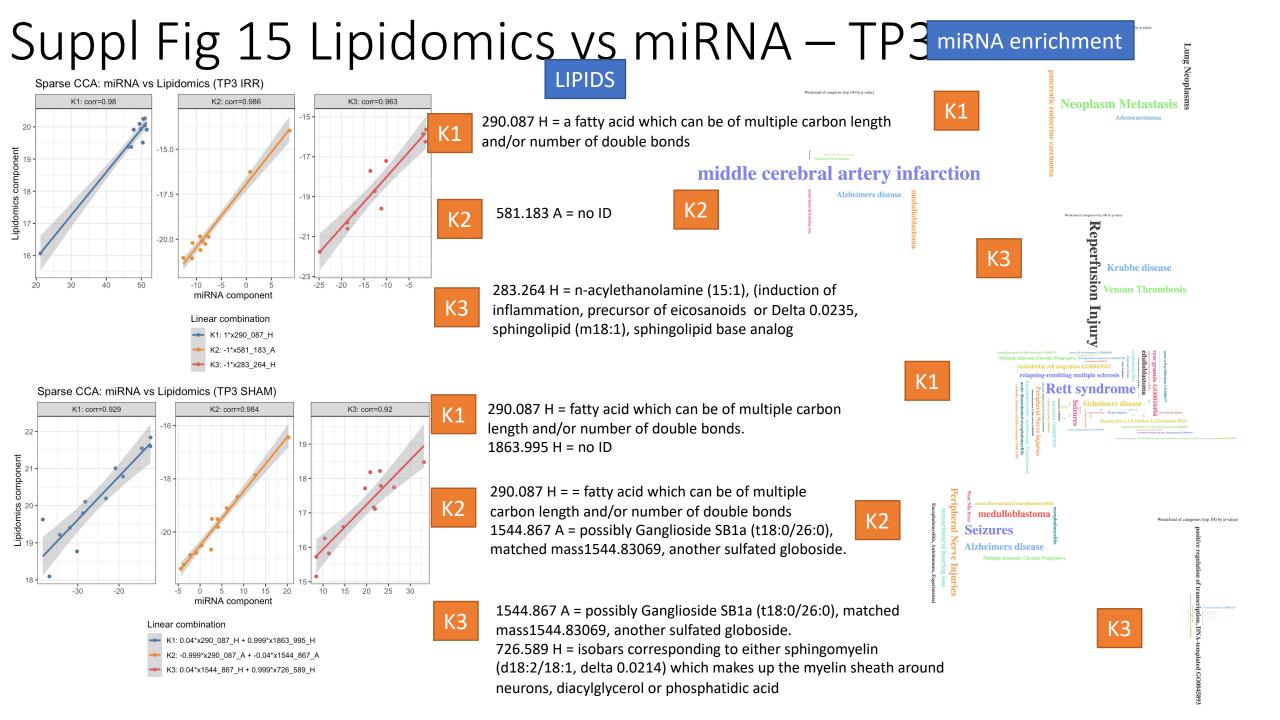
K2


Suppl Fig 14 Lipidomics vs miRNA – TP2 miRNA enrichment

Linear combination

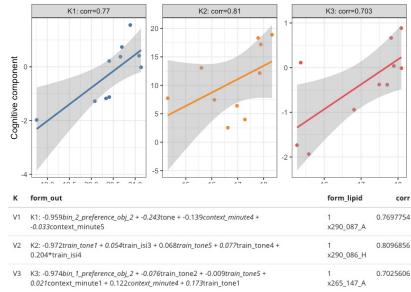

- --- K1: -0.923*x290_086_A + -0.385*x888_642_A
- K2: -0.331*x581_183_A + 0.034*x682_283_A + 0.943*x283_264_A
- ← K3: -0.923*x710_314_A + -0.385*x886_553_A

Sparse CCA: miRNA vs Lipidomics (TP2 SHAM)

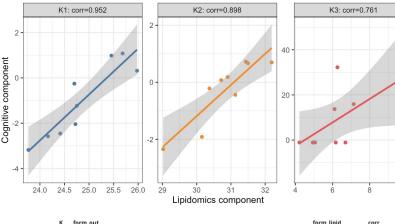


K3: -0.961*x1544_867_A + -0.276*x888_641_A

LIPIDS



composing its three fatty acid tails.



Suppl Fig 16 Cognitive vs lipidomics – TP1

Sparse CCA: Lipidomics vs Cognitive (TP1 IRR)

Sparse CCA: Lipidomics vs Cognitive (TP1 SHAM)

к	form_out	form_lipid	corr
V1	K1: -0.959bin_2_preference_obl_2 + -0.243tone + -0.139context_minute4 + -0.033context_minute5	1 x290_087_A	0.7697754
V2	K2: -0.972 <i>train_tone1</i> + 0.054train_isi3 + 0.068 <i>train_tone5</i> + 0.077train_tone4 + 0.204*train_isi4	1 x290_086_H	0.8096856
V3	K3: -0.974bin_1_preference_obj_2 + -0.076train_tone2 + -0.009train_tone5 + 0.021context_minute1 + 0.122context_minute4 + 0.173train_tone1	1 x265_147_A	0.7025606

K1

K2

290.086 H = a fatty acid which can be of multiple carbon length and/or number of double bonds

290.087 A = a fatty acid which can be of multiple carbon length

265.147 A = Micropine (sphingoid base analogue)

451.305 A = lysophosphatidylethanolamine (16:0) or Lysophosphatidylcholine (O-14:1) delta 0.0013. LPC is a signal of mitochondrial stress. Both compounds are derived from their precursors by the enzymatic action of phospholipase A2 1281.79 A = no ID

1544.847 A = possibly Ganglioside SB1a (t18:0/26:0)

and/or number of double bonds

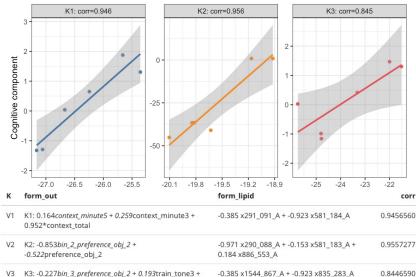
290.087 H = a fatty acid which can be of multiple carbon length and/or number of double bonds

K1

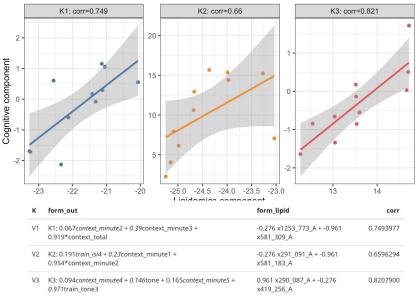
1544.847 A = possibly Ganglioside SB1a (t18:0/26:0)

419.255 A = N-Arachidonoyl Taurine (NAT (18:0)), an arachidonyl aminoacid, N-Arachidonoyl Taurine is increased after the administration of cannabinoid agonists 886.546 A = Most hits are for an unsaturated Phosphatidylinositol with 38 carbons in its tail

493.165 A = no ID, 581.180 A = no ID


708.574 A = Several isobaric possibilities. The largest number of hits corresponds to a Phosphatidylglycerol (PG) of various carbon chain lengths totaling 31 carbons, next would be a diacylglycerol (20:0/22:0 or 21:0/21:0)

1544.849 A = possibly Ganglioside SB1a (t18:0/26:0)


Suppl Fig 17 Cognitive vs lipidomics – TP2

Sparse CCA: Lipidomics vs Cognitive (TP2 IRR)

/3 K3: -0.227bin_3_preference_obj_2 + 0.193train_tone3 + -0.385 x1544_867_A + -0.923 x835_283_A 0.844659 0.955*train_isi2

Sparse CCA: Lipidomics vs Cognitive (TP2 SHAM)

K1 291.091 A = no ID 581.184 A = no ID

290.088 H = a fatty acid which can be of multiple carbon length and/or number of double bonds 581.183 A = no ID

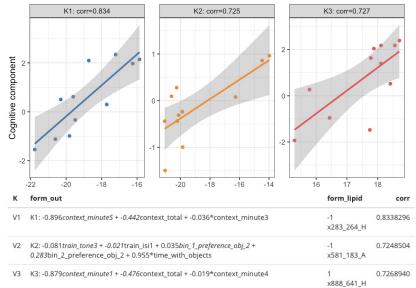
1544.867 A = possibly Ganglioside SB1a (t18:0/26:0) 835.283 A = CDP-1-hexanoyl-2-(6Z,9Z,12Zoctadecatrienoyl)-snglycerol CP1 (cytodine diphosphate lipid), I cannot find any biological activity

1253.773 A = no ID

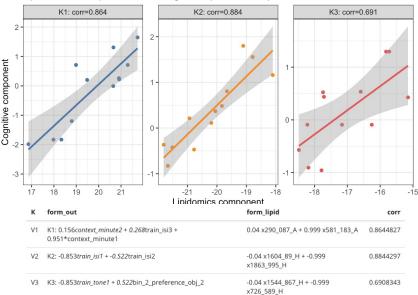
581.309 A = either lysophosphatidylethanolamine (26:6) delta 0.0391 or Lysophosphatidylserine (22:0) delta 0.0603. Both compounds are derived from their precursors by the enzymatic action of phospholipase A2. The lysophospholipids lead to increase eicosanoid production (leukotrienes and prostaglandins)

K1

291.091 A = no ID 581.183 A = no ID


K3

290.087 A = a fatty acid which can be of multiple carbon length and/or number of double bonds


419.256 A = either an acyl carnitine (18:4) matched mass 419.3036, delta 0.0486 or an acyl taurine (20:0) matched mass of 419.3069, delta 0.0519

Suppl Fig 18 Cognitive vs lipidomics – TP3

Sparse CCA: Lipidomics vs Cognitive (TP3 IRR)

Sparse CCA: Lipidomics vs Cognitive (TP3 SHAM)

K1

K2

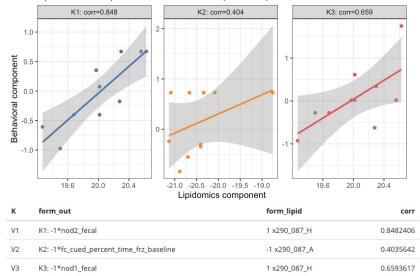
283.264 H = Delta0.0129, n-acylethanolamine (15:1), (induction of inflammation, precursor of eicosanoids or Delta 0.0235, sphingolipid (m18:1), sphingolipid base analog

581.183 A = no ID

888.641 H = Isobars for unsaturated Phosphatidylinositol with 38 carbons in its tail or an unsaturated triacylglycerol (TG) with 55 carbons composing its three fatty acid tails.

290.087 A = a fatty acid which can be of multiple carbon length and/or number of double bonds 581.183 A = no ID

1604.89 H = several possible isomers of a sulfated globoside 1863.995 H = no ID


1544.867 H = possibly Ganglioside SB1a (t18:0/26:0)

726.589 H = isobars corresponding to either sphingomyelin (d18:2/18:1, delta 0.0214) which makes up the myelin sheath around neurons, diacylglycerol or phosphatidic acid

Suppl Fig 19 Behavioral vs lipidomics – TP1

Sparse CCA: Lipidomics vs Behavioral (TP1 IRR)

Sparse CCA: Lipidomics vs Behavioral (TP1 SHAM) K2: corr=0.444 K1: corr=0.555 K3: corr=0.509 Behavioral component 0.5 0.0 -0.5 20.0 20.4 16.5 17.5 18.5 -18 -17 -16 19.6 Lipidomics component form_lipid form_ou corr

V1	K1: 1*ofd1_fecal	-1 x290_086_H	0.5554043
V2	K2: 1*fc_cued_percent_time_frz_baseline	1 x290_087_H	0.4440140
V3	K3: 1*nod1_fecal	1 x265_147_A	0.5085519

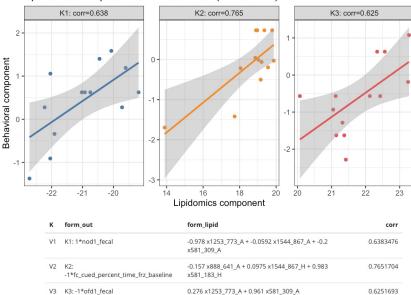
290.087 H = a fatty acid which can be of multiple carbon length and/or number of double bonds

290.087 A = a fatty acid which can be of multiple carbon length and/or number of double bonds

290.087 H = a fatty acid which can be of multiple carbon length and/or number of double bonds

290.086 H= a fatty acid which can be of multiple carbon length and/or number of double bonds


290.087 H = a fatty acid which can be of multiple carbon length and/or number of double bonds


265.147 A = Delta0.0572, Micropine (sphingoid base analogue)

Suppl Fig 20 Behavioral vs lipidomics – TP2

Sparse CCA: Lipidomics vs Behavioral (TP2 IRR)

Sparse CCA: Lipidomics vs Behavioral (TP2 SHAM)

1544.867 A = possibly Ganglioside SB1a (t18:0/26:0) 1863.996 A = no ID

1544.870 A = possibly Ganglioside SB1a (t18:0/26:0) 2127.061 A = Matched mass, 2127.16016 Ganglioside GD1a(NeuGc/NeuGc) (t18:0/36:6(18Z,21Z,24Z,27Z,30Z,33Z), brain ganglioside and it shows the correct mouse sialyation of NeuGc.

K3

K1

K2

581.184 A = no ID 682.283 A = no ID

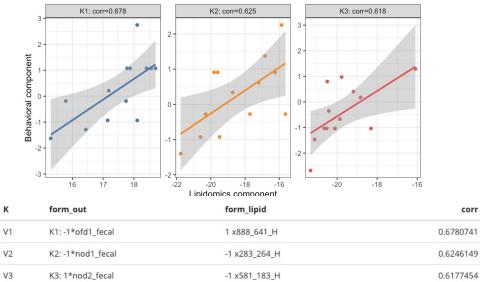
710.314 A = isobars corresponding to either an oxidized Phosphatidylglycerol or oxidized Phosphatidylinositol

1253.773 A = no ID

1544.867 A = possibly Ganglioside SB1a (t18:0/26:0) 581.309 A = either lysophosphatidylethanolamine (26:6) delta 0.0391 or Lysophosphatidylserine (22:0) delta 0.0603. Both compounds are derived from their precursors by the enzymatic action of phospholipase A2. The lysophospholipids lead to increase eicosanoid production (leukotrienes and prostaglandins)

K3

K1


888.641 A = Isobars for unsaturated Phosphatidylinositol with 38 carbons in its tail or an unsaturated triacylglycerol (TG) with 55 carbons composing its three fatty acid tails. 1544.867 H = possibly Ganglioside SB1a (t18:0/26:0) 581.183 H = no ID

1253.773 A = no ID

581.309 A = either lysophosphatidylethanolamine (26:6) delta 0.0391 or Lysophosphatidylserine (22:0) delta 0.0603. Both compounds are derived from their precursors by the enzymatic action of phospholipase A2. The lysophospholipids lead to increase eicosanoid production (leukotrienes and prostaglandins)

Suppl Fig 21 Behavioral vs lipidomics – TP3

Sparse CCA: Lipidomics vs Behavioral (TP3 IRR)

Sparse CCA: Lipidomics vs Behavioral (TP3 SHAM)

К	form_out	form_lipid	corr
V1	K1: -1*nod2_fecal	-0.04 x1544_867_A + -0.999 x1835_964_A	0.7329386
V2	K2: 1*fc_cued_percent_time_frz_baseline	0.04 x1544_867_H + 0.999 x726_589_H	0.5932461
V3	K3: 1*nod1_fecal	0.999 x1835_964_A + -0.04 x1863_995_H	0.6027099

K2

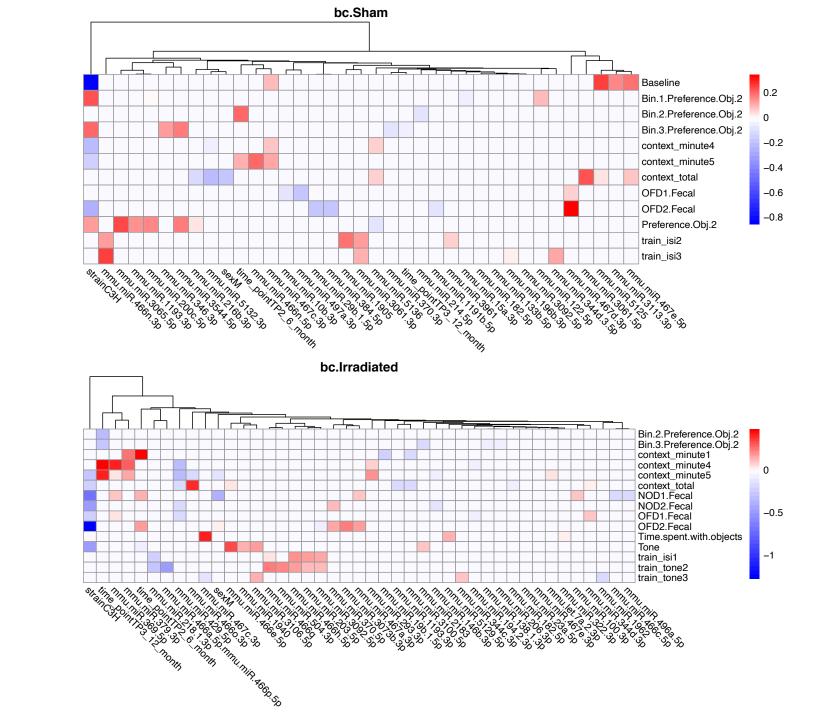
888.641 H = Isobars for unsaturated Phosphatidylinositol with 38 carbons in its tail or an unsaturated triacylglycerol (TG) with 55 carbons composing its three fatty acid tails.

283.264 H = Delta0.0129, n-acylethanolamine (15:1), (induction of inflammation, precursor of eicosanoids or Delta 0.0235, sphingolipid (m18:1), sphingolipid base analog

581.183 H = no ID

K1

K2


21

1544.867 A = possibly Ganglioside SB1a (t18:0/26:0) 1835.964 A = no ID

1544.867 H = possibly Ganglioside SB1a (t18:0/26:0)

726.589 H = isobars corresponding to either sphingomyelin (d18:2/18:1, delta 0.0214) which makes up the myelin sheath around neurons, diacylglycerol or phosphatidic acid

K3 1835.964 A = no ID 1863.995 H = no ID

Suppl. Fig 22