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Appendix A: Data generating process
The data that we analyse from MFT is routinely collected by the hospital ad-

ministration teams. Details from doctors’ notes and patient admissions are entered

into the Trust’s Patient Administration System (PAS). Patient data from PAS and

WardWatcher are then aggregated together to determine an individual’s entire hos-

pitalisation pathway. We further make use of data collected by MFT on testing for

COVID-19; this is, again, collected and entered manually into a database called

Telepath, which is subsequently joined to the main Trust database by the Trust’s

data warehouse.

In addition to this routinely collected information, trusts have also been required

by Public Health England (PHE) to report individual-level data on patients re-

ceiving care for acute respiratory infection and aggregate data on all COVID-19

admissions for CHESS. This information is submitted by 09:00 each day with data

corresponding to the previous day. This data is compiled manually, requiring ad-

ditional input from administrative staff to ensure that the data is sent on time

and with the correct information. Information sent to PHE by individual trusts is

then compiled into a dataset that is disseminated weekly to trusts and reported on

weekly to NHS England.

Appendix B: Value-missingness in CHESS data

Figure A1 Percentage of values that are missing or recorded as unknown for the variables of the
raw CHESS data that are used in this paper (Date and week of Hospital Admission, Was in ICU?,
ICU Admission date - conditional on the patient being admitted to ICU, Final outcome date, Sex,
and Age). Source: own elaboration using CHESS data for England.

Figure A1 presents the percentage of missing values in the raw CHESS data

reported by NHS trusts grouped by region. London followed by Midlands have the

highest percentages of missing values, while South West obtains the smallest one.

In terms of the variables, final outcome date variable has 33.6% of missing values.

These will be split into cases where the missingness is because the final outcome

has not yet happened and those where it has happened but has not been captured.
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ICU admission date conditioned on whether the patient was admitted to ICU has

5.36% missing values. Age has 0.29% missing values, and date and week of hospital

admission only have 0.06%.

By contrast, sex and the variable regarding whether a patient was in ICU or not do

not have missing values. However, these do have some recorded values of ”unknown”

which we interpret as missing. Sex has 0.23% of unknown values, whereas the item

regarding being admitted to ICU has 4.41%.

Appendix C: Data processing

We use CHESS data released on 26 May 2020 (N = 16, 138). We first filter out 493

duplicated cases. The de-duplication rule set as follows.

Rule 0

number of records 1

IDS are singular

Date/time of admission to ICU Any

Other variables Any values

Action leave unchanged

Rule 1

number of records 2

IDS are Identical

Date/time of admission to ICU Identical values for dateadmittedicu

Other variables different values for hospitaladmissiondate

Action Include record with the earliest hospitaladmissiondate,

delete the others

Rule 2

number of records 2

IDS are Identical

Date/time of admission to ICU Identical values for dateadmittedicu

Other variables identical values for hospitaladmissiondate

Action Include record with the earliest sbdate, delete the others

Rule 3

number of records 2

IDS are Identical

Date/time of admission to ICU Different values for dateadmittedicu

Other variables ICU periods are non contiguous

Action Leave all records in the file but record a different obsid

for each record
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Rule 4

number of records 2

IDS are Identical

Date/time of admission to ICU Different values for dateadmittedicu

Other variables ICU periods are contiguous

Action Merge the records to a single record which has the earliest

hospitaladmissiondate and dateadmittedicu and the

latest dateleavingicu

Rule 5

number of records 2

IDS are Identical

Date/time of admission to ICU One of them doesn’t have dateadmittedicu

Other variables

Action Include record with dateadmittedicu, delete the others

Rule 6

number of records 2

IDS are Identical

Date/time of admission to ICU Neither has dateadmittedicu

Other variables different values for hospitaladmissiondate

Action Include record with the earliest hospitaladmissiondate,

delete the others

Rule 7

number of records 2

IDS are Identical

Date/time of admission to ICU Neither has dateadmittedicu

Other variables identical values for hospitaladmissiondate

Action Include record with the earliest sbdate, delete the others

Rule 8

number of records 2

IDS are Different

Date/time of admission to ICU Identical values for dateadmittedicu, hoursadmittedicu

and minutesadmittedicu (and those values are not missing).

Other variables identical vales for: sex, ageyear, agemonth, hospitaladmissiondate,

trustcode, postcode

Action Use the record with the earliest estimateddateonset or

infectionswabdate, delete the others
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Rule 9

number of records 4

IDS are Identical

Date/time of admission to ICU identical values for dateadmittedicu for a and b, identical

values for c and d and a <c

Other variables a and c have identical values for hospitaladmissiondate as do

b and d and a <b

Action delete b and d and run the rule set over a and c

Rule 10

number of records >1

IDS are Identical

Date/time of admission to ICU
Any not meeting the above conditions

Other variables

Action mark for clerical review

The rules are applied in numerical order. In the small number of cases where rule

10 applies then this will always be where two or more of the rules need to be applied

in combination.

We only analyse those patients whose records make explicit that the admission

to the hospital unit was due to COVID-19. We make this assumption to exclude

nosocomial cases, for whom the LoS begins when they were admitted to hospital

for non-COVID-19 reasons. It does not make sense to compare these cases with

LoS from COVID-19 hospitalisations. Thus, from 15, 645 deduplicated cases, 8, 938

entries were excluded.

Furthermore, we only analysed cases who were admitted to hospital from 16 March

2020 to 17 May 2020 (i.e. from week 12 to 20). Data before week 12 was omitted as

this sample size was small and the treatment policy was different from that in more

recent data, with patients having very long lengths of stay early in the outbreak.

Data after week 20 was omitted as there are often corrections to historical data

from the last week or so, so we could not treat the most recent data as reliable.

This removed 317 additional cases.

Finally the omission of cases due to unknown sex, and negative values in age

or recorded age of zero, and unknown (effectively missing) information regarding

whether a patient was admitted to ICU or not led to a dataset of 6, 208 records. The

removal of the records that have an age of 0 recorded needs further explanation. The

number of records with age 0 was 725 (which compares to 15 age 1’s). Many such

records had characteristics that one would not attribute to newborns (e.g. obesity,

smoking, diabetes, ulcers etc.). We also note that some cases with ages recorded as

0 in early versions of the CHESS dataset had been updated with non-zero ages by

26 May. It seems likely that the data entry system for CHESS has a default setting

of ”today” for the DOB and therefore in effect the vast majority of Age 0’s were in

fact cases where the age/DOB was not available when the data were entered. Hence

removing these cases seems prudent.

Some LoS have zero length, where patients enter and leave ICU on the same

day and only have to the day of arrival and departure recorded not the time. For

such cases, we assumed the outcome occurred half a day after admission, since
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instantaneous durations are unrealistic. Half a day was chosen so that these cases

were not biased to either side of their recorded data. Some cases recorded hourly

data for some events but not all, causing some LoS to be in (−1, 0). For them, we

also adjust the outcome date to half a day after admission. All patients with LoS in

(−∞,−1] were discarded. In total 849 cases had their ICU admission date changed

to half a day after hospital admission, 41 cases had the ICU discharge date changed

to half a day after ICU admission and 199 cases had final outcome date changed to

half a day after hospital admission. Therefore, the choice of how to adjust this data

has the largest impact on the hospital admission to ICU length of stay, where this

constitutes 28% of cases. For this length of stay, moving the adjustment to different

extremes (either adding 0.1 or 0.9) changes the length of stay estimates by no more

than one tenth of a day. Therefore, this data processing method does not have a

substantial impact on the LoS estimates.

Appendix D: Multi-state survival analysis
Here we present the details of the multi-state survival model used in our analy-

sis. Suppose an individual is in state u at time t, then the move that an indi-

vidual makes to their next state v is governed by a set of transition intensities

quv(t) = limδt→0 Pr(S(t + δt) = v | S(t) = u)/δt. The intensity represents the the

instantaneous rate of transition from state u to state v.

Data structure and transition-specific parametric models

Given the granularity of routinely collected data in hospitals, all transition times

between states are observed exactly, with no additional transitions between ob-

servation times. Such data allows us to efficiently model the transition intensities

parametrically, which we show here with the use of a Weibull accelerated failure

time (AFT) model.

It is important to note that the data must first be structured in a specific way.

In contrast to standard survival analysis, in the multi-state case, we now have a

series of event times t1, . . . , tn for each individual, corresponding to each change

in state. The last of these, may be observed so that the patient has entered an

absorbing state i.e. they are discharged or dead, or right censored if the patient

is still in the hospital. When there are nu competing events for state u, a patient

entering state u at time tj , has their next event at tj+1 which is defined as the

minimum time amongst the survival times of the competing events v1, . . . , vnu
. A

row is created for each transition that is possible for the patient, with an additional

column consisting of an indicator corresponding to whether or not the transition is

observed or censored at tj+1. In this format, we can separate the data by transition

and fit a transition-specific parametric model to each subset [?]. Our required data

format is described in detail in [?].

Weibull AFT model

In the survival framework, for a random variable T , denoting the time until an event

of interest occurs, the survival function is given by S(t) = 1 − F (t), where F (t) is

the cumulative density function of T . The hazard function, λ(t), is defined as the
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instantaneous the instantaneous rate of occurrence of an event and is given by

λ(t) = lim
δt→0

P (t ≤ T < t+ δt | T ≥ t)

δt
.

If we assume that T ∼ Weibull(k, α), for shape parameter k and scale α, then

the baseline survival and hazard functions are given by S̄(t) = exp(−αtk) and

λ̄(t) = αktk−1, respectively.

In an AFT model, predictors, x, act multiplicatively on time. This in contrast to

the proportional hazards model where the predictors act multiplicatively on the

hazard. If we let φi = eγ·xi , where γ are the regression coefficients, then we get

that

Si(t) = exp(−αtki φi)

λi(t) = φiλ(φit) = φik(φit)
k−1 = φk

i kt
k−1.

The model is fit using the maximum likelihood estimation (MLE) method. Formu-

lating the likelihood for a survival model requires the consideration of both the con-

tribution of censored and uncensored individuals. For a potentially right-censored

observation, let ci be the event indicator for the ith individual with ci = 1 if an

event occurred and ci = 0 otherwise. Then the likelihood is given by

L(γ, k; ti) =

n∏

i=1

λi(ti)
ciSi(ti).

Therefore it follows that the log-likelihood for such a model is given by

L =
n∑

i=1

[ci log(λi(ti)) + log(Si(ti))]

=
∑

i

[ci(log(kt
k−1
i ) + k log(φi))− (φiti)

k]

=
∑

i

[ci(log(kt
k−1
i ) + kγTxi)− tki e

kγT xi ].

Simulation/Bootstrap

In order to predict time to each transition from all states, we use a Monte Carlo

simulation approach. This provides greater flexibility than computing length of stay

via an integration, allowing us to predict patient pathways during an outbreak in

addition to estimating length of stay in each state. As such, it creates a more pow-

erful planning tool for hospital management. The number of simulated individuals,

N , is based on COVID-19 positive hospital admissions from MFT since 23 Febru-

ary 2020. Individual survival times are simulated using estimates from each fitted

transition-specific model, and iterating through the transition matrix until all pa-

tients have reached an absorbing state or are censored at a specified maximum

follow-up time. The structure of the simulation treats the simulation as a sequence

of competing hazards in the following way.
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Let u be the patient’s starting state, entered at time tu = s and tmax the maximum

follow-up time of interest. For each day of interest, repeat the following to simulate

paths for every new admission:

1 Let V be the set of states with an allowed transition from u and Qu = |V |
be the number of possible transitions from u. While v ∈ V , let λuv(t) be the

transition intensity for the transition from u to v. Note, if Qu = 0, we are in

an absorbing state and stop.

2 For each possible transition, use the fitted parameter estimates of λuv(t) to

simulate a survival time, t̄uv.

3 Set t̄ = min{t̄u1, . . . , t̄uQu
, tmax}. If t̄ = tmax, stop for this individual.

4 Let u = z for z ∈ V such that t̄ = tuz and set tu = t̄

Appendix E: Competing Hazards vs. Conditional Hazards

In this Appendix, we compare using conditional versus competing hazards within

a multi-state framework. The MS model in the main text describes competing haz-

ards, whereas the AFT and TC methods use conditional hazards. Competing haz-

ards are perhaps more useful, but require very high quality data. If such data are

not available, it may only be possible to estimate conditional hazards (where we

condition on observing a given transition). However, here we demonstrate that these

can be combined with estimates for the transition probabilities to obtain competing

hazards. Thus, we conclude that coupling conditional hazards with transition prob-

abilities can capture the same phenomena as a model based on competing hazards.

Consider the situation where a system has a state X(t) and starts in state X(0) =

0 and moves to one of n states indexed by i, j, . . . ∈ [n], where [n] is the set of integers

from 1 to n inclusive.

0

1

2

n

λ1(t)
λ2(t)

λn(t)

Letting πi(t) = Pr(X(t) = i), we get Chapman-Kolmogorov equations

dπ0

dt
= −(1− π0)

n∑

j=1

λj ,
dπi

dt
= (1− π0)λi , i ∈ [n] , (1)

for initial conditions π0(0) = 1, πi(0) = 1. We now consider two models. In a

competing hazards approach, each rate is a general integrable function, and we

write these integrals as

Λi(t) =

∫ t

0

λi(u)du , i ∈ [n] . (2)
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In a conditional approach, we add an additional random variable, I, which is the

state that the system will move to, i.e. limt→∞ X(t). We then let

λi(t) = 1{I=i}ri(t) , (3)

where ri(t) is the rate of going from 0 to i conditional on that being the event that

happens. Integrals of these rates are defined as

Ri(t) =

∫ t

0

ri(u)du , i ∈ [n] . (4)

Our aim is to show that the two approaches (competing and conditional) can be

calibrated to give consistent results for quantities of interest.

One result needed for consistency is on the final outcome probabilities:

Pr(I = i) = lim
t→∞

Pr(X(t) = i) =: π∞
i , i ∈ {0} ∪ [n] , (5)

where we have allowed for the possibility that the system may never leave the state

0, although for most of the parametric models we consider that will not be the case.

Imposing consistency of the probability of being in state 0 over time, by integrating

(1) and using the law of total probability for the conditional model,

π0(t) = exp
(
−
∑

i∈[n]Λi(t)
)
= π∞

0 +
∑

i∈[n]π
∞
i exp (−Ri(t)) . (6)

Substituting (6) back into (1), we can then obtain (also using the law of total

probability)

dπi

dt
= λi(t)

(
1− exp

(
−
∑

i∈[n]Λi(t)
))

= π∞
i ri(t) (1− exp (−Ri(t))) , i ∈ [n] .

(7)

We can then solve both (6) and (7) simultaneously using the Ansatz

λi = Cπ∞
i ri(t) . (8)

This ensures that (7) is satisfied, then substituting into (6) we obtain

exp
(
−C

∑
i∈[n]π

∞
i Ri(t)

)
= π∞

0 +
∑

i∈[n]π
∞
i exp (−Ri(t)) , (9)

and hence

C =
log

(
π∞
0 +

∑
i∈[n]π

∞
i exp (−Ri(t))

)

−
∑

i∈[n]π
∞
i Ri(t)

. (10)

This demonstrates that it is possible to capture the same phenomena of interest in

the two models given appropriate calibration.
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Appendix F: Additional results
In the main results section, we provided estimates for the LoS until any outcome.

This was chosen to facilitate comparison between the different methods. In addition

to this LoS, the TC method and the MS method can be used to estimate the

length of stay until given outcomes such as discharge or death.[1] In this section,

we compare estimates for these LoS. Again, pathways are disaggregated by whether

the individual went via ICU. Here we choose to omit further predictor variables

such as age or week of admission from the TC method to aid comparison.

Table A1 shows the comparison. For the LoS without ICU, the two methods give

similar estimates. Using the TC method on the CHESS data predicts that LoS to

mortality without ICU is slightly shorter than that to discharge, whereas the MS

model on the MFT data predicts vice versa. This might be explained by the small

sample size for the MFT data and the different demographic profile of the wider

population captured by CHESS. The two methods predict very different LoS on

ICU, with ICU to mortality being more than 5 days longer in MS (15.8 days) to

that predicted by TC (10.2 days). Similarly, the LoS from ICU to stepdown, where

individuals are discharged from ICU back to the general ward, is also longer with

the MS model. As with the main results, this could most likely be explained by

the presence of a much higher proportion of ECMO patients in the MFT data than

in the CHESS data. The LoS from stepdown to discharge is similar for the two

methods, with 7.9 from TC and 6.2 from MS. We are unable to estimate stepdown

to ICU from CHESS due to the small number of such cases present in the data.

Table A1 Length of stay estimates to given outcome for England using the truncation corrected (TC)
method, and for the Manchester Trust using the multi-state (MS) method. Source: own elaboration
using CHESS and MFT data.

Method Hospital trajectory Mean 95% Confidence Interval

TC Acute Ward to ICU 2.0 (1.9, 2.1)

TC Acute Ward to Discharge 9.4 (8.9, 9.9)

TC Acute Ward to Mortality 8.3 (7.8, 8.9)

TC ICU to Stepdown 16.6 (15.6, 17.6)

TC ICU to Mortality 10.2 (9.7, 10.7)

TC Stepdown to ICU NA NA

TC Stepdown to Discharge 7.9 (7.5, 8.3)

Multistate Acute Ward to ICU 2.2 (1.9, 2.9)

Multistate Acute Ward to Discharge 7.8 (7.0, 8.6)

Multistate Acute Ward to Mortality 8.7 (7.5, 9.8)

Multistate ICU to Stepdown 20.1 (15.9, 25.1)

Multistate ICU to Mortality 15.8 (12.0, 21.5)

Multistate Stepdown to ICU 2.2 (1.1, 7.6)

Multistate Stepdown to Discharge 9.9 (7.2, 14.0)

Figure A2 shows the output of our simulator on bootstrapped MFT data using

the complete multi-state model in Figure 1. The red line represents true data that is

plotted against 200 bootstrap simulations using fitted estimates for the transitions.

[1]A univariate AFT model is not fit for estimating LoS for competing hazards, such as for death
and discharge.
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Day 0 is taken to be 23 February, which we have taken to be the start of the national

outbreak for the UK.

Figure A2 Output of our simulation using the MS method (black cloud of points) on MFT data
(red lines). Source: own elaboration using MFT data.

Appendix G: Model Validation Results

Table A2 compares our mean LoS estimates from each model with the observed

LoS in the data. For both the CHESS and MFT datasets we show the LoS from the

censored data that was available prior to the 17th of May, which was the cutoff date

for our original analysis, and from the uncensored data obtained once all patient

outcomes had been observed. We also show the difference between the two, thereby

showing by how much taking the observed mean LoS from the data underestimates

the true LoS. For each model we then record the estimated LoS for each pathway

and calculate both the absolute error when compared to the true uncensored LoS

from the data as well as the error as a percentage of the LoS underestimate.
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Table A2 Validation of our models against the fully observed, uncensored (UC) data. For the
accelerated failure time (AFT) and truncation corrected (TC) models we record both the absolute
difference between our model mean estimates and the uncensored data from CHESS and as a
percentage of the difference between the censored (C) and uncensored data. For the Multistate (MS)
model we perform the same analysis, but against the data from MFT.

Admission to

ICU entry

ICU entry to

ICU exit

Admission to

Outcome

(via ICU)

Admission to

Outcome

(no ICU)

CHESS Data

LoS (C) 2.12 11.58 16.03 8.37

LoS (UC) 2.18 14.16 21.19 9.41

LoS Underestimate 0.06 2.58 5.16 1.04

AFT model

Mean 2.00 12.40 16.20 8.40

Difference 0.18 1.76 4.99 1.01

% of adjustment -200.00 31.78 3.29 2.88

TC model

Mean 2.00 13.40 17.30 9.10

Difference 0.18 0.76 3.89 0.31

% of adjustment -200.00 70.54 24.61 70.19

MFT Data

LoS (C) 1.30 13.72 17.21 6.86

LoS (UC) 1.35 18.58 30.57 8.52

LoS Underestimate 0.05 4.86 13.36 1.66

MS model

Mean 2.33 18.93 29.73 7.97

Difference -0.98 -0.35 0.84 0.55

% of adjustment 2060.00 107.20 93.71 66.87


