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Web Appendix A: Proof of Proposition 1

For each cluster k = 1, ...,K, let Yk = X∗kB
∗
k + Ek, where Yk is an nk × J response matrix, X∗k is an nk × (p+ 1)

matrix of predictors and latent truncated normal random variables from equation (6) in the manuscript, B∗k is
a (p + 1) × J matrix of regression and skewness coefficients from equation (6), and Ek is the nk × J matrix of
residuals associated with Yk. We assume Ek ∼ MatNorm(0, Ink

,Σk), where 0 is an nk × J matrix of 0’s, Ink

is the nk dimensional identity matrix, and Σk is a J × J variance-covariance matrix. As prior distributions,
we assume B∗k|Σk ∼ MatNorm(B∗0k,L0k,Σk) and Σk ∼ IW(ν0k,V0k). That is, B∗k and Σk have a joint Matrix
Normal–Inverse Wishart (IW) prior, denoted MatNorm–IW(p+1)×J(B∗0k,L0k, ν0k,V0k), of the form

π(B∗k,Σk) = π(B∗k|Σk)π(Σk)

= MatNorm(p+1)×J(B∗0k,L0k,Σk)IW(ν0k,V0k),

where B∗0k is a (p + 1) × J prior mean matrix, L0k and V0k are, respectively, (p + 1) × (p + 1) and J × J prior
scale matrices, and ν0k denotes the prior degrees of freedom. Under this set-up, the full conditional distribution
for B∗k can be obtained as follows:

B∗k|Σk,Yk ∝ exp

(
−1

2

[
tr{Σ−1k (Yk −X∗kB

∗
k)
T (Yk −X∗kB

∗
k)}+ tr{Σ−1k (B∗k −B∗0k)

TL−10k (B∗k −B∗0k)}
])

∝ exp

(
−1

2

[
tr{Σ−1k (Yk −X∗kB

∗
k)
T (Yk −X∗kB

∗
k) + (B∗k −B∗0k)

TL−10k (B∗k −B∗0k)}
])

∝ exp

(
−1

2

[
tr{Σ−1k (B∗k − B∗k)TL−1k (B∗k − B∗k)}

])
after completing the square,

where B∗k = Lk(L
−1
0k B∗0k + X∗Tk Yk) and Lk = (L−10k + X∗Tk X∗k)

−1. Similarly, we may express f(Σk|B∗k,Yk) as

f(Σk|B∗k,Yk) ∝ f(Yk|B∗k,Σk)π(B∗k|Σk)π(Σk), where

f(Yk|B∗k,Σk) ∝ |Σk|−nk/2 exp

(
−1

2

[
tr{Σ−1k (Yk −X∗kB

∗
k)
T (Yk −X∗kB

∗
k)}
])

,

π(B∗k|Σk) ∝ |Σk|−(p+1)/2 exp

(
−1

2

[
tr{Σ−1k (B∗k −B∗0k)

TL−10k (B∗k −B∗0k)}
])

, and

π(Σk) ∝ |Σk|−(ν0k+J)/2 exp

[
−1

2
tr(Σ−1k V0k)

]
.

Combining terms, we have

f(Σk|B∗
k,Yk) ∝ |Σk|−

nk+ν0k+(p+1)+k+1

2

× exp

(
−1

2
tr
[
Σ−1
k {V0k + (Yk −X∗

kB
∗
k)T (Yk −X∗

kB
∗
k) + (B∗

k −B∗
0k)TL−1

0k (B∗
k −B∗

0k)}
])
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Thus, Σk|B∗k,Yk ∼ IW(νk,Vk), where

νk = ν0 + nk + p+ 1, and

Vk = V0k + (B∗k −B∗0k)
TL−10k (B∗k −B∗0k) + (Yk −X∗kB

∗
k)
T (Yk −X∗kB

∗
k),

as outlined in Proposition 1 of the manuscript.

Web Appendix B: MCMC Algorithm

In this section we outline Gibbs updates of all model parameters. For ease of notation, each parameter update is
implicitly assumed to be conditional on the data and other model parameters. All notation is defined as in Section
3. The algorithm presented below is not necessarily optimized for computational efficiency.

1. Update missing responses, ymissi . For i = 1, ..., n and given zi = k:

(a) Partition µki and Σk, the variance of εki in equation (3) of the manuscript, as

µki =

(
µmisski

µobski

)
and Σk =

(
Σk11 Σk12

Σk21 Σk22

)
;

(b) Compute µcondki = µmisski + Σk12Σ
−1
k22(y

obs
i − µobski ).

(c) Compute Σcond
k = Σk11 −Σk12Σ

−1
k22Σk21.

(d) Sample ymissi from NJ−qi(µ
cond
ki ,Σcond

k ).

2. For k = 1, ...,K, use Pólya-Gamma data augmentation to update the logistic regression parameters, γk,bk =
(bki, . . . , bknk

)T , and σ2k for the missing data model described in equation (15) of Section 3.4.

(a) Compute nk =
∑n

i=1 1(zi=k), the number of subjects in cluster k.

(b) For i = 1, ..., nk and j = 1, ..., J :

i. Compute logit(φkij) = xTijγk+bki as in equation (15), where xij is an m×1 vector of covariates that
may overlap with those used in the MSN model, and γk is an m×1 vector of regression parameters
as in equation (15).

ii. Update Pólya-Gamma weights wkij from PG{1, logit(φkij)}.
iii. Compute hkij =

Rkij−1/2
wkij

− bki, where Rkij is the binary indicator of whether the response for

subject i in cluster k at timepoint j is missing, as in equation (14) of the manuscript, and bki is the
random intercept for subject i in cluster k, as in equation (15).

(c) Form the vector hk = (hk11, ..., hknkJ)T .

(d) Form the diagonal matrix Ok with entries (wk11, ..., wknkJ).

(e) Compute Gk = (G−10k + XT
kOkXk)

−1, where G0k is the m×m prior covariance of γk.

(f) Compute gk = Gk(G
−1
0k g0k + XT

kOkhk), where g0k is the prior mean of γk.

(g) Compute τk = 1/σ2k, where σ2k is the variance of bki.

(h) For i = 1, ..., nk:

i. Compute vki = (τk +
∑J

j=1wkij)
−1

ii. Compute mki = vki{
∑J

j=1wkij(hkij − xTijγk)}.
iii. Update bki from N(mki, vki).

(i) Update σ2k from IG{λ1k+nk/2, λ2k+(
∑nk

i=1 b
2
ki)/2}, where σ2k is assumed to have a IG(λ1k, λ2k) prior dis-

tribution. Alternatively, update τk from a Gamma{λ1k+nk/2, λ2k+(
∑nk

i=1 b
2
ki)/2}, where Gamma(a, b)

denotes a gamma distribution with shape parameter a and rate parameter b.

3. Update the multinomial logit regression parameters for the cluster allocation model as described in Section
3.2. For k = 1, ...,K − 1:
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(a) For i = 1, ...n:

i. Define Uki = 1(zi=k).

ii. Compute cki = log(1 +
∑

h/∈{k,K} e
wT

i δh) as described in Section 3.2.

iii. Compute ηki = wT
i δk − cki as in equation (10).

iv. Update ωki from PG(1, ηki).

(b) Define U∗k =
(
Uk1−1/2
ωk1

+ ck1, ...,
Ukn−1/2
ωkn

+ ckn

)T
as described in Section 3.2.

(c) Compute Sk = (S−10k + WTOkW)−1, where Ok is the diagonal matrix with entries (ωk1, ..., ωkn) and
S0k is the prior covariance of δk.

(d) Compute dk = Sk(S
−1
0k d0k + WTOkU

∗
k), where d0k is the prior mean of δk.

(e) Update δk from Nr(dk,Sk).

4. Update cluster indicators z1, ..., zn. For i = 1, ..., n, iterate through the following steps:

(a) For k = 1, ...,K:

i. Compute pki = dnorm(yi;µki,Σk), where dnorm(y;µ,Σ) denotes the density of a multivariate nor-
mal random variable with mean µ and covariance Σ evaluated at y; and µki = Xiβk + tiψk, where
Xi is the J × Jp design matrix defined in equation (3) and
βk = vec(Bk) = (βk11, . . . , βk1p, . . . , βkJ1, . . . , βkJp)

T is a Jp × 1 vector of cluster- and outcome-
specific regression coefficients also defined as in equation (3). When covariates are not time depen-
dent, we may simplify notation to µki = B∗Tk x∗ki, where x∗Tki is given by the ith row of the nk×(p+1)
matrix X∗k, where

X∗k
nk×(p+1)

=

 x11 . . . x1p tki
...

. . .
...

...
xnk1 . . . xnkp tknk

 and B∗k
(p+1)×J

=


βk11 . . . βkJ1

...
. . .

...
βk1p . . . βkJp
ψk1 . . . ψkJ

 ,

as in Section 3.1.

ii. From equation (15) in the manuscript, compute φki = logit−1(xTijγk + bi).

iii. Compute ρki =
∏J
j=1 dbern(Rij ;φki), where dbern() denotes the Bernoulli distribution function.

(b) Compute πi = (π1i, ..., πKi), where πki = ew
T
i δk∑K

h=1 e
wT
i
δh

for k = 1, ...,K, as denoted in equation (7) of the

manuscript. Recall that cluster K serves as the reference category, implying that δK = 0.

(c) Compute the posterior probability Pr(zi = k) = πkipkiρki∑K
l=1 πlipliρli

, for k = 1, ...,K. Note that under

(marginal) MAR imputation, ρ is left out of this equation, as the missing data model is fully ignorable
in this case.

(d) Update zi from Categorical{Pr(zi = 1), ...,Pr(zi = K)}.

5. Update the multivariate skew normal regression parameters as described in Section 3.1. We first consider the
case where there are no time-dependent covariates. We then consider time-varying designs.

(a) Time-Invariant Designs:

i. For i = 1, . . . , n and given zi = k, update ti from its N+(aki, Ak) full conditional, where N+()
denotes a truncated normal random variable restricted to the positive real line,

Ak = (1 +ψTk Σ−1k ψk)
−1,

aki = Akψ
T
k Σ−1k (yi −BT

k xki),

yi = (yi1, . . . , yiJ)T , ψk = (ψk1, . . . , ψkJ)T , Bk is the p×J defined below, and xki is the p×1 vector
formed from the i-th row of Xk described below.
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Xk =

 x11 . . . x1p
...

. . .
...

xnk1 . . . xnkp

 and Bk =

βk11 . . . βk1J
...

. . .
...

βkp1 . . . βkpJ

 .

ii. For k = 1, . . . ,K, draw B∗k from MatNorm(p+1)×J(B∗k,Lk,Σk) as described in Proposition 1. Note

that the (p+ 1)th row of B∗k contains ψk = (ψk1, . . . , ψkJ)T . Therefore, we vectorize B∗k into Jp× 1
vector βk and J × 1 vector ψk to perform the back transformations described above. To draw from
the matrix normal density, make use of the R package matrixsample (Laurent, 2018).

iii. For k = 1, . . . ,K, update Σk
J×J

from IW(νk,Vk) as described in Proposition 1.

iv. To backtransform to original MSN representations, use.

ζki = Xiβk,

Ωk = Σk +ψkψ
T
k ,

αk =
1√

1−ψTk Ω−1k ψk

ωkΩ
−1
k ψk, and

ωk = Diag(Ωk)
1/2,

where Diag(Ωk) extracts the diagonal elements of Ωk as a vector.

(b) Time-Varying Designs: For designs that include time-varying covariates, we work with equation (3) in
the manuscript.

i. For i = 1, . . . , n and given zi = k, update ti: To update ti given zi = k, we create a J × Jp design
matrix Xi and Jp× 1 vector βk of the form

Xi
J×Jp

=

xi11 . . . xi1p 0 . . . 0 . . . 0
...

. . .
...

0 . . . 0 0 . . . xiJ1 . . . xiJp


βk
Jp×1

= (βk11, . . . , βk1p, . . . , βkJ1, . . . , βkJp)
T .

Next, we draw ti|(zi = k) from its N+(aki, Ak) full conditional, where

Ak = (1 +ψTk Σ−1k ψk)
−1,

aki = Akψ
T
k Σ−1k (yi −Xiβk),

yi = (yi1, . . . , yiJ)T , and ψk = (ψk1, . . . , ψkJ)T .

ii. For k = 1, . . . ,K, update βk, ψk: To update the regression parameters, we create an augmented
J × J(p+ 1) design matrix X∗i and J(p+ 1)× 1 vector β∗k of the form

X∗i
J×J(p+1)

=

xi11 . . . xi1p ti 0 . . . 0 . . . 0 0
...

. . .
...

0 . . . 0 0 0 . . . xiJ1 . . . xiJp ti


β∗k

J(p+1)×1
= (βk11, . . . , βk1p, ψ1, . . . , βkJ1, . . . , βkJp, ψJ)T .

Next, for all k, we assign independent multivariate normal and IW priors to β∗k and Σk:

β∗k
J(p+1)×1

∼ NJ(p+1)

(
β0,T

−1
0

)
and

Σk
J×J

∼ IW(ν0,S0),
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where T0 is a J(p + 1) × J(p + 1) prior precision matrix and, in this context, S0 is a J × J prior
scale matrix. Following standard algebraic routines for conjugate multivariate normal priors, we
arrive at the following full conditional for β∗k:

β∗k
J(p+1)×1

∼ NJ(p+1) (mk,Vk) , where

Vk
J(p+1)×J(p+1)

=
{
T0 + X∗Tk

(
Ink
⊗Σ−1k

)
X∗k
}−1

and

mk
J(p+1)×1

= Vk

{
T0β0 + X∗Tk

(
Ink
⊗Σ−1k

)
yk
}
.

Here, yk denotes the Jnk× 1 vector of responses for each observation in cluster k after imputation,
and here X∗k denotes an Jnk × J(p+ 1) matrix formed by stacking X∗i for all subjects in cluster k.
To perform the back transformations described in equation (4) of the manuscript, we extract the
Jp× 1 vector βk and the J × 1 vector ψk = (ψk1, . . . , ψkJ)T from β∗k.

iii. Finally, for k = 1, . . . ,K, we update Σk from IW(νk,Sk) where

νk = ν0 + nk and

Sk
J×J

= S0 + RT
kRk,

where Rk is an nk × J matrix with i-th row equal to (yi −X∗iβ
∗
k)
T for all i in cluster k.

(c) For both time-varying and time-invariant designs, we back transform to obtain αk and Ωk as described
in equation (4) of the manuscript. In the time-invariant case, we vectorize the (p + 1) × J matrix B∗k
into Jp × 1 vector βk and J × 1 vector ψk prior to back transforming. In the time-varying setting,
we extract the Jp× 1 vector βk and the J × 1 vector ψk = (ψk1, . . . , ψkJ)T from β∗k, and use these to
perform the back transformations.

6. (Optional) Update latent scaling terms for extension to skew-t model as described in Section 3.3.

(a) Time invariant designs:

i. Compute s1 = ξ+J+1
2 , where ξ is the pre-specified degrees of freedom parameter.

ii. For i = 1, ..., n, compute s2i =
ξ+t2i+(yi−B∗T

k x∗
ki)

T Σ−1
k (yi−B∗T

k x∗
ki)

2 , where B∗k is the (p + 1) × J
parameter matrix defined in equation (6) of the manuscript and x∗ki is a (p+ 1)× 1 vector formed
from the i-th row of X∗k in (7).

iii. For i = 1, ..., n, update di from Gamma(s1, s2i).

iv. For k = 1, . . . ,K, form the nk×J scaled matrix Ỹk =
√

dk ◦Yk, where “◦” denotes the Hadamard
product. Use Ỹk in place of Yk for all remaining updates.

v. For k = 1, . . . ,K, form the nk × (p+ 1) scaled matrix X̃k =
√

dk ◦X∗k. Use X̃k in place of Xk for
all remaining updates.

(b) Time-varying designs

i. Compute s1 = ξ+J+1
2 , where ξ is the pre-specified degrees of freedom parameter.

ii. For i = 1, ..., n, compute s2i =
ξ+t2i+(yi−X∗

iβ
∗
k)

T Σ−1
k (yi−X∗

iβ
∗
k)

2 , where X∗i is the J × J(p + 1) matrix
and β∗k is the J(p+ 1) parameter vector each defined in Step 5(b) above.

iii. For i = 1, ..., n, update di from Gamma(s1, s2i).

iv. Use di to scale the J × 1 response vector yi and the J × J(p+ 1) matrix X∗i from Step 5(b). Next,
for k = 1, . . . ,K, combine data for all subjects in cluster k to form the Jnk × 1 scaled vector ỹk
and Jnk × J(p+ 1) scaled matrix X̃∗k. Use the scaled data for all remaining updates.
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Web Appendix C: Web Tables

Web Table 1: Sample characteristics from the Nurture study (n = 560, N = 1769).

n (%)

No. Missing Observations† 471 (21.0)
Missing 3 mo. 113 (20.2)
Missing 6 mo. 112 (20.00)
Missing 9 mo. 131 (23.4)
Missing 12 mo. 115 (20.5)
Food Insecure 216 (38.6)
Infant Gender (Female) 277 (49.5)
Infant Race (Black) 378 (67.5)
Any Breastfeeding 213 (38.0)

Median (IQR)

Bayley composite score at 3 mo. 110.0 (15.0)
Bayley composite score at 6 mo. 103.0 (18.0)
Bayley composite score at 9 mo. 100.0 (19.0)
Bayley composite score at 12 mo. 97.0 (16.0)

Mean (SD)

Birth weight for gestational age z-score 0.1 (1.0)
Total number of children in household 2.5 (1.5)

† Number missing out of 560× 4 = 2240 possible observations.
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Web Table 2: Estimated correlation matrix from repeated measures model with unstructured correlation.

3 mo. 6 mo. 9 mo. 12 mo.

3 mo. 1.00
6 mo. 0.23 1.00
9 mo. 0.15 0.24 1.00
12 mo. 0.15 0.25 0.27 1.00
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Web Table 3: Model results for Simulation 1: Multivariate skew normal (MSN) and multivariate normal (MVN) models fit to MSN data with varying
skewness settings, n = 1000, J = 4, p = 2, K = 3, and r = 2. Cluster 3 corresponds to data generated under a MVN model (α3 = 0). 10000 iterations
were run with a burn-in of 1000.

Cluster 1 Cluster 2 Cluster 3

Component Param. True MSN Est. (95% CrI) MVN Est. (95% CrI) True MSN Est. (95% CrI) MVN Est. (95% CrI) True MSN Est. (95% CrI) MVN Est. (95% CrI)

MVSN βk11 110.00 110.20 (109.97, 110.41) 106.36 (105.97, 108.71) 90.00 90.17 (89.85, 90.44) 88.43 (88.05, 88.81) 100.00 100.02 (99.68, 100.70) 100.02 (99.82, 100.23)

Regression βk21 115.00 115.13 (114.91, 115.33) 104.17 (103.93, 104.44) 85.00 85.31 (85.00, 85.58) 83.00 (82.57, 83.46) 100.00 100.25 (99.52, 100.73) 99.99 (99.79, 100.18)

βk31 120.00 120.08 (119.83, 120.49) 128.02 (128.57, 129.08) 80.00 80.23 (79.89, 80.54) 70.59 (70.08, 71.10) 100.00 100.13 (99.48, 100.77) 100.04 (99.83, 100.26)

βk41 125.00 125.15 (124.86, 125.49) 126.67 (126.31, 127.05) 75.00 74.94 (74.61, 75.26) 72.19 (71.64, 72.72) 100.00 99.81 (99.24, 100.40) 99.99 (99.78, 100.21)

βk12 1.00 0.97 (0.84, 1.11) 0.90 (0.74, 1.08) -1.00 -1.08 (-1.25, -0.92) -1.12 (-1.29, -0.93) -1.00 -1.00 (-1.10, -0.89) -1.00 (-1.10, -0.89)

βk22 1.50 1.51 (1.40, 1.62) 1.53 (1.41, 1.66) -1.50 -1.51 (-1.73, -1.33) -1.66 (-1.77, -1.52) 1.00 0.99 (0.89, 1.08) 0.98 (0.89, 1.08)

βk32 2.00 2.01 (1.89, 2.14) 2.20 (2.08, 2.33) -2.00 -1.99 (-2.22, -1.78) -2.44 (-2.67, -2.17) -1.00 -0.92 (-1.01, -0.82) -0.91 (-1.01, -0.81)

βk42 2.50 2.50 (2.35, 2.66) 2.46 (2.28, 2.64) -2.50 -2.52 (-2.77, -2.29) -2.68 (-2.92, -2.39) 1.00 1.04 (0.94, 1.15) 1.05 (0.95, 1.15)

Σk11 1.00 0.96 (0.77, 1.14) 2.42 (2.06, 2.84) 1.00 0.96 (0.69, 1.48) 2.53 (2.17, 3.01) 1.00 0.98 (0.80, 1.14) 1.01 (0.88, 1.15)

Σk12 0.50 0.47 (0.34, 0.61) 1.20 (0.99, 1.48) 0.50 0.50 (0.27, 0.99) 2.51 (2.14, 3.04) 0.50 0.51 (0.21, 0.71) 0.51 (0.41, 0.61)

Σk13 0.25 0.25 (0.04, 0.40) -0.54 (-0.75, -0.34) 0.25 0.26 (0.13, 0.72) 2.62 (2.20, 3.17) 0.25 0.25 (0.14, 0.37) 0.25 (0.15, 0.36)

Σk14 0.12 0.11 (-0.02, 0.30) -1.35 (-1.67, -1.06) 0.12 0.15 (-0.06, 0.67) 2.72 (2.24, 3.29) 0.12 0.09 (-0.12, 0.29) 0.09 (-0.01, 0.20)

Σk22 1.00 0.99 (0.74, 1.19) 1.20 (0.99, 1.48) 1.00 1.03 (0.78, 1.54) 2.51 (2.14, 3.04) 1.00 0.99 (0.71, 1.24) 0.91 (0.80, 1.05)

Σk23 0.50 0.49 (0.26, 0.66) 1.24 (1.06, 1.46) 0.50 0.59 (0.38, 1.03) 3.69 (3.18, 4.35) 0.50 0.56 (0.37, 0.71) 0.44 (0.34, 0.54)

Σk24 0.25 0.24 (0.10, 0.43) 0.08 (-0.06, 0.21) 0.25 0.28 (-0.01, 0.61) 3.65 (3.09, 4.31) 0.25 0.25 (0.14, 0.37) 0.27 (0.17, 0.37)

Σk33 1.00 0.99 (0.77, 1.09) 1.24 (1.06, 1.46) 1.00 1.09 (0.88, 1.59) 3.65 (3.03, 4.32) 1.00 0.95 (0.80, 1.10) 1.00 (0.87, 1.15)

Σk34 0.50 0.47 (0.22, 0.65) 1.15 (0.93, 1.40) 0.50 0.54 (0.25, 0.99) 2.62 (2.20, 3.17) 0.50 0.57 (0.39, 0.73) 0.56 (0.45, 0.70)

Σk44 1.00 1.01 (0.63, 1.23) 2.48 (2.15, 2.91) 1.00 1.02 (0.64, 1.60) 3.65 (3.09, 4.31) 1.00 1.06 (0.81, 1.60) 1.06 (0.94, 1.23)

αk1 -2.00 -2.05 (-2.28, -1.66) / -2.00 -2.19 (-2.50, -1.77) / 0.00 -0.23 (-0.80, 0.42) /

αk2 -1.00 -1.01 (-1.30, -0.75) / -2.50 -2.52 (-2.82, -2.10) / 0.00 -0.33 (-0.94, 0.57) /

αk3 1.00 0.97 (0.65, 1.28) / -3.00 -3.34 (-3.67, -2.90) / 0.00 -0.12 (-0.93, 0.68) /

αk4 2.00 1.97 (1.67, 2.28) / -3.50 -3.49 (-3.84, -3.00) / 0.00 0.23 (-0.51, 0.94) /

Multinomial δk1 -0.27 -0.23 (-0.47, -0.09) -0.14 (-0.35, 0.08) 0.14 0.12 (0.01, 0.21) 0.20 (0.00, 0.42) Ref. Ref. Ref.

Logit† δk2 0.07 0.07 (-0.26, 0.39) 0.08 (-0.24, 0.38) 0.17 0.16 (0.01, 0.38) 0.02 (-0.28, 0.30) Ref. Ref. Ref.

Missing γk1 -0.82 -0.84 (-0.96, -0.73) -1.08 (-1.19, -0.99) -0.93 -0.93 (-1.05, -0.81) -1.02 (-1.15, -0.93) -1.19 -1.22 (-1.39, -1.10) -0.78 (-0.91, -0.67)

Data γk2 -1.08 -1.01 (-1.20, -0.91) -1.80 (-1.96, -1.64) -1.14 -1.11 (-1.25, -1.00) -0.72 (-0.80, -0.59) -0.97 -0.93 (-1.10, -0.79) -1.09 (-1.22, -0.98)

γk3 -1.12 -1.08 (-1.20, -1.00) -0.90 (-1.00, -0.80) -0.98 -0.99 (-1.12, -0.85) -1.04 (-1.16, -0.90) -0.87 -0.88 (-1.02, -0.76) -0.97 (-1.09, -0.86)

σ2
k 1.00 1.07 (0.92, 1.28) 0.89 (0.76, 1.07) 1.00 0.96 (0.83, 1.11) 1.21 (1.05, 1.41) 1.00 1.11 (0.96, 1.30) 0.91 (0.80, 1.05)

Clustering‡ πl 0.32 0.32 (0.31, 0.33) 0.32 (0.30, 0.34) 0.29 0.29 (0.28, 0.30) 0.29 (0.28, 0.30) 0.39 0.39 (0.39, 0.39) 0.39 (0.39, 0.39)

† Multinomial logit parameters comparing clusters 1 and 2 to cluster 3 (reference cluster).
‡ Estimated proportion in each cluster. True proportions are 0.32, 0.29 and 0.39, respectively.
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Web Table 4: Results for clusters 2 and 3 from Simulation 2. Posterior means (95% CrIs) are presented for
conditional ignorability and marginal ignorability as described in Section 4.2 of the manuscript. 10000 iterations
were run with a burn-in of 1000.

Model True
Component Parameter Value Conditional Ignorability Marginal Ignorability

k = 2 βk11 0.23 0.09 (-0.36, 0.56) 0.41 (-0.87, 2.03)
βk21 -0.52 -0.57 (-0.80, -0.30) -0.77 (-1.88, 0.67)

MSN βk31 -0.33 -0.29 (-0.76, 0.23) -0.54 (-1.58, -0.45)
Regression βk41 -1.54 -1.51 (-1.73, -1.25) -2.13 (-2.44, -1.83)

βk12 -0.15 -0.19 (-0.52, -0.04) -0.29 (-0.71, 0.89)
βk22 -0.22 -0.37 (-0.57, -0.15) -0.85 (-1.91, 0.74)
βk32 0.64 0.55 (0.03, 1.08) 1.82 (1.33, 2.29)
βk42 0.86 0.77 (0.55, 1.01) 0.85 (0.63, 1.09)

αk1 2.00 2.07 (1.51, 2.57) 1.82 (1.14, 2.54)
αk2 2.00 1.90 (1.27, 2.42) 2.14 (1.88, 2.31)
αk3 2.00 1.92 (1.21, 2.71) 2.21 (1.03, 3.48)
αk4 2.00 2.04 (1.39, 2.62) 1.50 (0.89, 2.17)

Multinomial δk1 -0.12 -0.14 (-0.33, -0.06) -0.13 (-0.34, 0.06)
Logit† δk2 -0.02 -0.06 (-0.30, 0.26) -0.02 (-0.31, 0.26)

Missing Data γk1 -0.99 -1.08 (-1.51, -0.67) /
γk2 -0.86 -0.80 (-1.15, -0.46) /
γk3 -1.09 -1.18 (-1.55, -0.86) /
σ2k 1.00 1.03 (0.90, 1.17) /

k = 3 βk11 3.22 3.46 (3.09, 3.76) 1.11 (0.58, 1.63)
βk21 4.51 4.37 (4.18, 4.55) 4.33 (4.09, 4.57)

MSN βk31 3.21 3.36 (2.99, 3.67) 1.19 (0.69, 1.69)
Regression βk41 4.14 3.96 (3.77, 4.13) 3.91 (3.68, 4.14)

βk12 3.14 3.44 (3.08, 3.75) 1.15 (0.63, 1.66)
βk22 3.37 3.24 (3.05, 3.41) 3.16 (2.93, 3.39)
βk32 3.02 3.34 (2.97, 3.66) 0.94 (0.40, 1.48)
βk42 3.55 3.41 (3.21, 3.59) 3.34 (3.09, 3.59)

αk1 -3.00 -3.26 (-3.68, -2.79) -3.34 (-4.12, 1.97)
αk2 -3.00 -3.02 (-3.48, -2.56) -3.11 (-4.63,-1.91)
αk3 -3.00 -3.22 (-3.65, -2.72) -3.71 (-3.01, -4.20)
αk4 -3.00 -3.26 (-3.69, -2.83) -3.23 (-4.01, -2.76)

Multinomial δk1 Ref. Ref. Ref.
Logit δk2 Ref. Ref. Ref.

Missing Data γk1 -1.17 -1.20 (-1.57, -0.85) /
γk2 -0.89 -0.89 (-1.18, -0.64) /
γk3 -0.65 -0.65 (-0.95, -0.39) /
σ2k 1.00 1.15 (0.97, 1.38) /

† Multinomial logit parameters comparing cluster 2 to cluster 3 (reference cluster).
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Web Table 5: Simulation 3 WAIC values for MSN models fit with K = 2, 3, 4, 5 clusters to data simulated from
MSN models with K = 2, 3, 4, 5. Bold indicates best-fitting model. (*) Model did not converge due to empty or
singleton clusters occurring within 10000 iterations of the MCMC algorithm.

Fitted

K = 2 K = 3 K = 4 K = 5
K = 2 11624 11963 * *

Truth K = 3 15193 12390 12811 *
K = 4 15777 14359 12412 14237
K = 5 15012 14359 14323 13436

Web Table 6: Estimated covariances (95% CrI), Σ1,Σ2, from the 2-cluster MSN model fit to the Nurture data
as described in Section 5.

k = 1 3 mo. 6 mo. 9 mo. 12 mo.

3 mo. 0.41 (0.36, 0.49)
6 mo. 0.38 (0.32, 0.44) 0.46 (0.40, 0.54)
9 mo. 0.38 (0.32, 0.44) 0.36 (0.31, 0.43) 0.43 (0.37, 0.50)
12 mo. 0.34 (0.29, 0.40) 0.35 (0.30, 0.40) 0.32 (0.12, 0.54) 0.52 (0.44, 0.61)

k = 2 3 mo. 6 mo. 9 mo. 12 mo.

3 mo. 1.18 (1.01, 1.39)
6 mo. 0.75 (0.56, 0.95) 1.26 (1.11, 1.44)
9 mo. 0.94 (0.77, 1.11) 0.82 (0.68, 0.99) 1.33 (1.16, 1.53)
12 mo. 0.67 (0.52, 0.83) 0.80 (0.67, 0.95) 0.88 (0.74, 1.04) 1.27 (1.12, 1.45)

Web Table 7: Estimated correlations from the 2-cluster MSN model fit to the Nurture data as described in
Section 5.

k = 1 3 mo. 6 mo. 9 mo. 12 mo.

3 mo. 1.00
6 mo. 0.88 1.00
9 mo. 0.90 0.81 1.00
12 mo. 0.74 0.72 0.68 1.00

k = 2 3 mo. 6 mo. 9 mo. 12 mo.

3 mo. 1.00
6 mo. 0.62 1.00
9 mo. 0.75 0.63 1.00
12 mo. 0.55 0.63 0.68 1.00
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Web Appendix E: Web Figures

Web Figure 1: Trace plots of a selection of parameters from Simulation 1. Geweke diagnostics and effective
sample sizes (ESS) are shown for each parameter. MCMC sampling was run for 10000 iterations with a burn-in
of 1000. All parameters were initialized at 0 and prior parameters were chosen to be weakly informative.
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Web Figure 2: Trace plots of a selection of parameters from the MNAR imputation model in Simulation 2.
Geweke diagnostics and effective sample sizes (ESS) are shown for each parameter. MCMC sampling was run for
10000 iterations with a burn-in of 1000. All parameters were initialized at 0 and prior parameters were chosen to
be weakly informative.
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Web Figure 3: Trace plots of a selection of parameters from the 3-class model in Simulation 3. Geweke
diagnostics and effective sample sizes (ESS) are shown for each parameter. MCMC sampling was run for 10000
iterations with a burn-in of 1000. All parameters were initialized at 0 and prior parameters were chosen to be
weakly informative.
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Web Figure 4: Trace plots of a selection of parameters from the application to the Nurture Data. Geweke
diagnostics and effective sample sizes (ESS) are shown for each parameter. MCMC sampling was run for 10000
iterations with a burn-in of 1000. All parameters were initialized at 0 and prior parameters were chosen to be
weakly informative.
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