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Web Appendix A: Proof of Proposition 1

For each cluster k =1, ..., K, let Y, = X;B} + Ej, where Y}, is an nj, x J response matrix, X} is an ng x (p+1)
matrix of predictors and latent truncated normal random variables from equation (6) in the manuscript, B} is
a (p+ 1) x J matrix of regression and skewness coefficients from equation (6), and Ej is the ng x J matrix of
residuals associated with Y. We assume Ej ~ MatNorm(0,I,, ,X), where 0 is an nj x J matrix of 0’s, I,
is the n; dimensional identity matrix, and 3j is a J X J variance-covariance matrix. As prior distributions,
we assume Bj|X; ~ MatNorm(Bg,, Lok, X)) and Xy ~ IW(vgx, Voi). That is, Bj and X; have a joint Matrix
Normal-Inverse Wishart (IW) prior, denoted MatNorm-IW ,,, 1) 7 (B¢, Lok, Yok, Vor), of the form

(B, ) = w(By|Zk)m(Zg)
= MatNorm(p+1)><J(B8k7 L0k7 Zk)IW(VOka VOk)>

where B, is a (p + 1) x J prior mean matrix, Lo, and Vy are, respectively, (p + 1) x (p+ 1) and J x J prior
scale matrices, and v denotes the prior degrees of freedom. Under this set-up, the full conditional distribution
for Bj, can be obtained as follows:
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X €xp <—2 [tr{X;, HY) = XiBY) (Y — X;Bj) + (Bj, - BOk)TLokl(Bk - B%)H)
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X exp <—2 [tr{=, (B}, — B;)"L, ' (B} — IB%Z)}]) after completing the square,

where B} = Ly, (L, B, + X;TY)) and Ly = (Lg, + X;TX5)~!. Similarly, we may express f(Zj|B}, Yy) as
f(ZeBr, Yr) o< f(YgBL, Xp)m(Bj|Xk)m(Xg), where
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Combining terms, we have
FZRBLYY) o ‘2k|_nk+uok+(2p+1)+k+1
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Thus, 2k|B*,Yk ~ IW(Vk,Vk), where

v, = vy+nr+p+1, and
Vi = Vo+ (Bf - By Ly (B — By + (Y — X{BDT (Y, — XiB}),

as outlined in Proposition 1 of the manuscript.

Web Appendix B: MCMC Algorithm

In this section we outline Gibbs updates of all model parameters. For ease of notation, each parameter update is
implicitly assumed to be conditional on the data and other model parameters. All notation is defined as in Section
3. The algorithm presented below is not necessarily optimized for computational efficiency.

1. Update missing responses, y:

(a)

(b)
()
(d)

TS For 4 =1,...,n and given z; = k:

Partition pg; and Xy, the variance of €; in equation (3) of the manuscript, as
ngiss> <2k11 2k12>
ki = and X = .
e ( [T Epo1 Bpa2)’
Compute pgg™® = piii™ + 1o Ty (v — 1)
Compute Eiond =5 — 2k122];2122k21.

Sample y;m'SS from NJ_%; (”i(zmd7 Ziond)'

2. Fork=1,...,K, use Polya-Gamma data augmentation to update the logistic regression parameters, g, by =

(ki - -

(a)
(b)

ben )T, and o for the missing data model described in equation (15) of Section 3.4.

Compute ng = >, 1 (2,=k), the number of subjects in cluster k.
Fori=1,...,ntand 5 =1,...,J:
i. Compute logit(dri;) = XZ-Tj’Yk-i-bki as in equation (15), where x;; is an m x 1 vector of covariates that
may overlap with those used in the MSN model, and 74 is an m x 1 vector of regression parameters
as in equation (15).
ii. Update Pélya-Gamma weights wy;; from PG{1, logit(¢x;)}

Rki]’—l/Q
Whij
subject 7 in cluster k at timepoint j is missing, as in equation (14) of the manuscript, and b; is the

random intercept for subject 7 in cluster k, as in equation (15).

iii. Compute hy;; = — by, where Ry;; is the binary indicator of whether the response for

Form the vector hy = (hg11, ..., hknkJ)T.
Form the diagonal matrix Oy, with entries (wg11, ..., Wkn,t)-
Compute Gy = (Gak1 + XgOka)*l, where Gy is the m x m prior covariance of .
Compute g, = Gk(Gaklggk + XTOxhy), where gy, is the prior mean of ~y.
Compute 7, =1/ a,%, where a,% is the variance of by;.
Fori=1,...,n:
i. Compute vg; = (7p + Z}-Izl W)~
ii. Compute my; = vki{ijl Wi (hiij — Xz;’)’k)}
iii. Update by; from N(my;, vg;).

Update o7 from IG{A\1x+nk/2, Ao+ (D%, b7,)/2}, where o7 is assumed to have a IG(A1x, Agx) prior dis-
tribution. Alternatively, update 7 from a Gamma{Aix, +ng/2, Aok + (3%, b7.)/2}, where Gamma(a, b)
denotes a gamma distribution with shape parameter a and rate parameter b.

3. Update the multinomial logit regression parameters for the cluster allocation model as described in Section
3.2. Fork=1,...,. K —1:



(a)

(b)
()

(d)
(e)

For:=1,..n:

i. Define Ug; = 1(;,—p)-

ii. Compute cp; =1log(1 + > 11k k) e%i %) as described in Section 3.2.
iii. Compute ng; = WZT(Sk — ¢k; as in equation (10).

iv. Update wy; from PG(1, ng;).

W1

T
Define U}, = (M + Ck1y ey U’“Zf_lm + c;m) as described in Section 3.2.
Compute S, = (Sak1 + WT0O, W)™, where Oy is the diagonal matrix with entries (w1, ..., Wgn) and
Soi is the prior covariance of dj.
Compute dj, = Sy (Sy, dox + WTO,U3), where dyy, is the prior mean of dy.
Update 8, from N,.(dg, Sg).

4. Update cluster indicators z1, ..., z,. For i = 1,...,n, iterate through the following steps:

(a)

()

(d)

Fork=1,.. K:

i. Compute pg; = dnorm(y;; tr;, X% ), where dnorm(y; p, ¥) denotes the density of a multivariate nor-
mal random variable with mean p and covariance ¥ evaluated at y; and pg; = X; 8 + ti1)g, where
X; is the J x Jp design matrix defined in  equation (3) and
Br = vec(B) = (Brity-- -, Brips -+ Prats - - .,Bka)T is a Jp x 1 vector of cluster- and outcome-
specific regression coefficients also defined as in equation (3). When covariates are not time depen-
dent, we may simplify notation to py; = B}’ x},, where x}7 is given by the it" row of the ng x (p+1)
matrix X7, where

Brir --- Brn
T11 T1p tk:i ) )
Xp = -~ ¢ ] ad By =[7= a
ng X (p+1) ¢ (p+1)xJ Bklp cee Bk]p
Tl ce Tmp Thmy Vi1 (U

as in Section 3.1.
ii. From equation (15) in the manuscript, compute ¢y; = logit_l(xz;'yk + b;).
ili. Compute py; = H}-Izl dbern(R;j; ki), where dbern() denotes the Bernoulli distribution function.

T
eWi S

Compute 7; = (714, ..., Tx;), where mg; = K wTe for k =1,..., K, as denoted in equation (7) of the
h=1€ 1

manuscript. Recall that cluster K serves as the reference category, implying that dx = 0.

Compute the posterior probability Pr(z; = k) = —ZkibkiPki _ for k = 1,..., K. Note that under

S mapp
(marginal) MAR imputation, p is left out of this equation, as the missing data model is fully ignorable

in this case.
Update z; from Categorical{Pr(z; =1),...,Pr(z; = K)}.

5. Update the multivariate skew normal regression parameters as described in Section 3.1. We first consider the
case where there are no time-dependent covariates. We then consider time-varying designs.

(a)

Time-Invariant Designs:
i. For i = 1,...,n and given z; = k, update t; from its Ny (ax;, Ag) full conditional, where N ()
denotes a truncated normal random variable restricted to the positive real line,
A = Q+yrsye) ™,
ari = Al Sy (yi — Bixp),

yi = Wit vis)T, Y = (V1 - - Yrs)T, By is the p x J defined below, and xy; is the p x 1 vector
formed from the i-th row of X}, described below.



Ty ... Tip Brit - Brig
X = : : and B, = : :

LTngl -+ Togp ﬁkpl ,kaJ

ii. For k =1,..., K, draw B} from MatNorm(pH)XJ(BZ, L, X%) as described in Proposition 1. Note
that the (p+ 1) row of Bj contains v, = (Y1, . .. ,Yrs)T. Therefore, we vectorize Bj into Jp x 1
vector B and J x 1 vector 9, to perform the back transformations described above. To draw from
the matrix normal density, make use of the R package matrixsample (Laurent, 2018).

iii. For k=1,..., K, update Xj from IW(vg, V) as described in Proposition 1.

IxJ
iv. To backtransform to original MSN representations, use.
Cri = XiBk,
Qe = Zp+ ey,
1
ap = wkﬂ,;lz,bk, and

V1=l

w, = Diag()"?,

where Diag(€Qy) extracts the diagonal elements of £, as a vector.

(b) Time-Varying Designs: For designs that include time-varying covariates, we work with equation (3) in
the manuscript.

i. For ¢ =1,...,n and given z; = k, update t;: To update ¢; given z; = k, we create a J x Jp design
matrix X; and Jp x 1 vector B of the form

{11 .- a;ilp 0 0 0
X, =

1 . :
JxJp
0 0 0 cee Tig1ro ... Tigp

B = (Brtts--Brips--sBrts-- s Brap)’ -

Jpx1

Next, we draw t;|(z; = k) from its Ny (ag;, Ag) full conditional, where

A = (49l s )
ari = Al 3 (yi — XiBr),

Yi = (yila cee 7yiJ)T> and ¢k’ = (wkb . . 'awa)T'

ii. For K =1,..., K, update B, ¥,: To update the regression parameters, we create an augmented
J x J(p+1) design matrix X} and J(p + 1) x 1 vector @; of the form

i1 ... Tilp ti 0 0 0 0
SxJ(p+1) 0 0 0 0 Tig1 .- TiJp t;
167:; = (/Bkllv"'76k1p7w17--wﬁk]lw-wﬁk][an)T'
J(p+1)x1

Next, for all k, we assign independent multivariate normal and IW priors to B; and X

B; ~ Nypin (8o, Tg') and
J(p+1)x1

3~ IW(w,So),
JxJ



iii.

where Ty is a J(p+ 1) x J(p + 1) prior precision matrix and, in this context, Sg is a J x J prior
scale matrix. Following standard algebraic routines for conjugate multivariate normal priors, we

arrive at the following full conditional for 3;:

ﬂz ~ NJ(p+1) (mk, Vk) y where

J(p+1)x1
vV, = {To+X;T (1, %) X;} ' and
J(p+1)xJ(p+1)
m, = Vi{Tofo+Xi" (I, ® ;") yx}-
J(p+1)x1

Here, y; denotes the Jng x 1 vector of responses for each observation in cluster k after imputation,
and here X denotes an Jny x J(p + 1) matrix formed by stacking X7 for all subjects in cluster k.
To perform the back transformations described in equation (4) of the manuscript, we extract the
Jp x 1 vector By and the J x 1 vector ¥y = (Yp1,...,Yrs)! from By

Finally, for k =1,..., K, we update Xj from IW (v, Si) where

v, = vg+ni and
S: = So+RIR,
JxJ

where Ry, is an ng X J matrix with i-th row equal to (y; — X;‘,@Z)T for all 7 in cluster k.

(c) For both time-varying and time-invariant designs, we back transform to obtain oy and € as described
in equation (4) of the manuscript. In the time-invariant case, we vectorize the (p 4+ 1) x J matrix B},
into Jp x 1 vector B and J x 1 vector 1 prior to back transforming. In the time-varying setting,
we extract the Jp x 1 vector By, and the J x 1 vector 9y = (Yg1,...,%gs)" from B, and use these to
perform the back transformations.

6. (Optional) Update latent scaling terms for extension to skew-t model as described in Section 3.3.

(a) Time invariant designs:

i.

il.

iii.

iv.

E+J+1
2

Compute s1 = , where £ is the pre-specified degrees of freedom parameter.

2 _RxTx \Ts —1/,  p*T*
For ¢ = 1,...,n, compute s9; = SHiHyiBy x’“')Q ¥, =B x’”), where B} is the (p + 1) x J

parameter matrix defined in equation (6) of the manuscript and x;; is a (p + 1) x 1 vector formed
from the i-th row of X} in (7).

For i = 1,...,n, update d; from Gamma(sy, $2;).

For k =1,..., K, form the nj x J scaled matrix Y, = /dj, oY, where “o” denotes the Hadamard
product. Use Y} in place of Y for all remaining updates.

For k=1,..., K, form the ny x (p+ 1) scaled matrix Xk = /dj o X3. Use Xk in place of X, for
all remaining updates.

(b) Time-varying designs

i.

ii.

iii.

v.

, where £ is the pre-specified degrees of freedom parameter.

2 _x*3\T -1 LXK 3* . .
For ¢ = 1,...,n, compute so; = Sty X’ﬁ’“)z 2y i Xzﬁ’“), where X7 is the J x J(p + 1) matrix

and B is the J(p + 1) parameter vector each defined in Step 5(b) above.

Compute 1 = #

For i = 1,...,n, update d; from Gamma(si, s9;).

Use d; to scale the J x 1 response vector y; and the J x J(p+ 1) matrix X} from Step 5(b). Next,
for k =1,..., K, combine data for~all subjects in cluster k to form the Jn; x 1 scaled vector yy
and Jny x J(p + 1) scaled matrix Xj. Use the scaled data for all remaining updates.



Web Appendix C: Web Tables

Web Table 1: Sample characteristics from the Nurture study (n = 560, N = 1769).

No. Missing Observations!
Missing 3 mo.

Missing 6 mo.

Missing 9 mo.

Missing 12 mo.

Food Insecure

Infant Gender (Female)
Infant Race (Black)

Any Breastfeeding

Bayley composite score at 3 mo.
Bayley composite score at 6 mo.
Bayley composite score at 9 mo.
Bayley composite score at 12 mo.

Birth weight for gestational age z-score
Total number of children in household

n (%)
471 (21.0)
113 (20.2)
112 (20.00)
131 (23.4)
115 (20.5
(
(
(

)
216 (38.6)
277 (49.5)
378 (67.5)
213 (38.0)

Median (IQR)

110.0 (15.0)
103.0 (18.0)
100.0 (19.0)
97.0 (16.0)

Mean (SD)

0.1 (1.0)
2.5 (1.5)

T Number missing out of 560 x 4 = 2240 possible observations.



Web Table 2: Estimated correlation matrix from repeated measures model with unstructured correlation.

3mo. 6mo. 9mo. 12 mo.
3 mo. 1.00
6 mo. 0.23 1.00
9 mo. 0.15 0.24 1.00
12 mo. 0.15 0.25 0.27 1.00




Web Table 3: Model results for Simulation 1: Multivariate skew normal (MSN) and multivariate normal (MVN) models fit to MSN data with varying
skewness settings, n = 1000, J =4, p = 2, K = 3, and r = 2. Cluster 3 corresponds to data generated under a MVN model (a3 = 0). 10000 iterations
were run with a burn-in of 1000.

Cluster 1 Cluster 2 Cluster 3
Component Param.  True MSN Est. (95% CrI) MVN Est. (95% CrI) True MSN Est. (95% CrI) MVN Est. (95% CrI)  True MSN Est. (95% CrI) MVN Est. (95% CrI)

MVSN Br11 110.00 110.20 (109.97, 110.41) 106.36 (105.97, 108.71) 90.00 90.17 (89.85, 90.44) 88.43 (88.05, 88.81) 100.00 100.02 (99.68, 100.70) 100.02 (99.82, 100.23)

Regression Br21 115.00 115.13 (114.91, 115.33) 104.17 (103.93, 104.44) 85.00 85.31 (85.00, 85.58) 83.00 (82.57, 83.46) 100.00 100.25 (99.52, 100.73) 99.99 (99.79, 100.18)
Br31 120.00 120.08 (119.83, 120.49) 128.02 (128.57, 129.08) 80.00 80.23 (79.89, 80.54) 70.59 (70.08, 71.10) 100.00 100.13 (99.48, 100.77) 100.04 (99.83, 100.26)
Bra1 125.00 125.15 (124.86, 125.49) 126.67 (126.31, 127.05) 75.00 74.94 (74.61, 75.26) 72.19 (71.64, 72.72) 100.00 99.81 (99.24, 100.40) 99.99 (99.78, 100.21)
Biz 1.00 0.97 (0.84, 1.11) 0.90 (0.74, 1.08) -1.00  -1.08 (-1.25, -0.92) -1.12 (-1.29, -0.93) -1.00  -1.00 (-1.10, -0.89) -1.00 (-1.10, -0.89)
Bras 1.50 1.51 (1.40, 1.62) 1.53 (1.41, 1.66) 2150 -1.51 (-1.73, -1.33) -1.66 (-1.77, -1.52) 1.00 0.99 (0.89, 1.08) 0.98 (0.89, 1.08)
Braz 2.00 2.01 (1.89, 2.14) 2.20 (2.08, 2.33) 2.00 -1.99 (-2.22, -1.78) 2.44 (-2.67, -2.17) -1.00  -0.92 (-1.01, -0.82) -0.91 (-1.01, -0.81)
Braz 2.50 2.50 (2.35, 2.66) 2.46 (2.28, 2.64) 250 -2.52 (-2.77, -2.29) 2.68 (-2.92, -2.39) 1.00 1.04 (0.94, 1.15) 1.05 (0.95, 1.15)
Shit 1.00 0.96 (0.77, 1.14) 2.42 (2.06, 2.84) 1.00  0.96 (0.69, 1.48) 2.53 (2.17, 3.01) 1.00 0.98 (0.80, 1.14) 1.01 (0.88, 1.15)
Yr12 0.50 0.47 (0.34, 0.61) 1.20 (0.99, 1.48) 0.50 0.50 (0.27, 0.99) 2.51 (2.14, 3.04) 0.50 0.51 (0.21, 0.71) 0.51 (0.41, 0.61)
Zr13 0.25 0.25 (0.04, 0.40) -0.54 (-0.75, -0.34) 0.25 0.26 (0.13, 0.72) 2.62 (2.20, 3.17) 0.25 0.25 (0.14, 0.37) 0.25 (0.15, 0.36)
Yk14 0.12 0.11 (-0.02, 0.30) -1.35 (-1.67, -1.06) 0.12 0.15 (-0.06, 0.67) 2.72 (2.24, 3.29) 0.12 0.09 (-0.12, 0.29) 0.09 (-0.01, 0.20)
S22 1.00 0.99 (0.74, 1.19) 1.20 (0.99, 1.48) 1.00  1.03 (0.78, 1.54) 2.51 (2.14, 3.04) 1.00 0.99 (0.71, 1.24) 0.91 (0.80, 1.05)
Shos 0.50 0.49 (0.26, 0.66) 1.24 (1.06, 1.46) 0.50  0.59 (0.38, 1.03) 3.69 (3.18, 4.35) 0.50 0.56 (0.37, 0.71) 0.44 (0.34, 0.54)
Thad 0.25 0.24 (0.10, 0.43) 0.08 (-0.06, 0.21) 0.25  0.28 (-0.01, 0.61) 3.65 (3.09, 4.31) 0.25 0.25 (0.14, 0.37) 0.27 (0.17, 0.37)
Y33 1.00 0.99 (0.77, 1.09) 1.24 (1.06, 1.46) 1.00 1.09 (0.88, 1.59) 3.65 (3.03, 4.32) 1.00 0.95 (0.80, 1.10) 1.00 (0.87, 1.15)
Shaa 0.50 0.47 (0.22, 0.65) 1.15 (0.93, 1.40) 0.50  0.54 (0.25, 0.99) 2.62 (2.20, 3.17) 0.50 0.57 (0.39, 0.73) 0.56 (0.45, 0.70)
Shas 1.00 1.01 (0.63, 1.23) 2.48 (2.15, 2.91) 1.00  1.02 (0.64, 1.60) 3.65 (3.09, 4.31) 1.00 1.06 (0.81, 1.60) 1.06 (0.94, 1.23)
. 200 -2.05 (-2.28, -1.66) / 2,00 -2.19 (-2.50, -1.77) / 0.00 -0.23 (-0.80, 0.42) /
ah2 -1.00  -1.01 (-1.30, -0.75) / 2,50 -2.52 (-2.82, -2.10) / 0.00 -0.33 (-0.94, 0.57) /
a3 1.00 0.97 (0.65, 1.28) / -3.00 -3.34 (-3.67, -2.90) / 0.00 -0.12 (-0.93, 0.68) /
ana 2.00 1.97 (1.67, 2.28) / -3.50  -3.49 (-3.84, -3.00) / 0.00 0.23 (-0.51, 0.94) /

Multinomial k1 -0.27 -0.23 (-0.47, -0.09) -0.14 (-0.35, 0.08) 0.14 0.12 (0.01, 0.21) 0.20 (0.00, 0.42) Ref Ref. Ref.

Logit Sro 0.07 0.07 (-0.26, 0.39) 0.08 (-0.24, 0.38) 0.17  0.16 (0.01, 0.38) 0.02 (-0.28, 0.30) Ref Ref. Ref.

Missing Y1 -0.82 -0.84 (-0.96, -0.73) -1.08 (-1.19, -0.99) -0.93 -0.93 (-1.05, -0.81) -1.02 (-1.15, -0.93) -1.19 -1.22 (-1.39, -1.10) -0.78 (-0.91, -0.67)

Data Yiz 21.08  -1.01 (-1.20, -0.91) -1.80 (-1.96, -1.64) 114 -1.11 (-1.25, -1.00) -0.72 (-0.80, -0.59) -0.97  -0.93 (-1.10, -0.79) -1.09 (-1.22, -0.98)
i3 -1.12  -1.08 (-1.20, -1.00) -0.90 (-1.00, -0.80) -0.98  -0.99 (-1.12, -0.85) -1.04 (-1.16, -0.90) -0.87  -0.88 (-1.02, -0.76) -0.97 (-1.09, -0.86)
o2 1.00 1.07 (0.92, 1.28) 0.89 (0.76, 1.07) 1.00  0.96 (0.83, 1.11) 1.21 (1.05, 1.41) 1.00 1.11 (0.96, 1.30) 0.91 (0.80, 1.05)

Clustering  m 0.32 0.32 (0.31, 0.33) 0.32 (0.30, 0.34) 0.20  0.29 (0.28, 0.30) 0.29 (0.28, 0.30) 0.39 0.39 (0.39, 0.39) 0.39 (0.39, 0.39)

T Multinomial logit parameters comparing clusters 1 and 2 to cluster 3 (reference cluster).

! Estimated proportion in each cluster. True proportions are 0.32, 0.29 and 0.39, respectively.



Web Table 4: Results for clusters 2 and 3 from Simulation 2. Posterior means (95% Crls) are presented for
conditional ignorability and marginal ignorability as described in Section 4.2 of the manuscript. 10000 iterations
were run with a burn-in of 1000.

Model True
Component Parameter Value Conditional Ignorability Marginal Ignorability
k=2 Br11 0.23  0.09 (-0.36, 0.56) 0.41 (-0.87, 2.03)
Bra1 -0.52  -0.57 (-0.80, -0.30) -0.77 (-1.88, 0.67)
MSN Br31 -0.33  -0.29 (-0.76, 0.23) -0.54 (-1.58, -0.45)
Regression Brar -1.54  -1.51 (-1.73, -1.25) -2.13 (-2.44, -1.83)
Bri2 -0.15  -0.19 (-0.52, -0.04) -0.29 (-0.71, 0.89)
B2z -0.22  -0.37 (-0.57, -0.15) -0.85 (-1.91, 0.74)
Brs2 0.64  0.55 (0.03, 1.08) 1.82 (1.33, 2.29)
Braz 0.86  0.77 (0.55, 1.01) 0.85 (0.63, 1.09)
1 2.00  2.07 (1.51, 2.57) 1.82 (1.14, 2.54)
o 2.00  1.90 (1.27, 2.42) 2.14 (1.88, 2.31)
3 2.00  1.92(1.21, 2.71) 2.21 (1.03, 3.48)
Qs 2.00  2.04 (1.39, 2.62) 1.50 (0.89, 2.17)
Multinomial & -0.12  -0.14 (-0.33, -0.06) -0.13 (-0.34, 0.06)
Logit' 2 -0.02  -0.06 (-0.30, 0.26) -0.02 (-0.31, 0.26)
Missing Data 7z -0.99  -1.08 (-1.51, -0.67) /
Y2 -0.86  -0.80 (-1.15, -0.46) /
i3 -1.09  -1.18 (-1.55, -0.86) /
o? 1.00 1.03 (0.90, 1.17) /
k=3 Bri1 3.22  3.46 (3.09, 3.76) 1.11 (0.58, 1.63)
Bra1 4.51 4.37 (4.18, 4.55) 4.33 (4.09, 4.57)
MSN Brs 321 3.36 (2.99, 3.67) 1.19 (0.69, 1.69)
Regression Bra 4.14 3.96 (3.77, 4.13) 3.91 (3.68, 4.14)
Br12 3.14  3.44 (3.08, 3.75) 1.15 (0.63, 1.66)
Br22 3.37  3.24 (3.05, 3.41) 3.16 (2.93, 3.39)
Br32 3.02  3.34 (2.97, 3.66) 0.94 (0.40, 1.48)
Braz 3.55  3.41 (3.21, 3.59) 3.34 (3.09, 3.59)
U -3.00  -3.26 (-3.68, -2.79) -3.34 (-4.12, 1.97)
ko -3.00  -3.02 (-3.48, -2.56) -3.11 (-4.63,-1.91)
3 -3.00  -3.22 (-3.65, -2.72) -3.71 (-3.01, -4.20)
s -3.00  -3.26 (-3.69, -2.83) -3.23 (-4.01, -2.76)
Multinomial  §z1 Ref. Ref. Ref.
Logit 02 Ref. Ref. Ref.
Missing Data g1 -1.17  -1.20 (-1.57, -0.85) /
Y2 -0.89  -0.89 (-1.18, -0.64) /
Vi3 -0.65  -0.65 (-0.95, -0.39) /
o} 1.00 1.15 (0.97, 1.38) /

' Multinomial logit parameters comparing cluster 2 to cluster 3 (reference cluster).



Web Table 5: Simulation 3 WAIC values for MSN models fit with K = 2,3, 4,5 clusters to data simulated from
MSN models with K = 2,3,4,5. Bold indicates best-fitting model. (*) Model did not converge due to empty or
singleton clusters occurring within 10000 iterations of the MCMC algorithm.

Fitted
K= K=3 K=4 K=5
K=2 11624 11963 * *
Truth K =3 15193 12390 12811 *
K =4 15777 14359 12412 14237
K =5 15012 14359 14323 13436

Web Table 6: Estimated covariances (95% Crl), 31, 39, from the 2-cluster MSN model fit to the Nurture data
as described in Section 5.

k=1 3 mo. 6 mo. 9 mo. 12 mo.

3 mo. 0.41 (0.36, 0.49)

6 mo. 0.38 (0.32, 0.44) 0.46 (0.40, 0.54)

9 mo. 0.38 (0.32, 0.44) 0.36 (0.31, 0.43) 0.43 (0.37, 0.50)

12 mo. 0.34 (0.29, 0.40) 0.35 (0.30, 0.40) 0.32 (0.12, 0.54) 0.52 (0.44, 0.61)
k=2 3 mo. 6 mo. 9 mo. 12 mo.

3 mo. 1.18 (1.01, 1.39)

6 mo. 0.75 (0.56, 0.95) 1.26 (1.11, 1.44)

9 mo. 0.94 (0.77, 1.11) 0.82 (0.68, 0.99) 1.33 (1.16, 1.53)

12 mo. 0.67 (0.52, 0.83) 0.80 (0.67, 0.95) 0.88 (0.74, 1.04) 1.27 (1.12, 1.45)

Web Table 7: Estimated correlations from the 2-cluster MSN model fit to the Nurture data as described in

Section 5.

k = 3mo. 6mo. 9mo. 12 mo.
3 mo. 1.00

6 mo. 0.88 1.00

9 mo. 0.90 0.81 1.00

12 mo. 0.74 0.72 0.68 1.00

k = 3mo. 6mo. 9mo. 12 mo.
3 mo. 1.00

6 mo. 0.62 1.00

9 mo. 0.75 0.63 1.00

12 mo. 0.55 0.63 0.68 1.00
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Web Appendix E: Web Figures

Web Figure 1: Trace plots of a selection of parameters from Simulation 1. Geweke diagnostics and effective
sample sizes (ESS) are shown for each parameter. MCMC sampling was run for 10000 iterations with a burn-in
of 1000. All parameters were initialized at 0 and prior parameters were chosen to be weakly informative.
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Web Figure 2: Trace plots of a selection of parameters from the MNAR imputation model in Simulation 2.
Geweke diagnostics and effective sample sizes (ESS) are shown for each parameter. MCMC sampling was run for
10000 iterations with a burn-in of 1000. All parameters were initialized at 0 and prior parameters were chosen to
be weakly informative.
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Web Figure 3:

Trace plots of a selection of parameters from the 3-class model in Simulation 3. Geweke

diagnostics and effective sample sizes (ESS) are shown for each parameter. MCMC sampling was run for 10000
iterations with a burn-in of 1000. All parameters were initialized at 0 and prior parameters were chosen to be

weakly informative.
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Web Figure 4: Trace plots of a selection of parameters from the application to the Nurture Data. Geweke
diagnostics and effective sample sizes (ESS) are shown for each parameter. MCMC sampling was run for 10000
iterations with a burn-in of 1000. All parameters were initialized at 0 and prior parameters were chosen to be
weakly informative.
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