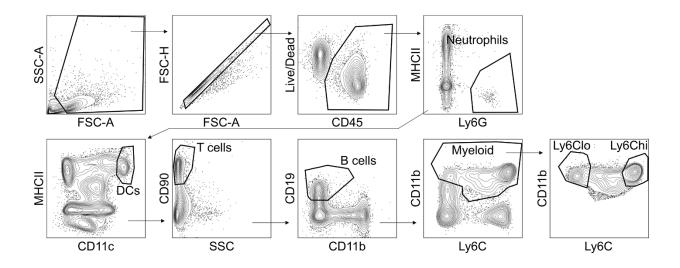
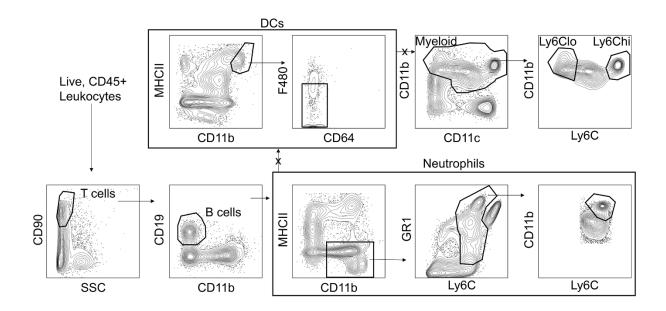
Neutrophils are Important for the Development of Pro-Reparative Macrophages after Irreversible Electroporation of the Liver in Mice

Maya Lopez-Ichikawa¹, Ngan K. Vu¹, Amar Nijagal¹, Boris Rubinsky², and Tammy T. Chang^{1*}


¹Department of Surgery, University of California, San Francisco, CA 94143

²Department of Mechanical Engineering, University of California, Berkeley, CA 94720


*Corresponding Author:

Tammy T. Chang, MD, PhD University of California, San Francisco 513 Parnassus Ave., HSW 1601 San Francisco, CA 94143 Tel: 415-476-6069

Email: tammy.chang@ucsf.edu

Supplemental Figure 1. Flow cytometry gating strategy for identification of liver myeloid cell populations.

Supplemental Figure 2. Flow cytometry gating strategy for identification of liver myeloid cell populations after neutrophil depletion with anti-Ly6G antibody. The "x" represents excluded populations.

Supplemental Movie 1. Neutrophil movement (LysM-eGFP; green) in liver at baseline. PECAM-1 (red) staining shows microvasculature.

Supplemental Movie 2. Neutrophil movement (LysM-eGFP; green) in liver 30 minutes after IRE. PECAM-1 (red) staining shows microvasculature.

Supplemental Movie 3. Neutrophil movement (LysM-eGFP; green) in liver 1 hour after IRE. PECAM-1 (red) staining shows microvasculature.

Supplemental Movie 4. Neutrophil movement (LysM-eGFP; green) in liver 2 hours after IRE. PECAM-1 (red) staining shows microvasculature. Blue shows SYTOX.

Supplemental Movie 5. Neutrophil movement (LysM-eGFP; green) in liver 4 hours after IRE. PECAM-1 (red) staining shows microvasculature. Blue shows SYTOX.

Supplemental Movie 6. Liver microvascular remains patent and perfused 30 minutes after IRE. Green shows neutrophils (LysM-eGFP) and red shows Evan Blue dye flowing within vessels. The movie is sped up approximately 5x.