No.	Туре	Tumor Size (cm)	Stage	LNC location	RNA-seq	ChIP-seq
2	ESCC	7.5×4×3	IV	Mid-paraesophageal; Right recurrent laryngeal nerve; Para- Cardia	\checkmark	-
3	ESCC	7×5×1.5	Ш	Paragastric; Mid-paraesophageal	\checkmark	-
4	ESCC	9×5×3	IV	Right recurrent laryngeal nerve	\checkmark	-
5	ESCC	4.5×3.5×1.5	Ш	Left recurrent laryngeal nerve	\checkmark	-
6	ESCC	5.6×3.8×2.7	IV	Right/left recurrent laryngeal nerve	\checkmark	-
7	ESCC	2.2×2.1×1.8	III	-	√ (no LNC)	$\sqrt{(\text{no LNC})}$
8	ESCC	3×2×1.5	Ш	Left recurrent laryngeal nerve	\checkmark	-
9	ESCC	3×3×2.5	Ш	-	√(no LNC)	-
10	ESCC	4.2×3×1.5	IV	Paragastric; Lower-paraesophageal; Left recurrent laryngeal nerve; Left principal bronchus	\checkmark	\checkmark
11	ESCC	3×1.5×0.3	Ш	Left/right recurrent laryngeal nerve; Left supraclavicular	\checkmark	\checkmark
12	ESCC	5×3.5×1.5	IV	Upper/mid/lower-paraesophageal; Left recurrent laryngeal nerve; Left principal bronchus	\checkmark	\checkmark
13	ESCC	2.4×2×1.3	Ш	Left recurrent laryngeal nerve; Left/right principal bronchus	\checkmark	\checkmark
14	ESCC	8.5×3×1.5	IV	Right/left recurrent laryngeal nerve; Left/right principal bronchus; Upper-paraesophageal; Para-thoracic duct	\checkmark	\checkmark
17	ESCC	5×3×2	Ш	-	$\sqrt{(\text{no LNC})}$	$\sqrt{(\text{no LNC})}$
18	ESCC	2.5×2×1.2	Ш	Right recurrent laryngeal nerve	$\sqrt{(\text{no LNC})}$	-
19	ESCC	5.5×3.5×1.5	IV	Right recurrent laryngeal nerve	\checkmark	\checkmark
20	ESCC	4.5×4.4×3	IV	Upper/lower-paraesophageal; Right recurrent laryngeal nerve	\checkmark	\checkmark
21	ESCC	3.6×2.5×1.1	III	Upper-paraesophageal; Right recurrent laryngeal nerve	\checkmark	\checkmark

Supplementary Figure 1. The clinical data for esophageal cancer patients.

a. The clinical data for cancer patients in the present study. All patients were numbered, and No. 1, 15, and 16 patients were excluded because of low tumor cell purity in pathological detection.

b. Clinical H&E staining results for two representative patients.

Total primary samples

Total primary samples

Supplementary Figure 2. ChIP-seq and RNA-seq data quality control.

a. Percentage of RNA-seq reads for which all bases have scores > Q30 (this is equivalent to the base-call accuracy = 99.9%).

b. Mapping ratio for RNA-seq data.

c. Percentage of ChIP-seq reads for which all bases have scores > Q30.

d. Mapping ratio for ChIP-seq data.

e. Box plots of H3K27ac enhancer profiles (57,675 enhancer loci evaluated per sample) before quantile normalization for Nor, EC, and LNC samples (28 independent samples). f. Box plots of H3K27ac enhancers after quantile normalization. e-f, Box plots are shown with the center (median), upper, and lower quartile range per sample, and thick lines indicate the median values. The whiskers indicate 1.5 IQR and the points indicates values that are bigger than 1.5 IQR.

g-h. Saturation analysis shows the numbers of predicted promoter elements (g) and enhancers (h) across increasing number of primary samples. The yellow dotted lines indicate the total number of predicted regulatory elements by integrating 28 ChIP-seq profiles. Source data are provided as a Source Data file.

Supplementary Figure 3. Diagram for experimental and bioinformatic procedures. Briefly, 50 RNA-seq profiles were generated from 18 paired patients, and 28 H3K27ac ChIP-seq profiles were generated from 10 paired patients. After regular quality control and processing, RNA-seq data were subjected to gene expression analysis, Differential Expression Gene Analysis (EC Diff genes: EC vs. Nor; LNC Diff genes: LNC vs. Nor), and biomarker analysis; ChIP-seq data were subjected to differential peak identification (promoter elements and enhancers), including *cis*-regulatory element gain and loss between two groups of samples (EC vs. Nor, LNC vs. Nor, and LNC vs.EC). Then, these differential enhancers were subjected to unsupervised hierarchical clustering, and 6 clusters (G1-G6) of differential enhancers were generated (as shown in Figure 1b). Diff, differential; FC, fold change. DS, differential signal.

Supplementary Figure 4. Enhancer supporting data.

a. Percentage of H3K27ac peaks across 28 profiles overlapping with H3K27ac peaks from normal esophageal tissues (Epigenome Roadmap; GSM1013127 and GSM906393).

b. Number of promoter elements and enhancers across 28 H3K27ac profiles. Lines indicate the mean values.

c. Unsupervised hierarchical clustering of all enhancers with H3K27ac signal across Nor, EC, and LNC samples. Nor can be generally separated from EC and LNC.

d-i. Number of altered promoter elements and enhancers at different cut-offs of recurrence for different comparisons (d: EC vs. Nor; f: LNC vs. Nor; h: LNC vs.EC). The fraction of altered elements (e, g, i) that meet statistical significance defined by paired *t*-tests (one-tailed) with Benjamini-Hochberg correction (p.adj < 0.1) at different cut-offs of recurrence. At the threshold of $\geq 6/10$ patients, 80% of the altered regions achieved statistical significance. Source data are provided as a Source Data file.

				Re	lative to Nor		Relative	to EC
Regions	Definition	Total	Recurrently gained in EC	Recurrently lost in EC	Recurrently gained in LNC	Recurrently lost in LNC	Recurrently gained in LNC	Recurrently lost in LNC
Promoter	H3K27ac+/ ±2 kb TSS	24,823	2,917	3,027	1,471	1,403	864	715
Enhancer	H3K27ac+/ promoter-	57,675	8,587	9,642	4,399	4,624	2,733	2,466
								p < 1e-9
	Nor	r	EC		Nor LNC		EC L	NC is is
			₽ ₽			1,40		
note			2,9 G			Sain:		86 Gai
Pron tyna			oss: ,027			04		
C			о L					
			5					33 ji
		-3			1.54	Gain: 4,624		. Ca
			ain: 587					Loss 2,466
						:ss: 66		
cer						4,3 L		
han	0.54							
e E								
			54 88				2 0 -2	2
			9,6					

Supplementary Figure 5. Differential promoter and enhancer analysis.

a. Number of the total, recurrently gained, and recurrently lost promoter elements and enhancers in EC or LNC relative to Nor, as well as number of recurrently gained and lost promoter elements and enhancers in LNC relative to EC. Putative active promoter elements were defined by H3K27ac occupancy and proximity to TSS within 2 kb. Putative active enhancers are defined by the presence of H3K27ac exclusive with promoters.

b. Heatmap showing the gained and lost promoter elements and enhancers listed in a.

c. Representative heat maps showed H3K27ac levels of altered promoter elements and enhancers in a set of paired samples from a representative patient (patient 19: EC vs. Nor, LNC vs. EC, and LNC vs.EC). Each line represents a peak and neighboring 6 kb. TSSs were shown as the center for promoter dynamics and peak centers were shown as the centers of altered enhancer regions.

d-e. Veen diagram showing the overlapping number of lost (d) or gained (e) promoter elements relative to Nor.

1
u
J

h

				Re	lative to Nor	Relative to EC		
Regions	Definition	Total	Recurrently gained in EC	Recurrently lost in EC	Recurrently gained in LNC	Recurrently lost in LNC	Recurrently gained in LNC	Recurrently lost in LNC
Super enhancer	H3K27ac+/ promoter-	1,042	436	481	427	310	437	217

i

Identification of SEs for each group based on the mean signal: SE gain: the average diff_signal of all samples > 0, and gained in 5/10 (8) SE loss: the average diff_signal of all samples < 0, and lost in 5/10 (8)

Supplementary Figure 6. Supplemental data for analysis of enhancers and superenhancers.

a. The top 100 (50 positive and 50 negative) promoter element-associated genes for each dimension and highlighted genes were presented in PCA analysis.

b. The top 100 (50 positive and 50 negative) enhancer-associated genes for each dimension and highlighted genes were presented in PCA analysis.

c-f. The top 1,000 enhancer-associated genes for each dimension (PC1 positive, PC1 negative, PC2 positive, and PC2 negative) were subjected to Gene Ontology (GO) (c and e) and KEGG pathway (d and f) analysis.

g. Number of the total, recurrently gained, lost super-enhancers in EC or LNC relative to Nor, as well as number of recurrently gained and lost super-enhancers in LNC relative to EC. Super-enhancers (SEs) were identified for each group based on the mean signals. The gained SEs were defined according to the criteria: the average difference signal of all samples > 0, and absolute difference > 0 in at least 5 patients (gained in 5/10 or 5/8); the lost SEs were defined according to the criteria: the average difference signal of all samples < 0, and absolute difference < 0 in at least 5 patients (lost in 5/10or 5/8).

h. PCA analysis of 28 Nor, EC, and LNC samples using all super-enhancers.

i. Identification of super-enhancers in Nor samples and top super-enhancer-associated genes. Source data are provided as a Source Data file.

Supplementary Figure 7. Examples for altered elements.

a-f. Examples for gained promoter elements (c), lost promoter elements (b), gained enhancers (d), and lost enhancers (e). Randomly selected unaltered promoters (c) and enhancers (f) served as a control. The altered or unaltered regions were highlighted in yellow, and H3K27ac tracks were presented using normalized H3K27ac enrichment data.

	G1	G2	G3	G4	G5	G6
Peak number	985	837	1974	871	548	2715
Annotated gene number	868	733	1573	758	514	1841
Expressed gene number	574	524	1146	582	383	1389
Differentially expressed genes (DEGs)	237	247	524	253	177	624
DEGs matched to H3K27ac pattern	71	82	413	51	9	442

С

	Transcrip	biome-based	DEGS	
Cluster 1 (n=311)	Nor	EC	LNC	
EC-specific gain				BMP1, FN1, SNAI2, LOXL2, TWIST1
Cluster 2 (n=203) LNC-specific gain			: <u>.</u>	CD19, CTSH, FGD2, SCIMP, SNAI3
				CBX2, MTFR2, BRCA1, KDM1A
				EGFR, SHMT2, TJAP1, MTHFD2
				HSP90AA1, LDHB, TOP2A, CDK1
Cluster 3 (n=2817)				CCNB1, CCNE1, MET, CDKN3
Common gain				HOXD8, DNMT1, SUV39H1, AURKI
				REC8, EPHB1, CDK2, ENO2
				KRT17, HOXA9, TEAD4, ETS1
Cluster 4 (n=88) FC-specific loss				RPL3, CCNG1, CSK, AK9, MBP
Cluster 5 (n=254)			A	LDH7A1, TCN1, KRT5, SOX7, GNAI1
LNC-specific loss				IMPA2, EPHA1, ELF3, CLDN4
				TJP3, PCDH1, GPT2, MALL
Cluster 6 (n=1759)				DHRS1, ANO1, EHF, OCLN
Common loss				KRT4, CWH43, CDKN2B, EMP1
				LCE3E, TJP2, CLDN7, NFIX

а

Supplementary Figure 8. Supplemental data for analysis of enhancers and superenhancers.

a. The expression of differential enhancer (G1-G6; Figure 1b)-associated genes in all samples were determined, and the number of peaks, annotated genes, and expressed genes was presented. The expressed genes (count per million (CPM) > 1 in at least 18 sample) were subjected to DEG analysis between two of three groups, and the number of DEGs was also presented. Among these DEGs, the genes with positively matched H3K27ac enrichment patterns were numbered.

b. Heatmap showing the expression of expressed genes associated with differential enhancers (G1-G6). The genes matched with H3K27ac enrichment patterns were highlighted with purple boxes.

c. The expression of DEGs analyzed from 50 transcriptomes. Representative genes were presented at the right panel. Source data are provided as a Source Data file.

Supplementary Figure 9. Supplemental data for analysis of enhancers and superenhancers.

a. The pipeline for identifying biomarkers for three groups of samples. Briefly, genes linked to differential enhancers (G1, G2, G3, and G6) were subjected to Pearson correlation analysis with its nearest H3K27ac peak signals in 28 profiles. Genes with positive correlation coefficient were selected out for subsequent analysis. The top 100 genes with most differential H3K27ac enhancers calculated from the ratio of mean H3K27ac peak signals between high group over low group were collected; then these genes were ranked by mRNA expression fold changes of mean expression in TPM (high group / low group). Finally, the top 10/15 genes were designated as biomarkers for G1, G2, G3, and G6 separately.

b. Examples for the correlation between gene expression (TPM) and nearest H3K27ac enrichment signals (input subtracted; RPKM). Correlation coefficient r was presented. c. Heatmap showing expression of identified biomarkers for g1 (EC-specific high), g2 (LNC-specific high), g3 (common gained), and g6 (common lost). The nearest H3K27ac peak density was shown in the middle panel and the gene names were listed in the right panel.

d. Representative tracks of H3K27ac ChIP-seq and RNA-seq at the *EMP1*, *HOXD11*, and *SCIMP* loci across Nor, EC, and LNC samples in 10 patients.

e. Diagram showing biomarker combinations for discriminating Nor, EC, and LNC. Source data are provided as a Source Data file.

Supplementary Figure 10. Functional analysis for differential enhancer-associated genes.

a-b. GO (a) and KEGG pathway (b) analysis of the top 2,000 gained or lost enhancerlinked genes in EC and LNC relative to Nor.

c-d. GO (c) and KEGG pathway (d) analysis of the top 2,000 gained or lost enhancerlinked genes in LNC relative to EC.

b

Supplementary Figure 11. Enhancer gain or loss prior to transcriptional alterations.

a. Heatmap showing a subgroup of gained H3K27ac-marked enhancers in EC and LNC. The associated gene expression was not significantly gained in EC but was significantly gained in LNC samples.

b. Heatmap showing a subgroup of lost H3K27ac-marked enhancers in EC and LNC. The associated gene expression was not significantly lost in EC but was significantly lost in LNC samples. Source data are provided as a Source Data file.

е

Differential SE identification by each sample

			Relative to Nor				Relative to EC	
Regions	Definition	Total	Recurrently gained in EC	Recurrently lost in EC	Recurrently gained in LNC	Recurrently lost in LNC	Recurrently gained in LNC	Recurrently lost in LNC
SEs	H3K27ac+/ promoter-	1,223	615	505	491	429	373	415
Overlap with (Fig. S6g) H3K27ac promoter		948 (1,042)	387 (<mark>436</mark>)	355 (<mark>481</mark>)	427 (<mark>341</mark>)	310 (<mark>255</mark>)	271 (437)	179 (<mark>217</mark>)
Combination	H3K27ac+/ promoter-	1,317	657	536	531	472	406	449

Note: Fig. S6g-differential SE identification by mean signal for each group.

Supplementary Figure 12. Supporting data for super-enhancer analysis.

a. GO analysis of altered (gained or lost) super-enhancer-associated genes in EC and LNC relative to Nor.

b. GO analysis of altered (gained or lost) super-enhancer-associated genes in LNC relative to EC.

c. Comparison of the number of super-enhancers calculated from each H3K27ac profile or average H3K27ac signals per group. Lines indicate the mean values of the number of super-enhancers.

d. The pipeline for identifying altered super-enhancers based on SEs identified from each sample. Super-enhancers that were recurrently identified in \geq 3 samples for each group were defined as super-enhancers for each group. The criteria for identifying altered enhancers were identical to that in Supplementary Figure 6g.

e. Number of the total, recurrently gained, lost super-enhancers in EC or LNC relative to Nor, as well as number of recurrently gained and lost super-enhancers in LNC relative to EC. Super-enhancers (SEs) were identified from combinations from each sample. The overlapped and combined number of presented super-enhancers were displayed. The number of super-enhancers shown in Supplementary Figure 6g was presented in red.

f-h. Identification of differential super-enhancers by fold change of super-enhancercovered H3K27ac signals. All super-enhancers were ranked according to the fold change between two compared groups. In the lower panel, we combined fold change and absolute difference of super-enhancer-covered H3K27ac signals to identify top gained or lost super-enhancers (EC vs. Nor, LNC vs. Nor, and LNC vs.EC). For identifying top gained super-enhancers, the super-enhancers with absolute difference > 2 and fold change > 2 were overlapped; for identifying top lost super-enhancers, the super-enhancers with absolute difference < -2 and fold change < 0.7 (to retain a comparable number of lost super-enhancers when considering fold change) were overlapped. Source data are provided as a Source Data file.

Supplementary Figure 13. Supporting data for super-enhancer analysis.

a. Heatmap showing the H3K27ac signals within differential super-enhancers and expression of differential super-enhancer-associated genes. The differential super-enhancers were obtained from overlapped terms in Supplementary Figure 12f-g. Representative genes for each group were listed in the right panel.

b. Cancer hallmark analysis using differential SEs (EC gain, EC loss, LNC gain, and LNC loss relative to Nor)-associated genes. Nearby genes associated with unaltered super-enhancers in EC and LNC relative to Nor served as a control.

c. Heatmap showing the expression of 456 differential super-enhancer-associated genes across Nor, EC, and LNC samples. These genes were a combination of differential super-enhancer-associated genes in a. These genes were classified into 4 sub-groups: LNC-specific loss, common loss, LNC-specific gain, and common gain. Source data are provided as a Source Data file.

а

Supplementary Figure 14. Examples for gained and lost super-enhancers.

a-f. H3K27ac tracks showing commonly lost (highlighted in yellow) and gained (highlighted in green) super-enhancers (SEs) relative to Nor. It was worth noticing that there were two neighboring altered super-enhancers, including a lost SE covering HOXA1/2/3/4 as well as a gained SE covering HOXA7/9/10.

а

Low

High

High N Low

Supplementary Figure 15. Differential super-enhancer-linked gene expression in other cancers.

a-b. DEG analysis of differential super-enhancers-linked genes in PDA (GSE71729) and CA (GSE41258). These genes were categorized into four indicated subgroups.

c. Common gained, metastasis gained, and common lost genes from ESCC, PDA, and CA were overlapped and presented in Venn diagram. Representative genes for overlapped genes were shown below, and the color of gene names was matched to the overlapped groups.

d. Heatmap showing the expression of representative genes in c.

e-g. Survival analysis comparing patient groups with high or low expression of top gained SEs-associated genes in ESCC using Kaplan-Meier plotter with PDA (e), Headneck squamous cancer (SC) (f), and LUAD (g) patients from TCGA database. LogRank test was performed for the survival data. The number of patients was listed below. Source data are provided as a Source Data file.

	DNA motif	TF	P-value	% targets
	TGGGCTACCTAA	OSR1	1e-16	0.33
Ser	AGCTTTCACA	TBX21	1e-15	35.1
Jano	TATAATTAAAAG	ARID3A	1e-13	0.48
ent	GTTTGGCACA	NFIA	1e-13	11.93
lost	AASSCAGGGC	ZNF416	1e-13	11.12
nor	GAGGCCACTC	NKX2.5	1e-12	12.93
m	ATAGCCTGAT	TCF4	1e-12	0.29
ŏ	CTGACATTAG	MEIS1	1e-9	4.16
	GTAGAaaaggaa	ELF3	1e-7	0.44

	DNA motif	TF	P-value	% targets
er	GGAGAGTCAGCC	MAFA	1e-10	2.55
and	SCTCATGGTGTA	SOX14	1e-9	1.28
ent	AAAITCTGCCCA	BCL11A	1e-9	1.28
lost	CTGTCCAGITTC	ZNF416	1e-9	3.28
ific	IGATGTAAAI	LIN45	1e-8	3.1
bec	GTTGGCTGC G	NFIX	1e-8	2.19
ပို	CGCGTCTCCG	RFXDC2	1e-7	2.01
Ľ	STTTTGTGATTT	FOXA2	1e-7	0.73

С

L

	NOT ARID3A EBF2 NOT ARID3A EBF2 H POU6F2 NFIC MEIS1 POU3F1 ZNF354C ZNF711 POU6F2 NFIC KLF7 NFIC NFIC NFIC NFIC ZNF711 POU6F2 ZNF711 ZNF712 ZNF711 ZNF712 ZNF711 ZNF712 ZNF711 ZNF712 ZNF711 ZNF712 ZNF711 ZNF712 ZNF7 Z	ELF3 A2 GF11 OXD13 STAT4 ERG MZF1 EBF1 FX7 OSR1 EBF1 FX7 OSR1 EBF1 FX7 COSR1 EBF1 FX7 COSR1 EBF1 FX7 COSR1 EBF1 FX7 COSR1 EBF1 FX7 COSR1 EBF1 EBF1 COSR1 EBF1 E	
EC	POUGET NTELL2 MYC JUNB ETV1 ZIC1 ZBTB7A STAT5A GABPA RHD FOX01 RORC YY1 MYBL1 IRF7 YY2 SOX2 SP1 TCF4 CEBPB SP100 TCF3 RELA SP1 BCL6B ZNF8 IRF3 RBPJ TCF12 NFATC1 NR1D2 E2F6 ZNF740 NFKB1 BATF POUSF1 MAFB ATF3 HDX HOMEZ RXRA MAX	GLIS3 NR2F6 RUNX1 PRDM1 ZEB2 PRDM1 YEB2 NFATC2 THRB MEF2A MITF NR2F2 ZEB1 SMAD4 FU1 SMAD4 FU1 SOX12 ARID5A KLF9 SIX1 NF1 TBX21 ZNF691 USF2 GBF1	LNC

b

Supplementary Figure 16. Altered enhancer predicted TF binding activities and network.

a-b. Top transcription factor (TF) binding motifs predicted from common lost (a) or LNC-specific lost (b) enhancers using HOMER. The predicted TFs were ranked by P value.

c. TF interaction network across three groups of samples using top predicted TFs. Correlation between two TFs was calculated according to the RNA-seq expression in three cohorts, and the correlation within the same group was not presented. A positive correlation between two TFs was linked with red lines, and negative correlation between two TFs was linked with green lines.

С

Supplementary Figure 17. Supporting data for functional analysis of gained enhancer-predicted TFs.

a. Representative images showing the GFP fluorescence as indications for shRNAs expression. Lentiviral infected TE1 cells were enriched to obtain 100% GFP positive cells. GFP fluorescence was used for cell counting. Three independent experiments with three repeats were performed, and similar results were obtained.

b. Representative images showing the wound healing status at day 0 and day 2 using GFP fluorescence. The formula for calculating the wound healing rate was provided. Three independent experiments with three repeats were performed, and similar results were obtained.

c. Quantitative real-time PCR analysis of p21, *c-Myc*, *SNAI1*, and *FN1* expression upon knockdown of 12 gained enhancer-predicted TFs. n=2 biologically independent experiments examined. Source data are provided as a Source Data file.

Supplementary Figure 18. Co-occupancy between key TF binding peaks and H3K27ac peaks.

a. All H3K27ac enhancers were overlapped with 8 TF binding profiles (dataset available in ENCODE database), and co-occupied regions were presented in a representative patient (patient 19) or in cell lines (Information was provided in Supplementary Data 20).

b. Common gained and LNC-specific gained H3K27ac enhancers were overlapped with 8 TF binding profiles respectively, and co-occupied regions were represented, and associated genes were listed in Supplementary Data 20. Source data are provided as a Source Data file.

a				b)			
Common gain	ed SE-linked	gene			Target	Chemical	Туре	MCE Cat. No.
HSP90AA1,FCGR3A	A,FCGR2A,CCND	1,ANO1, Inte	eraction	Drugs	HSP90AA1	Alvespimvcin hvdrochloride (AH) Inhibitor	HY-12024
ATP2C1,RUNX1,SP	HK1,DNMT3A,IL4	74,11 GA5, R,LDHA,	(r	n=236)	CCND1	Palbociclib	Inhibitor	HY-50767
TMSB10,PROC,ITPR CYP24A1,PYGB,GN	R3,FGF3,MMP25,1 AS,NCF2,CTSZ,N	PCN2, NMT,	C		ANO1	Endovion	Inhibitor	HY-105917
ATF4,H6PD,PISD,SL	_C12A7,CHST11,F	ADD			CCR3	SB297006	Antagonist	HY-103361
					BCI 2	Navitoclax	Inhibitor	HY-10087
LNC specific ga	ined SE-linke	d gene	oraction C		PDE4B	ML-030	Inhibitor	HY-103050
	(n=18)			Drugs	ROCK1	Hydroxyfasudil	Inhibitor	HY-13911
CCND2, EGLN2, CD2,	2, ITGB7, RUNX3,	CD3, CD74,	(1	n=170)	CXCR4	IT1t dihvdrochloride (IT1t)	Antagonist	HY-101458A
SRGN, STK10, CCR6,	, SLAMF1, STK17	B, IKZF1				,,,,,,,	5	
C	Δ	н	Palhocic	lih	Endovion	SB297006 d	£ ^{1.2}] ^{-−0.2/}	1 μM AH
TE1/Mock DMS	Ο <u>0.2 μΜ</u>	1 μM	0.3 μM 6	.5μM 2.j	μM 20 μ	IM 2 μM 20 μM	1.0 - 0.5/ - 0.2 μM	1 µм мL-030 I AH+0.5 µM ML-030
							0.8 - TE1/m	ock
		al a second for						1
							ž 0.2	
NI	Rat.	000	11			AUL-141 000	0.01	2 _{Day} 3 4
	NL· // 05M	<u>1 uM</u>	2 uM		IT1t	ΑΗ+ML-030 Μ (0.2 μM + 0.5 μM)	€ ^{1.2}] ^{0.3/6}	.5 μM Palbociclib μM Endovion
					μ ι 10 μ		1.0 2/20	μM SB297006
							0.8 2/20	μM Hydro
							0.6 2/20	μM IT1t .k/DMSQ
						100 um	E 0.41	
				1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1			ē 0.2	
							0.0	2 _{Day} 3 4
9						f f		
DMSO	AH	Palboc	iclib Ei	ndovion	SB29700		80 J	
120	1.	100	150	1		×		
90 - 10 -	16.4%	···	4.77%		··· 5.41%	FSC-A O	60-	
3.86%		10 4.22 70			******	↓ So	40-	
				ж 15к 15к		bt j	•	
0 6.0K 10K 19K 0	0 5.0K 10K 15K	о <u>Блак</u> тык	154			DO	20-	
Navitoclax	ML-030	Hydroxyf	fasudil	IT1t	AH+ML-()30		
100	25.4%	120	100	1	12	FSC-W	014	
		₀₀ - 3.36%		6	54.3%	-		sud scla
•• A ••		· ·	40					wite MI
				M	. Mul	<i>ö</i>	e d	Na Na Na
0 5.0K 10K 15K	0 6.0K 10K 16K	0 5.0K 10K	15K 0	5.QK 10K 15K	0 5.0K 10K	PE-Texas Red-A		łyd
a					Inhibitor	~		_
		Palhasialih	Endovion	SP207006	Novitoolo	S MI 020 Hydroxyfaeudil	1744	
TE1/DMSO	ΑΠ (0.2 μM)	- albocicilib (6.5 μM)	∈παονιοή (20 μM)	ວ⊡∠9/006 (20 μM)	ivavitocia (10 μM)	x wi∟-υου πyuroxytasudii (0.5 μM) (20 μM)	111τ (20μM) (
				· · · · · · · · · · · · · · · · · · ·	1. 1 0° 5			14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
27 m) 02 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5					6. 			
<u>т</u>					de s		1 - 1 - 1 - 1	· · · · ·
Ň				A CARLES				
ου								
				14				
P . 1			· · · · · · · · · · · · · · · · · · ·	С				i a the

Supplementary Figure 19. Supporting data for functional analysis of superenhancer predicted drugs.

a. Common gained and LNC specific gained super-enhancer (SE)-linked genes were subjected to the Drug Gene Interaction Database (DGIdb). 36 common gained SE-linked genes were potentially interacting with 236 drugs, and 18 LNC-specific gained SE-linked genes were potentially interacting with 170 drugs.

b. Top 8 targets predicted from gained super-enhancer (SE)-linked gene-drug interactions, their chemical inhibitors, and catalog numbers from MCE (MCE Cat. No.) were listed.

c. Representative images showing TE1 cells responding to indicated concentrations of chemical inhibitors. AH+ML-030: combined use of the two chemicals. The DMSO and mock group served as controls. Two independent experiments with three repeats were performed, and similar results were obtained.

d. TE1 cells treated with chemical inhibitors were counted at day 0, 1, 2, 3, 4, and 5. Mock TE1 cells and DMSO group served as controls. Data are presented as mean values \pm s.d.. n=3 biologically independent experiments examined.

e. Apoptotic analysis of TE1 cells responding to indicated chemical inhibitors with higher concentrations used in c. Representative results for apoptotic analysis were presented with the percentages of apoptotic cells, and an example for gating strategy was also presented for Endovion-treated group.

f. Statistical analyses of cell apoptosis in e. n=2 biologically independent experiments examined. Source data are provided as a Source Data file.

g. Representative images showing TE1 cell migration in responding to indicated concentrations of chemical inhibitors after scraping for 24 and 48 h. Dashed red lines indicates the edge of wounds. Three independent experiments with three repeats were performed, and similar results were obtained. Source data are provided as a Source Data file.

Supplementary Figure 20. Additional data for functional analysis of superenhancer predicted drugs.

a-b. Representative images showing KYSE30 (a) and KYSE150 (b) cells responding to indicated concentrations of chemical inhibitors. AH+ML-030: combined use of the two chemicals. The DMSO and mock group served as controls. Two independent experiments with three repeats were performed, and similar results were obtained.

c-d. KYSE30 (c) and KYSE150 (d) cells were treated with DMSO, with each of 8 chemical inhibitors (higher concentration used in a) separately, or with a combination of HSP90AA1 and PDE4B inhibitors (AH+ML-030). Cell number was counted at 72 h using cell counter. Data are presented as mean values \pm s.d.. n=3 biologically independent experiments presented.

e-f. Apoptotic analysis of KYSE30 (e) and KYSE150 (f) cells responding to indicated chemical inhibitors with higher concentrations used in a. Representative results for apoptotic analysis were presented with the percentages of apoptotic cells. n=2 biologically independent experiments presented. Source data are provided as a Source Data file.

Supplementary Figure 21. Validation of HSP90AA1 and PDE4B functions.

a. H3K27ac and RNA-seq tracks showing gained super-enhancers and upregulated gene expression for *HSP90AA1* and *PDE4B*.

b. *PDE4B* expression in TPM in Nor, EC, and LNC samples. n=18 for Nor and EC; n=14 for LNC. Data are presented as mean values \pm s.d. **P* < 0.05, ***P* < 0.01, unpaired *t*-test (two-tailed). Source data are provided as a Source Data file.

c. Patients were divided into two sub-groups with high (n=9) or low (n=9) *HSP90AA1* expression in EC. The expression of *HSP90AA1* in two sub-groups was presented. Data are presented as mean values \pm s.d.

d. Survival analysis of the patients with high (n=9) or low (n=8) *HSP90AA1* expression in EC (the survival information for one patient was not available). LogRank *P*-value was calculated using LogRank test.

e-g. Survival analysis comparing patient groups with high or low expression of *HSP90AA1* using Kaplan-Meier plotter with esophageal adenocarcinoma (e), Headneck SC (f), and liver cancer (g) patients from TCGA database. The number of patients was listed below. LogRank test was performed for the survival data.

h. Bioluminescent imaging at 4 weeks post intramuscular injection (around the neck region to mimic esophagus cancer) of 1×10^5 KYSE150 cells stably expressing firefly luciferase cDNA that was introduced by lentiviruses. ML-030 (20 mg/kg) was administrated through intraperitoneal injection every three days, starting from the day after cell implantation. PBS group served as a control. Four mice were used for each group and two mice were presented in a representative image for image capture. Source data are provided as a Source Data file.

Supplementary Figure 22. Distal regulation of gained super-enhancer-associated genes by potent TFs.

a. Hi-C maps at the *ANO1*, *HSP90AA1*, and *PMEPA1* neighboring regions within apparent TADs (highlighted in purple rectangles). The Integrative Genomics Viewer (IGV) views of ChIP-seq enrichment for H3K27ac signals in four representative LNC samples (patient No. 10, 13, 19, and 21) were shown. The TFs potentially bound to the highlighted TAD regions were predicted using HOMER and depicted below.

b. Quantitative real-time PCR analysis of *ANO1*, *HSP90AA1*, and *PMEPA1* expression upon knockdown of 12 gained enhancer-predicted TFs. n=2 biologically independent experiments presented. Source data are provided as a Source Data file.

Supplementary Table 1. DNA oligo sequences used for shRNA construction.

Oligo Name	Oligo sequence (5'-3')
shCtrl-For	GATCCGAACAAGATGAAGAGCACCAATTCAAGAGATTGGTGCTCTTCATCTTGTTTTTTTG
shCtrl-Rev	AATTCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
shSOX2-1-For	GATCCGAGCTCGCAGACCTACATGAATTCAAGAGATTCATGTAGGTCTGCGAGCTTTTTTTG
shSOX2-1-Rev	AATTCAAAAAAAAGCTCGCAGACCTACATGAATCTCTTGAATTCATGTAGGTCTGCGAGCTCG
shSOX2-2-For	GATCCGAAGAAGGATAAGTACACGCTTTCAAGAGAAGCGTGTACTTATCCTTCTTTTTTG
shSOX2-2-Rev	AATTCAAAAAAAAAAAGAAGGATAAGTACACGCTTCTCTTGAAAGCGTGTACTTATCCTTCTTCG
shRXRA-1-For	GATCCGGATTTCTCCACCCAGGTGAATTCAAGAGATTCACCTGGGTGGAGAAATCTTTTTTG
shRXRA-1-Rev	AATTCAAAAAAGATTTCTCCACCCAGGTGAATCTCTTGAATTCACCTGGGTGGAGAAATCCG
shRXRA-2-For	GATCCGAAGGACTGCCTGATTGACAATTCAAGAGATTGTCAATCAGGCAGTCCTTTTTTTG
shRXRA-2-Rev	AATTCAAAAAAAAAGGACTGCCTGATTGACAATCTCTTGAATTGTCAATCAGGCAGTCCTTCG
shNFE2L2-1-For	GATCCGTGACAGAAGTTGACAATTATTCAAGAGATAATTGTCAACTTCTGTCATTTTTG
shNFE2L2-1-Rev	AATTCAAAAAATGACAGAAGTTGACAATTATCTCTTGAATAATTGTCAACTTCTGTCACG
shNFE2L2-2-For	GATCCGGTAAGAAGCCAGATGTTAATTCAAGAGATTAACATCTGGCTTCTTACTTTTTG
shNFE2L2-2-Rev	AATTCAAAAAAGTAAGAAGCCAGATGTTAATCTCTTGAATTAACATCTGGCTTCTTACCG
shZNF519-1-For	GATCCGCATTCTCAAAGCTTACTCAAGTCAAGAGATTGAGTAAGCTTTGAGAATGTTTTTTG
shZNF519-1-Rev	AATTCAAAAAACATTCTCAAAGCTTACTCAATCTCTTGAATTGAGTAAGCTTTGAGAATGCG
shZNF519-2-For	GATCCGCTCCTACAGAACCATGTATTTTCAAGAGAAATACATGGTTCTGTAGGAGTTTTTTG
shZNF519-2-Rev	AATTCAAAAAACTCCTACAGAACCATGTATTTCTCTTGAAAAATACATGGTTCTGTAGGAGCG
shESRRA-1-For	GATCCGAGAGGAGTATGTTCTACTAATTCAAGAGATTAGTAGAACATACTCCTCTTTTTTG
shESRRA-1-Rev	AATTCAAAAAAAAGAGGAGTATGTTCTACTAATCTCTTGAATTAGTAGAACATACTCCTCTCG
shESRRA-2-For	GATCCGTGAATGCACTGGTGTCTCATTTCAAGAGAATGAGACACCAGTGCATTCATT
shESRRA-2-Rev	AATTCAAAAAATGAATGCACTGGTGTCTCATTCTCTTGAAATGAGACACCAGTGCATTCACG
shRELA-1-For	GATCCGCCTTAATAGTAGGGTAAGTTTTCAAGAGAAACTTACCCTACTATTAAGGTTTTTTG
shRELA-1-Rev	AATTCAAAAAACCTTAATAGTAGGGTAAGTTTCTCTTGAAAACTTACCCTACTATTAAGGCG
shRELA-2-For	GATCCG GGATTGAGGAGAAACGTAAA TTCAAGAGA <mark>TTTACGTTTCTCCTCAATCC</mark> TTTTTTG
shRELA-2-Rev	AATTCAAAAAAGGATTGAGGAGAAACGTAAATCTCTTGAATTTACGTTTCTCCTCAATCCCG
shTCF4-1-For	GATCCGACGAAATCTTCGGAGGACAATTCAAGAGATTGTCCTCCGAAGATTTCGTTTTTTG
shTCF4-1-Rev	AATTCAAAAAAAACGAAAATCTTCGGAGGACAATCTCTTGAATTGTCCTCCGAAGATTTCGTCG
shTCF4-2-For	GATCCGAAAGGAATCTGAATCCGAAATTCAAGAGATTTCGGATTCAGATTCCTTTTTTTT
shTCF4-2-Rev	AATTCAAAAAAAAAAAGGAATCTGAATCCGAAATCTCTTGAATTTCGGATTCAGATTCCTTTCG
shETS1-1-For	GATCCGTGGAATTACTCACTGATAAATTCAAGAGATTTATCAGTGAGTAATTCCATTTTTTG
shETS1-1-Rev	AATTCAAAAAATGGAATTACTCACTGATAAATCTCTTGAATTTATCAGTGAGTAATTCCACG
shETS1-2-For	GATCCGCCCTGGGTAAAGACTGCTTTTTCAAGAGAAAAGCAGTCTTTACCCAGGGTTTTTTG
shETS1-2-Rev	AATTCAAAAAACCCTGGGTAAAGACTGCTTTTCTCTTGAAAAAGCAGTCTTTACCCAGGGCG
shSOX12-1-For	GATCCGATGGCGGATTACCCGGACTATTCAAGAGATAGTCCGGGTAATCCGCCATTTTTTG
shSOX12-1-Rev	AATTCAAAAAAATGGCGGATTACCCGGACTATCTCTTGAATAGTCCGGGTAATCCGCCATCG
shSOX12-2-For	GATCCGCTGGGCTTTCTGTCCAGGCTTTCAAGAGAAGCCTGGACAGAAAGCCCAGTTTTTTG
shSOX12-2-Rev	AATTCAAAAAACTGGGCTTTCTGTCCAGGCTTCTCTTGAAAGCCTGGACAGAAAGCCCAGCG
shNFATC2-1-For	GATCCGCACATCATGTACTGCGAGAATTCAAGAGATTCTCGCAGTACATGATGTGTTTTTTG
shNFATC2-1-Rve	AATTCAAAAAACACATCATGTACTGCGAGAATCTCTTGAATTCTCGCAGTACATGATGTGCG
shNFATC2-2-For	GATCCGCGAGTCCAAAGTTGTGTTTATTCAAGAGATAAACACAACTTTGGACTCGTTTTTTG
shNFATC2-2-Rve	AATTCAAAAAACGAGTCCAAAGTTGTGTTTATCTCTTGAATAAACACAACTTTGGACTCGCG
shIRF2-1-For	GATCCGCGGTCCTGACTTCAACTATATTCAAGAGATATAGTTGAAGTCAGGACCGTTTTTTG
shIRF2-1-Rve	AATTCAAAAAACGGTCCTGACTTCAACTATATCTCTTGAATATAGTTGAAGTCAGGACCGCG
shIRF2-2-For	GATCCGAGAACGGCCTTCTAAGAAAGTTCAAGAGACTTTCTTAGAAGGCCGTTCTTTTTTG
shIRF2-2-Rve	AATTCAAAAAAAAGAACGGCCTTCTAAGAAAGTCTCTTGAACTTTCTTAGAAGGCCGTTCTCG
shZEB1-1-For	GATCCGCTCTCTGAAAGAACACATTATTCAAGAGATAATGTGTTCTTTCAGAGAGAG
shZEB1-1-Rve	AATTCAAAAAACTCTCTGAAAGAACACATTATCTCTTGAATAATGTGTTCTTTCAGAGAGCG
shZEB1-2-For	GATCCGCTACCACTGGATGTAGTAAATTCAAGAGATTTACTACATCCAGTGGTAGTTTTTTG
shZEB1-2-Rve	AATTCAAAAAACTACCACTGGATGTAGTAAATCTCTTGAATTTACTACATCCAGTGGTAGCG

Supplementary Table 2. Quantitative real-time PCR primer sequences.

qPCR primer name (Human)	Primer sequences (5'-to-3')
ZEB1-For	TTACACCTTTGCATACAGAACCC
ZEB1-Rve	TTTACGATTACACCCAGACTGC
GAPDH-For	GGAGCGAGATCCCTCCAAAAT
GAPDH-Rev	GGCTGTTGTCATACTTCTCATGG
SOX2-For	TGGACAGTTACGCGCACAT
SOX2-Rev	CGAGTAGGACATGCTGTAGGT
RXRA-For	ATGGACACCAAACATTTCCTGC
RXRA-Rev	GGGAGCTGATGACCGAGAAAG
NFE2L2-For	TCAGCGACGGAAAGAGTATGA
NFE2L2-Rev	CCACTGGTTTCTGACTGGATGT
ZNF519-For	ACTTCTGACCCATTCTCAA
ZNF519-Rev	CTTATGTCCCTTTAGATGTG
ESRRA-For	GAGATCACCAAGCGGAGACG
ESRRA-Rev	ATGAGACACCAGTGCATTCAC
RELA-For	ATGTGGAGATCATTGAGCAGC
RELA-Rev	CCTGGTCCTGTGTAGCCATT
TCF4-For	CAAGCACTGCCGACTACAATA
TCF4-Rev	CCAGGCTGATTCATCCCACTG
ETS1-For	GATAGTTGTGATCGCCTCACC
ETS1-Rev	GTCCTCTGAGTCGAAGCTGTC
SOX12-For	AAGAGGCCGATGAACGCATT
SOX12-Rev	TAGTCCGGGTAATCCGCCAT
NFATC2-For	GAGCCGAATGCACATAAGGTC
NFATC2-Rve	CCAGAGAGACTAGCAAGGGG
IRF2-For	AATGCTGCCCCTATCAGAACG
IRF2-Rve	CAGGACCGCATACTCAGGAGA
p21-For	TGTCCGTCAGAACCCATGC
p21-Rev	AAAGTCGAAGTTCCATCGCTC
PMEPA1-For	TGTCAGGCAACGGAATCCC
PMEPA1-Rev	CAGGTACGGATAGGTGGGC
ANO1-For	CTGATGCCGAGTGCAAGTATG
ANO1-Rev	AGGGCCTCTTGTGATGGTACA
HSP90AA1-For	GCTTGACCAATGACTGGGAAG
HS90AA1-Rev	AGCTCCTCACAGTTATCCATGA
SNAI1-For	TCGGAAGCCTAACTACAGCG
SNAI1-Rev	AGATGAGCATTGGCAGCGAG
FN1-For	CGGTGGCTGTCAGTCAAAG
FN1-Rev	AAACCTCGGCTTCCTCCATAA
C-MYC-For	GGCTCCTGGCAAAAGGTCA
C-MYC-Rev	CTGCGTAGTTGTGCTGATGT