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I. SUPPLEMENTARY METHODS

A. Bond Length based Representations

To construct representations from a molecular graph that rely on bond lengths, covalent atomic radii are required for each
type of bond (single, double, triple). Using the atomic radii as weights, the bond length distance or shortest path li j between two
atoms i and j in a graph is calculated using Dijkstra’s algorithm as implemented in igraph. Calculating the bond length distances
for all atom pairs in a molecule results in a representation of the following form:

Bond Lengthi j =

{
0, i = j,
li j, i 6= j.

(1)

with li j being the bond length distance/shortest path between the atoms i and j. To include more physics, the bond length
distance can be used to approximate 2-body interactions that are commonly used in QML representations such as the Coulomb
Matrix (CM) or Bag-of-Bonds (BoB). The CM representation contains the coulomb interaction scaled by the interatomic distance
as off-diagonal elements, while the diagonal represents an approximation to the atomic energy of the nuclear charge Zi. This
leads to a representation with the following form:

CMi j =

{
0.5Z2.4

i , i = j,
ZiZ j
|RRRi−RRR j | , i 6= j.

(2)

with nuclear charge Z and atomic coordinates RRR. Since the atomic coordinates are not available for a structure prediction
task, the representation has to be adapted for molecular graphs. The bond length distance approach described above suits as an
approximation to the intermolecular distance and can therefore be used to adapt the off-diagonal term of the CM to work in a
graph setting. The adapted representation, dubbed graph CM, has the following form:

graph CMi j =

{
0.5Z2.4

i , i = j,
ZiZ j
li j

, i 6= j.
(3)

with nuclear charge Z and bond length distance li j. To convert the CM into a BoB representation, the CM has to be vectorized
by grouping all matrix terms into specific bins. The thereby created canonical order (bag of bonds) ensures that during the kernel
calculation only similar bins are compared. Each bin describes a particular bond type (H-H, C-C, C-H etc.). In this regard, the
BoB and graph BoB representation use the same components as their respective matrix counterpart (CM and graph CM), but
only differ through transforming the matrix into a canonical vector. Since the distance matrix is sorted based on the sorting of
the representation, the distance matrix undergoes the same vectorization and binning procedure as the graph BoB representation.

B. Z-Matrix Learning

A alternative internal coordinate representation of atomistic structures is the so called Z-matrix. Instead of using pairwise
distances, a Z-matrix contains information about bond distances, bond angles as well as dihedral angles. Conversion between a
Z-matrix and Cartesian coordinates is possible. G2s has been used to predict bond distances, bond angles and dihedral angles,
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respectively. Contrary to the distance matrix approach, the sorting of the representation was only dependent on the atom indices
of the respective Z-matrix entry, making the machines independent of how the Z-matrix has been constructed. While bond
distances and angles appear easier to learn, achieving remarkable accuracies of 0.01 Å MAE on distances and 2 degree MAE on
bond angles, the learning of dihedral angles only achieved a MAE of 36 degree. The conversion from Z-matrix to a reasonable 3D
geometry was not possible given these errors. It is worth to mention that the Z-matrix conversion suffers from error propagation,
amplifying errors from atom to atom during the reconstruction. The distance geometry problem is superior in this regard since
the compatibility of all distances is being optimized, leading to error cancellation instead of propagation.

C. Software

The Graph To Structure software is build upon Numpy1, Scipy2, Quadpy3, RDKit4 and igraph5. To extract adjacency matrices
from xyz-files, the xyz2mol6,7 package has been used. For high performance kernel ridge regression, the QML8 package was
used. Visualizations have been created using Matplotlib9, Seaborn10 and VMD11.

II. SUPPLEMENTARY TABLES

Supplementary Table I. Baseline and test errors of structure generation methods. Errors are reported in terms of mean MAE of pairwise
distances and RMSD for structures with (w) and without (w/o) hydrogen atoms, respectively. For the machine learning methods, the results
of the largest training set size have been reported. 1) Errors towards a reference geometry, when the reference geometry has been optimized
with one of the listed methods (UFF, MMFF, GFN2-xTB, PM6). 2) Structure generation with ETKDG from RDKit. Rows with UFF/MMFF
have subsequently been optimized with either force field. 3) Structure generation with Gen3D from Open Babel with and without force field
optimization. 4) Structure generation with G2S using the listed representations. 5) Hydrogen prediction with G2S.

C7O2H10 C7NOH11 E2/SN2 Reactants

MAE [Å] RMSD [Å] MAE [Å] RMSD [Å] MAE [Å] RMSD [Å]
w w/o w w/o w w/o w w/o w w/o w w/o

1)
UFF 0.10 0.06 0.26 0.16 0.11 0.07 0.29 0.17 0.09 0.08 0.23 0.21
MMFF 0.07 0.05 0.19 0.13 0.08 0.05 0.21 0.14 0.09 0.08 0.26 0.22
xTB 0.04 0.02 0.09 0.06 0.19 0.15 0.22 0.13 0.09 0.08 0.28 0.22
PM6 0.06 0.04 0.15 0.09 0.06 0.05 0.14 0.09 0.12 0.13 0.38 0.29

2)
ETKDG 0.35 0.17 0.92 0.54 0.35 0.15 0.93 0.44 0.37 0.24 0.94 0.70
ETKDG UFF 0.32 0.14 0.90 0.50 0.33 0.12 0.87 0.40 0.36 0.23 0.90 0.69
ETKDG MMFF 0.31 0.13 0.90 0.49 0.32 0.11 0.84 0.39 0.37 0.24 0.93 0.69

3) Gen3D 0.32 0.14 0.85 0.50 0.34 0.13 0.79 0.42 0.35 0.22 0.88 0.66
Gen3D MMFF 0.32 0.14 0.85 0.50 0.34 0.13 0.79 0.42 0.35 0.22 0.88 0.66

4)

Null 0.84 0.88 0.77
Bond Order 0.41 0.17 0.98 0.48 0.51 0.24 1.02 0.60 0.31 0.22 0.76 0.51
Bond Hop 0.38 0.13 0.85 0.44 0.41 0.14 0.90 0.43 0.32 0.23 0.77 0.54
Bond Length 0.38 0.13 0.87 0.46 0.41 0.12 0.91 0.42 0.26 0.21 0.69 0.41
CM 0.42 0.16 0.91 0.50 0.46 0.17 0.98 0.53 0.28 0.24 0.70 0.42
BoB 0.40 0.16 0.94 0.48 0.45 0.15 0.96 0.52 0.27 0.23 0.70 0.42

5) Null 0.17 0.17 0.17
Bond Length 0.06 0.06 0.05
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III. SUPPLEMENTARY FIGURES

Supplementary Figure 1. Systematic improvement of prediction accuracy of the Z-Matrix components atom distances, bond angles and dihedral
angles for QM9 C7O2H11 constitutional isomer set using the bond length representation.
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Supplementary Figure 2. Learning curves showing the MAE of pairwise distances of hydrogens to the closest four heavy atom neighbors. The
null model represents the baseline accuracy calculated using the average pairwise distances in a dataset as a predictor.
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Supplementary Figure 3. Learning curves of the QM9 constitutional isomers showing the MAE of pairwise distances of heavy atoms with
increasing training set sizes N. The null model represents the baseline accuracy calculated using the average pairwise distances in a dataset
as a predictor. (a) MAE before 3D reconstruction. (b) MAE after 3D reconstruction. (c) MAE between the distances before and after
reconstruction.
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Supplementary Figure 4. Learning curves of the QMSpin carbene dataset showing the MAE of pairwise distances of heavy atoms with
increasing training set sizes N. The null model represents the baseline accuracy calculated using the average pairwise distances in a dataset
as a predictor. (a) MAE before 3D reconstruction. (b) MAE after 3D reconstruction. (c) MAE between the distances before and after
reconstruction.
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Supplementary Figure 5. Learning curves of QMrxn20 E2/SN2 transition states showing the MAE of pairwise distances of heavy atoms
with increasing training set sizes N. The null model represents the baseline accuracy calculated using the average pairwise distances in a
dataset as a predictor. (a) MAE before 3D reconstruction. (b) MAE after 3D reconstruction. (c) MAE between the distances before and after
reconstruction.
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Supplementary Figure 6. Learning curves of elpasolite crystals showing the MAE of pairwise fractional distances of atoms with increasing
training set sizes N. The null model represents the baseline accuracy calculated using the average pairwise distances in a dataset as a predictor.
(a) MAE before 3D reconstruction. (b) MAE after 3D reconstruction. (c) MAE between the distances before and after reconstruction.
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Supplementary Figure 7. 30 exemplary 2D structures of uncharacterized QM9 molecules which after structure generation with G2S that
dissociated during geometry optimization at B3LYP/6-31G(2df,p) level of theory.
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C7O2H10 C7NOH11 AlNaK2F6

Input
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(d)

Supplementary Figure 8. Systematic improvement of energy prediction accuracy with increasing training data using G2S predictions (blue) as
well as DFT structures (orange)and ETKDG/UFF structures (red) as an input to QML models. (a) and (b) atomization energy prediction of
C7O2H10 and C7NOH11 constitutional isomers, respectively. (c) Prediction of formation energies of elpasolite crystals. (d) Speedup estimate
of a G2S (blue) or ETKDG/UFF (red) based QML model over a DFT dependent QML model. This assumes an average of 16 DFT optimization
steps required before a structure can be used in QML.
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