

Supplementary Material

Supplementary Figures and Tables

Supplementary Table 1A. Strains used in this study.

Strain	Genotype	Source or Reference
MG1655	K-12 F ⁻ λ ⁻ rph-1	(Blattner et al., 1997)
HDB51	WAM113 <i>secB</i> ⁺ <i>zic-4901</i> ::Tn10	(Lee and Bernstein, 2001)
MY1410	MG1655 <i>ffh</i> ::Cm ^r , pKDFB	(Zhao et al., 2021)
MY1901	MG1655 <i>ffh</i> :: Cm ^r , C3453283T	This study
MY1901F	MY1901, pTrc99K-Ffh	This study
MY1901FS	MY1901F, T3453283C	This study
MY1901∆cat	MY1901, Δ <i>cat</i>	This study
MG1655 $\Delta lacZ$	MG1655, <i>ΔlacZ</i>	(Zhao et al., 2021)
MY1901Δ <i>lacZ</i> Δ <i>cat</i>	MY1901, $\Delta lacZ\Delta cat$	This study

Supplementary Table 1B. Plasmids used in this study.

Plasmid	Relevant genotype	Source or Reference
pTrc99K-Ffh	pTrc99K, P _{trc-ff} h, Km ^r	(Zhao et al., 2021)
pKUT15-fusA-lacZα	OriSC101 lacIq P_{lac} -fusA-lacZ α , P_{tet} -lacZ ω , Gm ^r	(Dai et al., 2018)
pKUT15-lacZα	pKUT15, P_{lac} -lacZ α , P_{tet} -lacZ ω	(Zhao et al., 2021)
pKUT15-msbA-lacZ α	pKUT15, P_{lac} -msbA-lacZ α , P_{tet} -lacZ ω	(Zhao et al., 2021)
pLacZ	pTrc99K, P _{trc} -lacZ	This study
pLacZ _{835UAA}	pLacZ, UAA mutant	(O'Connor et al., 1992)
pLacZ _{12-6UAG}	pLacZ, UAG mutant	(O'Connor et al., 1992)
pLacZ _{34-11UGA}	pLacZ, UGA mutant	(O'Connor et al., 1992)
pLacZ _{lac10(-)}	pLacZ, -1 frameshift	(O'Connor et al., 1992)
placZ _{lac7(+)}	pLacZ, +1 frameshift	(O'Connor et al., 1992)
pRed_Cas9_\DoxB300	OrirepA101, exo, bet, gam, arabinose operon, Cas9, $gPNA Ap^{r}$	(Zhao et al., 2016)
nGEP	nTre99K P. offnaue	This study
nGEPeue	nTrc99K Pre-offneue	This study
pGFPuug	pTrc99K, Pro-gfpuug	This study
pGFPaUA	pTrc99K, P _{trc} -gfp _{AUA}	This study
pGFP _{AUU}	pTrc99K, P _{trc} -gfp _{AUU}	This study
pGFP _{AUG} metY _{CAU}	pGFP, expressing tRNA ^{fMet} with CAU anticodon	This study
pGFP _{UAG} metY _{CUA}	$pGFP_{AUG}metY_{CAU}$, AUG initiation codon mutated to UAG and anticodon of metY was changed from CAU to CUA	This study
$pGFP_{CAC}metY_{GUG}$	pGFP _{AUG} metY _{CAU} , AUG initiation codon mutated to CAC and anticodon of metY was changed from CAU to GUG	This study
pGFP _{UAC} metY _{GUA}	$pGFP_{AUG}metY_{CAU}$, AUG initiation codon mutated to UAC and anticodon of metY was changed from CAU to	This study

	GUA	
Cas9-S10 SD	pRed_Cas9_ApoxB300, homologous arms of SD of S10	This study
Cas9-lacZ	pRed_Cas9_ApoxB300, homologous arms of lacZ	(Zhao et al., 2021)
Cas9-cat	pRed_Cas9_ApoxB300, homologous arms of cat	(Zhao et al., 2021)
p15A-birA	Orip15A, lacIq P _{tac} -birA, Gm ^r	This study
pJH29-EspP-PSBT	pJH29, P _{tac} -espP, PSBT-FLAG, Cm ^r	(Zhang and Shan,
		2012)
pJH29-EspP-Avi	pJH29, P _{tac} -espP, Avi-FLAG, Cm ^r	This study
pJH29-FtsQ-Avi	pJH29, P _{tac} -ftsQ, Avi-FLAG, Cm ^r	This study
pJH29-LacZ-Avi	pJH29, P _{tac} -lacZ, Avi-FLAG, Cm ^r	This study
pJH30-EspP-PSBT	pJH29, <i>lac</i> operon replaced with <i>araC</i> operon, Ap ^r	(Zhao et al., 2021)
pJH30-SD-GFP	pJH30, ParaBAD-GFP, wild-type SD, Apr	This study
pJH30-SD*-GFP	pJH30, ParaBAD-GFP, mutant SD, Apr	This study
pJH31-SD-GFP	pJH30, ParaBAD replaced with PS10, wild-type SD Apr	This study
pJH31-SD*-GFP	pJH31, P _{S10} -GFP, mutant SD, Ap ^r	This study

Supplementary Table 1C. Primers used in this study.

Primer	Sequence (5'-> 3')	Use		
pTrc99K-F	GATCCTCTAGAGTCGACCT	Cloning of the vector bone of plasmid		
pTrc99K-R	GAGCTCGAATTCCATGGTCT	pTrc99K		
GFP-F	ACAGACCATGGAATTCGAGCTCATGAGTA	Cloning of <i>gfp</i> segment		
	AAGGAGAAGAACTTTTC			
GFP-R	TGCAGGTCGACTCTAGAGGATCCTATTTG			
	TATAGTTCATCCATG			
GFP _{GUG} -F	ACAGACCATGGAATTCGAGCTCGTGAGT	Cloning of gfp_{GUG} with segment		
	AAAGGAGAAGAACTTTTC			
GFP _{UUG} -F	ACAGACCATGGAATTCGAGCTCTTGAGT	Cloning of gfp_{UUG} with segment		
	AAAGGAGAAGAACTTTTC			
GFP _{AUA} -F	ACAGACCATGGAATTCGAGCTCATAAGT	Cloning of gfp_{AUA} with segment		
	AAAGGAGAAGAACTTTTC			
GFP _{AUU} -F	ACAGACCATGGAATTCGAGCTCATTAGT	Cloning of gfp_{AUU} with segment		
	AAAGGAGAAGAACTTTTC			
MetY-V-R	GTGAAAACCTCTGACACATG	Cloning of the vector bone of plasmid		
		pGFP with primer pTrc99K-F		
MetY _{CAU} -F	CTGCATGTGTCAGAGGTTTTCACTGGAT	Construction of plamid		
	CACTATAATGCCTGC	pGFP _{AUG} metY _{CAU}		
MetY _{CAU} -R	CTATCATGCCATACCGCGAAAGGAGCC			
	CAGTTATTCTGTAGTC			
MetY-V-F	CCTTTCGCGGTATGGCATG			
MetY _{CUA} -F	GTCGGGCTCTAAACCCGAAGATCGT	Construction of plamid		
MetY _{CUA} -R	ACGATCTTCGGGTTTAGAGCCCGACG	pGFP _{UAG} metY _{CUA}		
GFP _{UAG} -F	ACAGACCATGGAATTCGAGCTCTAGAGTAA			
	AGGAGAAGAACTTTTC			
MetY _{GUG} -F	GTCGGGCTGTGAACCCGAAGATCGT	Construction of plamid		
MetY _{GUG} -R	ACGATCTTCGGGTTCAGAGCCCGACG	pGFP _{CAC} metY _{GUG}		
GFP _{CAC} -F	ACAGACCATGGAATTCGAGCTCCACAGTAA			
	AGGAGAAGAACTTTTC			
MetY _{GUA} -F	GTCGGGCTGTAAACCCGAAGATCGT	Construction of plamid		
MetY _{GUA} -R	ACGATCTTCGGGTTTAGAGCCCGACG	pGFP _{UAC} metY _{GUA}		
GFP _{UAC} -F	ACAGACCATGGAATTCGAGCTCTACAGTAA			
	AGGAGAAGAACTTTTC			
V1-cas9-F	TGAATGGAAGCTTGGATTCTC	Cloning of the vector bone 1 of plasmid		
V1-S10-R	TATCCGCCTGAAAGCGTTTGGCTAAGATCTG	Cas9-S10 SD		
	ACTCCATAAC			

V2-S10-F	CAAACGCTTTCAGGCGGATAGTTTTAGAGCT	Cloning of the vector bone 2 of plasmid	
V2-cas9-R		Casy-510 5D	
S10-UP-F		Cloning of the unstream of the mutated	
510 01 1	CTGATCTGC	site	
S10-UP-R			
SIO OI K	CC		
S10-DN-F	TGGTTCTGCATGAGACCAGAGCTCCAATTAT	Cloning of the downstream of the	
S10-DN-R	AGAATCCAAGCTTCCATTCAAAGAGAAAGC	mutated site	
	CGGTTTAAGAG		
p15-V-F	CCCAGGCATCAAATAAAACG	Cloning of the vector bone of plasmid	
p15-V-R	GATCCGAATTCCTGCAGTTG	p15A-birA	
birA-F	TAACAACTGCAGGAATTCGGATCATGAAGG	Cloning of the <i>birA</i> segment	
	ATAACACCGTGCC		
birA-R	TTTCGTTTTATTTGATGCCTGGGTTATTTTTC		
	TGCACTACGCAG		
29-V-F	TTCCGGCTTGAACGACATCTTCGAGGCCCA	Cloning of the vector bone of plasmid	
	GAAGATCGAGTGGCACGAGGGTTCTGGTGA	pJH29-EspP-Avi from pJH29-EspP-	
	CTACAAAGACGATGACGAC	PSBT	
29-V-R	ATTAGTCCGCCAGTTCCAC		
espP-F	TATGTGGAACTGGCGGACTAATATGAATAAA	Cloning of the <i>espP</i> segment	
	ATATACTCTC		
espP-R	CGAAGATGTCGTTCAAGCCGGAACCGATATA		
	GTCAGCAGTATTATTC		
FtsQ-Av1-V-	CTTCGAGGCCCAGAAGATCGAGTGGCACGA	Cloning of the vector bone of plasmid	
F	GGGTTCTGGTGACTACAAAGACGATGACGA	pJH29-FtsQ-Avi from pJH29-EspP-Avi	
		With primer 29-V-R	
FtsQ-Av1-F	TGCTCTG	Cloning of the <i>ftsQ-Avi</i> tag segment	
EtsO-Avi-R			
I tog TWI K	CAAGCCTCTAGATTGTTGTTCTGCCTGTGCC		
	T		
LacZ-Avi-V-	TTCCGGCTTGAACGACATCT	Cloning of the vector bone of plasmid	
F		pJH29-LacZ-Avi from pJH29-EspP-	
		Avi with primer 29-V-R	
LacZ-Avi-F	ATGTGGAACTGGCGGACTAATATGACCATGA	Cloning of the <i>lacZ-Avi</i> tag segment	
	TTACGGATTCAC		
LacZ-Avi-R	AAGATGTCGTTCAAGCCGGAACCTTTTTGAC		
	ACCAGACCAACTG		
pJH30-F	ATCAGTAAGTTGGCAGCATC	Cloning of the vector bone of plasmid	
pJH30-R	ATGGAGAAACAGTAGAGAGTTG	pJH30	
S10 leader-F	CAACTCTCTACTGTTTCTCCATGGCTACCTA	Cloning of the S10 leader containing	
	ACAATGCTCC	SD from MG1655 genome (wild-type	
S10 leader-R	AAAGTTCTTCTCCTTTACTCATCGGATACGG	SD) or MY1901 genome (mutant SD)	
GED E	ATTCTTTGGTTCTG		
GFP-F		Cloning of the <i>gfp</i> segment	
GFP-R			
аШ21 D		Classing of the sustainty for the state	
рлнэт-к		Diffing of the vector bone of plasmid	
D F		Cloping of the D _{eve} promotor and S10	
1 S10-1		leader containing SD from MG1655	
		genome or MY1901 genome	

Supplementary Table 2. Summary of single nucleotide variants (SNVs), and insertions and deletions (INDELs). The strain MY1901 shared common mutations with the original strain MG1655 in the laboratory, except the mutation located in the Shine-Dalgarno (SD) sequence of ribosome S10 operon. The evolved strain MY1901 by sub-culturing showed new mutations.

Strain	Mutation site	Туре	Chrom Start	chrom END	Ref	Obs	Relative to original strain
MY1901	fhuA	SNV	168123	168123	Α	C	
	ybhJ	SNV	803662	803662	С	Α	
	mntP	SNV	1905761	1905761	G	Α	
	yjbI	SNV	4251856	4251856	Т	С	
	gatC	INDE	2173363	2173364	CC	-	
	_	L					
	glpR	INDE	3560455	3560455	-	G	
		L					
	Promoter yagEp3	SNV	282234	282234	G	Т	
	A repetitive	INDE	4296381	4296381	-	GC	
	extragenic	L					
	palindrome						
	(REP) element						
	downstream of						
	ујсО						
	Shine-Dalgarno	SNV	3453283	3453283	С	Т	unique
	(SD) sequence of						
	ribosome S10						
	operon						
MY1901	rpsJ	SNV	3453146	3453146	Α	С	
(evolved)	DnaA	SNV	3882819	3882819	G	Т	
	rpoB	SNV	4182952	4182952	G	Α]
	rpoC	SNV	4186367	4186367	С	Α	

Ref = reference allele; Obs = observed allele.

Supplementary Table 3. Growth rate and the time cost of initiation steps (T_{init}) of cells under different nutrient conditions. Growth rates were calculated from the corresponding growth curves that were shown in Supplementary Figure S4. All values are expressed as the mean \pm standard deviation of the mean of samples. The initiation time (T_{init}) was calculated as described in the Materials and Methods section.

Strain	Nutrient condition Growth rate (h ⁻¹)		Tint	
MG1655 $\Delta lacZ$	Glucose + cAA	Glucose + cAA 1.10 ± 0.04		
	0.2% glucose + 0.2% casamino acids	0.2% glucose + 0.2%		
MG1655∆ <i>lacZ</i>	Glycerol + NH4Cl	Glycerol + NH4Cl 0.55 ± 0.03		
	0.2% glycerol + 10 mM NH4Cl		9.1±0.2(MsbA)	
MY1905∆lacZ∆cat	Glucose + cAA	0.55 ± 0.02	11.7±0.3 (FusA)	
	0.2% glucose + 0.2% casamino acids		10.2±0.2(MsbA)	

Supplementary Table 4. The translation rates of FusA-LacZ and MsbA-LacZ under different growth rates. The translation rate equals translation rate (aa s⁻¹) /336 (proteins mRNA⁻¹ s⁻¹) (Zarai et al., 2014), as the average length of proteins in *E. coli* is 336 amino acids (Gong et al., 2008). The elongation rate equals elongation rate (aa s⁻¹) /11 (sites s⁻¹) (Zarai et al., 2014), as each ribosome occupies about 11 residues in *E. coli* (10). All values are expressed as the mean \pm standard deviation of the mean of samples.

Strain	Growth rate (h ⁻¹)	Translation rate (proteins mRNA ⁻¹ s ⁻¹)	Elongation rate (sites s ⁻¹)	Initiation rate (sites s ⁻¹)
MG1655 $\Delta lacZ$	1.10 ± 0.04	(FusA) 0.047 ±0.0003	$1.47{\pm}0.01$	0.049 ± 0.0003
		(MsbA) 0.045 ±0.0003	1.40 ± 0.01	0.047 ± 0.0003
MG1655 $\Delta lacZ$	$0.55 {\pm}~0.03$	(FusA) 0.040±0.001	$1.24{\pm}0.04$	0.042 ± 0.001
		(MsbA) 0.038±0.001	1.15 ± 0.03	0.039±0.001
MY1901∆lacZ∆cat	0.55 ± 0.02	(FusA) 0.038±0.001	1.22 ± 0.05	0.039 ± 0.001
		(MsbA) 0.032±0.001	1.00 ± 0.03	0.033 ± 0.001

Supplementary Figure 1 Growth curves of strains MY1901 and its evolved strain. Solid curves are the mean of three independent measurements and error bars represent the standard deviation of the mean of samples. All growth rates shown represent the mean \pm standard deviation of three independent experiments.

Supplementary Figure 2 Predicted mRNA structures of the S10 leader. (A) RNA folding predicted hairpin structure of S10 leader with wild-type SD and the minimum free energy (MFE) of the thermodynamic ensemble (ΔG). (B) RNA folding predicted hairpin structure of S10 leader with mutant SD (SD*) and the MFE and the ΔG . The boxed region corresponds to the SD sequence.

Supplementary Figure 3 Measurement of translational elongation rates of wild-type and suppressor cells. (A) Growth curves of strains in different MOPS medium. The growth rates of MG1655 $\Delta lacZ$ and MY1901 $\Delta lacZ\Delta cat$ grown in the Glucose + cAA medium were approximately 1.0 h⁻¹ and 0.6 h⁻¹, respectively. The growth rate of MG1655 $\Delta lacZ$ grown in Glycerol + NH4Cl medium was approximately 0.6 h⁻¹(Supplementary Table S2). Solid curves are the mean of three independent biological replicates, and error bars represent the standard deviation value. (B) Calibration of the time cost of initiation steps by measuring the induction kinetics of the empty LacZ α fragment. (C) The induction curves of the LacZ α fused protein FusA-LacZ α . (D) The Schleif plot of the FusA-LacZ α fused protein MsbA-LacZ α . (F) The Schleif plot of the MsbA-LacZ α protein was plotted against the induction time. Schleif plots were repeated three times with one typical result shown here.

Supplementary Figure 4 Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analysis of the wild-type strain MG1655 and the suppressor strain MY1901. For SEM, the scale bar is 1.0 µm. For TEM, the scale bar is 500 nM.

Supplementary Figure 5 Fold changes in the expression of the components of transport machinery (A) and the heat shock response-related proteins (B) in strain MY1901relative to that in strain MG1655 (Supplementary Data Set 1B and E).

REFERENCES

Blattner, F.R., Plunkett, G., 3rd, Bloch, C.A., Perna, N.T., Burland, V., Riley, M., Collado-Vides, J., Glasner, J.D., Rode, C.K., Mayhew, G.F., *et al.* (1997). The complete genome sequence of Escherichia coli K-12. *Science* 277, 1453-1462.

Dai, X., Zhu, M., Warren, M., Balakrishnan, R., Okano, H., Williamson, J.R., Fredrick, K., and Hwa, T. (2018). Slowdown of Translational Elongation in Escherichia coli under Hyperosmotic Stress. *mBio* 9, e02375-02317.

Gong, X., Fan, S., Bilderbeck, A., Li, M., Pang, H., and Tao, S. (2008). Comparative analysis of essential genes and nonessential genes in Escherichia coli K12. *Mol Genet Genomics* 279, 87-94. Lee, H.C., and Bernstein, H.D. (2001). The targeting pathway of Escherichia coli presecretory and integral membrane proteins is specified by the hydrophobicity of the targeting signal. *Proc Natl Acad Sci U S A* 98, 3471-3476.

O'Connor, M., Goringer, H., and Dahlberg, A.E. (1992). A ribosomal ambiguity mutation in the 530 loop of E. coli 16S rRNA. *Nucleic Acids Research* 20, 4221-4227.

Zarai, Y., Margaliot, M., and Tuller, T. (2014). Maximizing Protein Translation Rate in the Ribosome Flow Model: The Homogeneous Case. *IEEE/ACM Trans Comput Biol Bioinform* 11, 1184-1195.

Zhang, D., and Shan, S.O. (2012). Translation elongation regulates substrate selection by the signal recognition particle. *J Biol Chem* 287, 7652-7660.

Zhao, D., Yuan, S., Xiong, B., Sun, H., Ye, L., Li, J., Zhang, X., and Bi, C. (2016). Development of a fast and easy method for Escherichia coli genome editing with CRISPR/Cas9. *Microb Cell Fact* 15, 205.

Zhao, L., Cui, Y., Fu, G., Xu, Z., Liao, X., and Zhang, D. (2021). Signal Recognition Particle Suppressor Screening Reveals the Regulation of Membrane Protein Targeting by the Translation Rate. *mBio* 12, e02373-02320.