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1 Supplementary Methods

1.1 MegaLMM parameterization of the multivariate linear mixed effect model

As defined in the main text (Eq. (1) in the main text), a multivariate linear mixed effect model can be
specified as:

Y = XB + ZU + E, (S1)

where the n× t matrix Y represent observations on t traits for n observational units, X is a n× b matrix
of “fixed” effect covariates with effect sizes matrix B, U is an r × t matrix of random effects for each of
the t traits, with corresponding random effect design matrix Z, and E is a n × t matrix of residuals for
each of the t traits. The random effects term ZU may represent several independent components:

ZU =

M∑
m=1

ZmUm = [Z1, . . . ,ZM ][Uᵀ
1 , . . . ,U

ᵀ
M ]ᵀ, (S2)

where each Zm is an n× rm design matrix for a set of related parameters with corresponding coefficient
matrix Um. The distribution of each random effect coefficient matrix is Um ∼ N (0,Km,Gm), where
N (M,Σ,Ψ) is the matrix normal distribution with mean matrix M, among-row covariance Km and
among-column (i.e., among-trait) covariance Gm. The residual matrix E has distribution E ∼ N (0, In,R)
where In is the n× n identity matrix and R is an unknown t× t positive-definite covariance matrix.

The MegaLMM re-parameterization of S1 is given as:

Y = FΛ + X1B1 + X2B2R + ZUR + ER

F = X2B2F + ZUF + EF

(S3)

where F is an n × K matrix of latent factors, Λ is a K × t factor loadings matrix, X = [X1,X2] is a
partition of the n × b fixed effect covariate matrix between the b1 covariates with improper priors and
the b2 = b− b1 covariates with proper priors, and UR and UF coefficients matrices are specified as:

UR = [Uᵀ
R1, . . . ,U

ᵀ
RM ]ᵀ

UF = [Uᵀ
F1, . . . ,U

ᵀ
FM ]ᵀ.

The distributions of the random effects are specified as:

URm ∼ N (0,Km,ΨRm), UFm ∼ N (0,Km,ΨFm)

ER ∼ N (0, In,ΨRE), EF ∼ N (0, In,ΨFE)

where ΨRm, ΨFm, ΨRE , and ΨFE are all diagonal matrices. Diagonal elements of ΨFm and ΨFE are
non-negative, while diagonal elements of ΨRm and ΨRE are strictly positive.

1.2 Prior Parameterization

In the MegaLMM software, we have chosen functional forms for each prior parameter that balance between
interpretability (for accurate prior elicitation), and compatibility with efficient computational algorithms.
We detail these choices below.

Variance Components. The MegaLMM model (see S3 and Eq. (2) in main text) has (t+K)(M + 1)
variance component parameters that need to be estimated (i.e., diagonal elements of the Ψ matrices).
Most Bayesian linear mixed models (LMMs) place independent inverse-Gamma priors on each vari-
ance component. This is a convenient choice due to conjugacy with a Gaussian likelihood. However,
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inverse-Gamma priors can cause problems with mixing in Gibbs samplers (particularly when the variance
component is close to zero) (Gelman 2006). Default hyperparameters for inverse-Gaussian distributions
also lead to non-intuitive surfaces for the joint distribution of two or more variance components, which
favor models where one random effect dominates over the others (Runcie and Crawford 2019). In our
experience, eliciting priors for the proportion of variance attributable to each random effect is more
intuitive than eliciting priors for the absolute value of each variance. Below, we use the symbol h2

m to
represent the proportion of total variance attributable to random effect m because of the parallel between
this term and the concept of heritability.

For each of the t observed traits, let the variance parameters be denoted byψRj = (ψR1j , . . . , ψRMj , ψREj).
We specify priors on these parameters indirectly by re-parameterizing them as

ψRj = σ2
Rjh

2
Rj , (S4)

where σ2
Rj =

∑
mψRmj + ψREj is used to denote the total variance and h2

Rj = (h2
R1j , . . . , h

2
RMj , h

2
REj)

with each individual proportion being equal to h2
Rmj = ψRmj/σ

2
Rj . We do end up using an inverse-gamma

for the prior distribution on the total variance term σ2
Rj because estimates are generally not near zero

(unless all variation in a trait is explained by X or Fλj) and it is the only variance parameter for each
trait in the re-parameterized model.

We allow virtually any prior specification for h2
Rj (including non-parametric distributions) on the

M -dimensional simplex (such that the vector sums to one). We do this by approximating the prior
surface over a pre-defined grid of points. This follows our earlier work with single-trait linear mixed
models (Runcie and Crawford 2019) where we showed that such grid-interpolations can be leveraged for
massive computational gains without appreciable loss of accuracy in estimating moments of posterior
distributions. In the proceeding sections, we describe how the Gibbs sampler implemented in MegaLMM

takes advantage of this discretized prior surface for improved MCMC sampling and faster computation.
For the K latent factor traits, the variance parameters are denoted by ψFk = (ψF1k, . . . , ψFMk, ψFEk),

which we again re-parameterize as ψFk = σ2
Fkh

2
Fk. However, to ensure identifiability, we set σ2

Fk = 1.
We then allow the same discretized prior to be used for h2

Fk as we just described.

Factor Loadings Matrix. Rows of Λ hold the regression coefficients that describe the relationship
between the observed and latent factor traits. With K factors and t traits, there are Kt regression
coefficients, so strong regularization is required when t and/or K is large. We use a two-dimensional
global-local shrinkage approach based on the horseshoe prior to achieve both regularization and inter-
pretability on the factor traits without having to carefully specify k itself. Within each row of Λ, the
local shrinkage part of the prior pushes the unimportant coefficients strongly towards zero. This step
is exchangeable across traits, reflecting a lack of information on which traits may be correlated. Global
shrinkage is induced across rows, where regularization on all coefficients for the (k + 1)-th latent trait
is done relative to the k-th. Here, we draw on the “sparse infinite factor” prior from Bhattacharya and
Dunson (2011) which induces ordering of the latent traits from the most-to-least important by requiring
that the magnitude of the global shrinkage parameter stochastically increases from one latent trait to
the next. This enforces that the expected number of nonzero elements in row k + 1 is smaller than the
number of nonzero elements in row k. This means that high-order factors are less important, and we can
choose a threshold beyond which we can safely ignore any higher-order factors.

We parameterize this two-dimensional prior in terms of the expected proportion of approximately zero
regression coefficients in the first (i.e., most important) factor, and the expected change in this proportion
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as we move from from factor k to factor k + 1. Our prior for Λ has the following form:

λkj |σ2
Rj ∼ N (0, φ2

kjτ
2
kσ

2
Rj),

τ2
k = τ2

k∏
h=1

δh,

φkj ∼ C+(0, 1)

τ ∼ C+(0, τ0)

δh ∼ iG(aδ, bδ),

(S5)

where we fix δ1 = 1, C+(0, s) is the half-Cauchy distribution with scale s, ∼ iG(a, b) is the inverse Gamma
distribution with shape a and scale b, and φkj provides the local-shrinkage on each λkj , while τk provides
global-shrinkage for the k-th row of Λ (which we denote as (Λᵀ)k).

To choose hyperparameters τ0, aδ and bδ, we consider how each controls the expectation of the number
of effectively nonzero coefficients in each row of Λ (no parameter will be exactly zero but the horseshoe
prior shrinks non-informative priors close to zero). Using the approximate shrinkage-factor calculation
from Piironen and Vehtari (2017) and assuming that columns of F have unit variance, we can estimate
the effective number of nonzero coefficients in row k given the global shrinkage factor τk as

mk | τk =

t∑
j=1

(1− κkj) (S6)

where κkj = (1+nφ2
kjτ

2
k )−1 is the shrinkage factor for each coefficient. Note: this equation differs slightly

from equation 2.4 in (Piironen and Vehtari 2017) because in their formulation the prior variance of the
regression coefficients is not proportional to σ2 (equation 2.2). Therefore, the σ−2 term cancels in our
calculation of κkj . Piironen and Vehtari (2017) showed that the expectation of mk | τk simplifies to

E[mk | τk] =
τk
√
n

1 + τk
√
n
t. (S7)

Thus, the quantity τk
√
n can be interpreted as the odds of each coefficient in (Λᵀ)k being nonzero. If we

knew that there were exactly t∗k non-zero coefficients of (Λᵀ)k, we could solve for τk = t∗k/(
√
n(t− t∗k)).

We start with a prior guess of t0 non-zero regression coefficients for the first and most-important
factor (Λᵀ)1. This means that τ1 = τ since δ1 = 1, and so we set the hyperparameter τ0 to the value
t0/(
√
n(t− t0)). Since τ ∼ C+(0, τ0), the median of the prior distribution for the quantity τ1

√
n will be

t0/(t− t0). Next, for (Λᵀ)2, τ2 = τ1
√
δ2, so the median of τ2

√
n (i.e., the prior guess for t2/(t− t2)) will

be
√
δ2t0/(t − t0)–which is

√
δ2 times the odds for each coefficient of λ1. The same pattern will repeat

for each succeeding factor, with its odds for each coefficient being distinguishable from zero changing
by a factor of

√
δk relative to the previous factor. As long as E[δk] < 1, these odds will decrease for

higher-order factors, eventually reaching close to zero. We use this to calibrate the hyperparameters aδ
and bδ, either by simulating from the prior or by using the approximation that E[

√
1/δk] ≈

√
aδ/bδ. For

example, setting aδ = 3 and bδ = 1 gives a mean decrease in odds of 1.7× and a 91% probability of the
change in odds being between 1× and 3×.

It is important to note that we do not try to learn the number of factors K. The advantage of
the “infinite factor model” prior is that higher-rank factors are shrunk strongly towards zero in a data-
dependent way. Therefore, the actual value of K tends to be unimportant as long as it is large enough
such that all important factors can be included. Making K larger than that value has little impact on
the posterior predictions or inferences of other parameters. We can thus save computation by pruning
factors with all small coefficients.
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Note that our prior here differs from the priors proposed by Bhattacharya and Dunson (2011) and
Runcie and Mukherjee (2013) because of our decision to use a half-Cauchy distribution for the local-
shrinkage parameters instead of the inverse-gamma distribution. The inverse-gamma distribution induces
a t-distribution on the regression coefficients. While this prior generally performs well, and we include
it as an option in our R package, we find that eliciting priors for the local and global shrinkage with
this distribution is not intuitive. The horseshoe prior is generally better at separating signal from noise,
shrinking only unimportant coefficients closer to zero—and thus leads to more interpretable factors.

Fixed Effects. As noted above, we partition the covariates in X into the b1 covariates with improper
priors on their coefficients, and the remaining b2 = b−b1 covariates with proper priors on their coefficients.
B1 is the matrix of regression coefficients for the covariates with improper priors, where we assume each
element bbj ∼ N (0,∞).

When included, covariates in X2 are generally high-dimensional (e.g., genetic markers), often with b2 >
n. Therefore, we use priors that regularize estimates of the coefficients B2R and B2F and favor sparse,
interpretable solutions. B2R plays a very similar role to the factor loadings matrix Λ in MegaLMM (see
Eq. (2) in the main text), as the model involves the combined effect: X2B2R + FΛ = [X2,F][Bᵀ

2R,Λ
ᵀ]ᵀ

where X2 and F are both covariate matrices (with X2 known a priori and F unknown), and B2R and Λ
are the corresponding coefficient matrices. Due to this connection, our default prior for B2R is also the
horseshoe prior. However in this case we apply independent global shrinkage parameters for each trait j
(i.e., columns of B2R).

We also use a horseshoe prior for each column of B2F . A key feature of MegaLMM is that we split the to-
tal effect of covariate x2l into two components: x2l(B

ᵀ
2R)l+x2l(B

ᵀ
2F )lΛ, such that the K-dimensional row-

vector (Bᵀ
2F )l partially accounts for the effects of x2l through the common factors, and the t-dimensional

vector (Bᵀ
2R)l accounts for the remain effects. Without regularization on B2F and B2R, either would

provide equivalent explanations for the data and the two would not be simultaneously identifiable. How-
ever, when we can explain the effects of x2l on Y effectively with the K values in (Bᵀ

2F )l (conditional on
Λ) as we can do with the t values of (Bᵀ

2R)l, our prior favors the former solution as it is sparser and we
end up with a more parsimonious model.

1.3 MCMC Algorithm

Our hybrid Gibbs and Metropolis-Hastings sampler uses the following steps:

1. Sample [B1,B2R,Λ,URm,Φb2R
,ΦΛ, τ , τb2R

,h2
Rj , σ

2
Rj ] given [Y,F]. The priors for B1, B2R, Λ

and URm factorize into independent distributions for each of their t columns (conditional on δ).
The priors for h2

Rj and σ2
Rj are also independent for j = 1 . . . t. Therefore, conditional on F (and

δ), we can simplify Eq. (2) in the main text into t independent univariate linear mixed models of
the form:

ỹj = X̃1b1j + F̃λj + X̃2b2Rj + Z̃uRj + ẽRj

b1j ∼ N (0,∞Ib1)

b2Rj ∼ N (0, σ2
RjDb2Rj

)

λj ∼ N (0, σ2
RjDλj

)

uRj ∼ N (0, σ2
RjK(h2

Rj))

ẽRj ∼ N (0, σ2
Rjh

2
REjIñj

)

σ2
Rj ∼ iG(aR, bR),

where yj is the jth column of Y, λj is the jth column of Λ, ỹj denotes the elements of yj that
are non-missing (similar definitions are used for the tildes over other matrix and vector terms),
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Db2Rj
= diag(τ2

b2Rj
φ2

b2R·j) and Dλj
= diag(φ2

·j � τ 2) are diagonal matrices composed of the prior

variances for each element of b2Rj or λj (excluding the term σ2
Rj), and K(h2) is a matrix-valued

function returning an r× r matrix as a function of h2, generally a block-diagonal matrix with each
block the product of an element of h2 and a pre-defined covariance matrix Km. Only non-missing
elements ỹj contribute to the likelihood, so the remainder of yj can be ignored.

We collect samples of the coefficients {b1j ,b2Rj ,λj ,uRj} and variance parameters {Db2Rj
,Dλj

,h2
Rj , σ

2
Rj}

using a set of highly optimized Gibbs-type updates based on the fact that many of the same inter-
mediate calculations can be re-used among different columns of Y. Full derivations and sampling
distributions of each step are described below in Supplementary Section 1.4.

2. Sample [B2F ,UFm,Φb2F
, τb2F

,h2
F ] given F. Given the parallelism between the models for F and

Y, the sampling steps for the parameters of the F model are analogous to those described above.
Again, the models for the k columns of F are independent and each has the form:

fk = X2b2Fk + ZuFk + eFk

b2Fk ∼ N (0,Db2Fk
)

uFk ∼ N (0,K(h2
Fk))

eFk ∼ N (0, h2
FEkIn),

where Db2Fk
= diag(τ2

b2F k
φ2

b2F ·k). The main difference from above is the lack of the term σ2
Fk in

each prior distribution. This is missing because σ2
Fk = 1 for identifiability.

3. Sample F given all other parameters. To sample F, we transpose Eq. (2) in the main text to:

Yᵀ = ΛᵀFᵀ + Mᵀ
R + Eᵀ

R

where MR = X1B1 + X2B2R + ZUR and F is simply a set of linear regression coefficients. Fur-
thermore, by conditioning on B2R, UR, B2F and UF , columns of Fᵀ and Mᵀ

R are uncorrelated and
we can represent this as a set of n simple linear regressions:

(Ỹᵀ)i = Λ̃ᵀ(Fᵀ)i + (M̃T
R)i + (Ẽᵀ

R)i

(Fᵀ)i ∼ N (µ(Fᵀ)i ,Df )

(Ẽᵀ
R)i ∼ N

(
0,D(Ỹᵀ)i

)
where (Ỹᵀ)i is the sub-vector composed of the non-missing traits in the ith row of Y, µ(Fᵀ)i =
Bᵀ

2F (Xᵀ
2)i + Uᵀ

F (Zᵀ)i, Df = diag(h2
FEk

) is a diagonal matrix holding the residual variances of each
of the K columns fk, and D(Ỹᵀ)i

= diag(h2
REj

σ2
Rj) is the similar diagonal matrix with the residual

variances of (Ỹᵀ)i. Therefore, the conditional posterior is (Fᵀ)i | · ∼ N (µ,Σ) where

Σ =
[
ΛD−1

(Ỹᵀ)i
Λᵀ + D−1

f

]−1

µ = Σ
[
ΛD−1

(Ỹᵀ)i

(
(Ỹᵀ)i − (M̃T

R)i

)
+ D−1

f µ(Fᵀ)i

]
.

In the case where we wish to impute (Fᵀ)∗i for an individual with no observations (i.e., when (Ỹᵀ)∗i
is empty), we simply draw (Fᵀ)∗i ∼ N (µ(Fᵀ)i ,Df ).

4. Sample missing elements of Y given all other parameters. Although missing observations are
generally not needed for sampling the model parameters (except in cases described below), imputing
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them is useful for predicting unmeasured phenotypes. The conditional posterior of each element
follows a univariate Gaussian distribution in which

yij ∼ N (µij , h
2
REjσ

2
Rj),

where M = {µij} = FΛ + X1B1 + X2B2R + ZUR.

1.4 Gibbs Sampler Updates

We now detail specific Gibbs sampler updates used in MegaLMM. Steps 1 and 2 above both involve sets of
parallel linear regression models. Although the design matrices may differ for columns of Y and F, the
form of both sets of conditional models (replacing specific variable names and dropping subscripts) is:

y = X1α+ X2β + Zu + e

α ∼ N(0,∞)

β ∼ N(0, σ2Dβ)

u ∼ N(0, σ2K(h2))

e ∼ N(0, σ2h2
eI)

σ2 ∼ iG(a0, b0)

(S8)

where y is an n-dimensional vector of observations; {α,β,u} are vectors of unknown coefficients of length
a, b and r, respectively, with known design matrices of appropriate size; and e is an n-dimensional vector
of independent and identically distributed residuals. We require Dβ to be diagonal, while K(h2) is a
matrix-valued function returning an r × r matrix as a function of h2. In Step 1: y = ỹj , α = b1j ,
β = [λᵀ

j ,b
ᵀ
2Rj ]

ᵀ, e = ẽRj , and σ2 = σ2
Rj . In Step 2, y = fk, α is empty, β = b2Fk, e = eFk, and σ2 = 1.

Lastly, we use iG(α, β) to denote the inverse-Gamma distribution with probability density function

p(z|α, β) =
βα

Γ(α)
z−α−1 exp

{
−β
z

}
.

Our goal is to draw samples for all unknown parameters as efficiently as possible while minimizing
autocorrelation in the MCMC chain. We accomplish this by blocking (or collapsing) many sampling steps
where we first integrate out certain regression coefficients and then draw samples for these in subsequent
steps. Note that, in a single iteration, we draw samples for all parameters for many (say p) y vectors.
Since the parameters {X1,X2,Z,K(·)} are constant for each column of Y or F, we cache as many of the
intermediate calculations as possible to reduce unnecessary operations. Our sampling strategy has the
following steps:

1. Sample α |Dβ ,h
2, h2

e, σ
2, integrating out β,u.

2. Sample σ2 |α,Dβ ,h
2, h2

e, integrating out β,u.

3. Sample β |α,Dβ ,h
2, h2

e, σ
2, integrating out u.

4. Sample Dβ ,h
2, h2

e |α,β, σ2, integrating out u.

5. Sample u |α,β,h2, h2
e, σ

2.

By caching intermediate calculations, the most expensive calculation for all five steps is a single Cholesky
decomposition of a square matrix with min(b, n) rows.

We describe each step in detail below. First, we define several quantities that are re-used in multiple
steps: V(h2) = ZK(h2)Zᵀ + h2

eI is the covariance of y from the random effects as a function of h2; and
Vβ = X2DβXᵀ

2 +V(h2) is the covariance of y after integrating out the regularized regression coefficients
β. Sampling steps in Gibbs sampler are as follows:
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1. We assume that a << n. The conditional posterior of α is given as

α | · ∼ N (A−1
α Xᵀ

1V−1
β y, σ2A−1

α )

Aα = Xᵀ
1V−1

β X1

(S9)

Inverting the n× n matrix Vβ is expensive. We describe tricks to speed up this calculation below.
Note that the Aα is a small a× a matrix, so its Cholesky decomposition is inexpensive.

2. This step follows Makalic and Schmidt (2016) and modified for correlated residuals and un-regularized
coefficients α. The conditional posterior of σ2 is given as

σ2 | · ∼ iG(a0 + n/2, b0 + εᵀV−1
β ε/2) (S10)

where ε = y −X1α and V−1
β is re-used from the previous step above.

3. This step also follows Makalic and Schmidt (2016) where

β|· ∼ N (A−1
β Xᵀ

2V(h2)−1ε, σ2A−1
β )

Aβ = Xᵀ
2V(h2)−1X2 + D−1

β

(S11)

where ε is defined as above. This step requires calculating V(h2)−1 and A−1
β . The former is n× n

matrix, and the latter is a b×b matrix. We discuss below how these calculations can be accelerated,
particularly when b > n.

4. Updates for Dβ and h2 are independent. Once h2 is updated, h2
e is calculated as 1−

∑
i h

2
i .

(a) We use the horseshoe prior form as a default for Dβ = diag(φ2
i τ

2), specified as:

βi |σ2 ∼ N(0, φ2
i τ

2σ2)

φi ∼ C+(0, 1)

τ ∼ C+(0, τ0).

(S12)

We sample the parameters φi and τ using the algorithm of Makalic and Schmidt (2016) by
introducing two new variables νi and ξ such that

φ2
i | νi ∼ iG(1/2, 1/νi), νi ∼ iG(1/2, 1)

τ2 | ξ ∼ iG(1/2, 1/ξ), ξ ∼ iG(1/2, 1/τ2
0 ).

(S13)

Now, we can sample these parameters using the following steps:

i. φ2
i | · ∼ iG(1, ν−1

i + β2
i /(2τ

2σ2))

ii. νi | · ∼ iG(1, 1 + 1/φ2
i )

iii. τ2 | · ∼ iG
(

(b+ 1)/2, ξ−1 + (2σ2)−1
∑b
i=1 β

2
i φ
−2
i

)
iv. ξ | · ∼ iG(1, 1/τ2 + 1/τ2

0 )

However, recall that when sampling using columns of Y, β contains a column of Λ and a
column of B2R (i.e. β = [λᵀ

j ,b
T
2Rj ]

ᵀ). When sampling using columns of F, β only contains a
column of B2F (i.e. β = b2Fk). The global shrinkage parameter τ differs between elements
of Λ and elements of B2R and B2F because global shrinkage applies to the whole matrix
Λ, but is unique to individual columns of B2R and B2F . Also, the elements of Λ have the
additional factor δk in their prior variance which increases the shrinkage from row k to row
k + 1 (equation S5).
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Therefore, we sample a different τ for all elements of Λ which is independent of the τb2Rj
and

τb2Fk
. Sampling this parameter requires all elements of Λ (not just those corresponding to the

current column of Y). The update for τ is:

τ2 | · ∼ iG

Kt+ 1

2
,

1

ξ
+

1

2

K∑
k=1

[
k∏
l=1

1

δl

]
t∑

j=1

λ2
kj

φ2
kjσ

2
Rj

 . (S14)

Finally, the update for δh is:

δh | · ∼ iG

aδ +
t

2
(K − h+ 1), bδ +

1

2τ2

K∑
k=h

 k∏
l=1,l 6=h

1

δl

 t∑
j=1

λ2
kj

φ2
kjσ

2
Rj

 (S15)

which also depends on the whole matrix Λ. The Gibbs updates for τ and δh tend to mix
poorly because of their strong dependence. Since these updates are relatively inexpensive, we
repeat these two steps 100 times in a row per overall iteration of the MCMC chain to improve
mixing.

(b) The prior for h2 is discrete on the M -dimensional simplex (for M random effects). We use a
Metropolis-Hastings step to update h2. We propose a new value h2

(1) uniformly from the set

of all values with ||h2
(1) − h2

(0)||2 < ε, and then calculate:

r =
p(h2

(1) | ·)g(h2
(0) |h

2
(1))

p(h2
(0) | ·)g(h2

(1) |h
2
(0))

(S16)

where the transition probability g(h2
(i) |h

2
(j)) is proportional to the number of grid cells within

ε of h2
(j), and

p(h2
(i) | ·) ∝

∣∣∣V(h2
(i))
∣∣∣−1/2

× exp

{
− 1

2σ2
ε∗ᵀV(h2

(i))
−1ε∗

}
× p(h2

(i))

with ε∗ = y−X1α−X2β. We then accept h2
(1) with probability min(1, r). The most expensive

part of this calculation is evaluating the determinant and inverse of the n× n matrix V(h2
(i)),

which we solve through a Cholesky decomposition. Since h2 can take only a discrete set
of values, we simply pre-calculate and cache all possible decompositions before starting the
MCMC and re-use them throughout the chain for all j = 1, . . . , p y vectors.

(c) The update for u is given as the following

u | · ∼ N
(
Au(h2)−1Zᵀε∗/h2

eσ
2,Au(h2)−1

)
Au(h2) =

1

σ2

(
1

h2
e

ZᵀZ + V(h2)−1

)
(S17)

Here, Au(h2) is an r×r matrix (where r =
M∑
m=1

rm) which is a function of h2 and can be much

larger than n×n if there are multiple full-rank random effects. Again, rather than calculating
the Cholesky decomposition of Au during each iteration for each trait, we note that there
are a finite number of these matrices (indexed by h2) and pre-calculate and cache all before
running the MCMC. Generally these matrices are sparse and can be stored efficiently.
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1.5 Opportunities for Caching Expensive Calculations

We noted above that we can cache Cholesky decompositions for each V(h2) and Au(h2) indexed by h2

and re-use them for all p traits and all iterations of the MCMC chain. Additionally, in Steps 1-3, the
matrices V−1

β and A−1
β are closely related through the Binomial Inverse Theorem where

V−1
β = [X2DβXᵀ

2 + V(h2)]−1

= V(h2)−1 −V(h2)−1X2

[
Xᵀ

2V(h2)−1X2 + D−1
β

]−1

Xᵀ
2V(h2)−1

= V(h2)−1 −V(h2)−1X2A
−1
β Xᵀ

2V(h2)−1/σ2.

(S18)

Since V(h2)−1 is pre-calculated, we only need to calculate the smaller of the V−1
β and A−1

β matrices
and then form the other through matrix multiplications. Because we need the Cholesky decomposition
LβLᵀ

β = Aβ to sample β in Step 3, if b < n, we can calculate this directly and then use Lβ to calculate

V−1
β for Steps 1 and 2. However, if b > n, we instead sample β using a modified version of the algorithm

demonstrated by Bhattacharya et al. (2016). Let LLᵀ be the Cholesky decomposition of V(h2). Then

1. Sample a ∼ N (0, σ2Dβ) and d ∼ N (0, In) independently.

2. Set v = 1/σL−1X2a + d

3. Set Aw = L−1X2DβXᵀ
2L−ᵀ + In

4. Solve Aww = (L−1ỹ/σ − v) to obtain w.

5. Set β = a + σDβXᵀ
2L−ᵀw.

Note that LAwLᵀ = Vβ . If we have already calculated V−1
β , we can simplify these steps to:

1. Sample a ∼ N (0, σ2Dβ) and d ∼ N (0, In) independently.

2. Set v∗ = 1/σX2a + Ld

3. Solve Vβw∗ = (ỹ/σ − v∗) to obtain w∗.

4. Set β = a + σDβXᵀ
2w∗.

Finally, if X2 has row-rank less than n, we can factor as UVᵀ where U and V are n × m and m × b
matrices, respectively, with m < n. This often occurs if m genotypes are repeated multiple times in the
same dataset. In this case, we can speed up the calculation of V−1

β using the Binomial Inverse Theorem:

V−1
β =

[
X2DβXᵀ

2 + V(h2)
]−1

=
[
UVDβVᵀUᵀ + V(h2)

]−1

= V(h2)−1 −V(h2)−1U
[
(VDβVᵀ)−1 + UᵀV(h2)−1U

]−1
UᵀV(h2)−1

(S19)

This involves only two m×m matrix inversions, which is beneficial if m << n. Further caching is possible
to prevent redundant matrix-matrix multiplications. Since X2 is constant across the p traits, the terms
L−1X2 and Xᵀ

2V(h2)−1X2, (or L−1U and UᵀV(h2)−1U) are also constant for any two traits that share
the same value for h2. This can dramatically reduce the computational complexity when p is large.
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1.6 Blocking missing data

Most existing Gibbs samplers for factor models require complete observations because they condition on
the whole trait vectors for each individual and, therefore, must impute any missing data. While data
imputation is straightforward in Bayesian models (missing data is treated as an unknown parameter and
included in the MCMC), conditioning on imputed values in a Gibbs sampler leads to very long-term
autocorrelations in MCMC chains. MegaLMM largely avoids this by dropping unobserved values from the
likelihood. However, there is a trade-off between simplifying the likelihood and computational efficiency.
In particular, the pre-cached Choleksy decompositions of the random effect covariance matrices and other
intermediate calculations can only be applied to sets of traits with complete observations across the same
individuals. If every trait had a unique pattern of missing observations, pre-caching would be extremely
memory-intensive and inefficient.

In many data sets, distinct subsets of traits share approximately the same set of missing observations.
For example, all agronomic traits may be measured on a subset of lines in a breeding trial, while hyper-
spectral reflectance is measured on all lines. Or a similar subset of all possible lines may be grown in
nearby fields of a multi-environment trial.

In these cases, we partition the full matrix of traits Y into a list of smaller trait matrices {Ỹ1, . . . , ỸS},
where each sub-matrix Ỹs, contains only those individuals with observations for this subset of the traits.
We select the partitions by attempting to minimizing the number of unobserved values within each Ỹs,
for a given number of partitions, using a sequence of binary partitions of the original trait matrix. We
impute values for all missing data in Y during Step 4, but only condition on the imputed values in
each Ỹs during Steps 1 and 3. This greatly reduces autocorrelation in the MCMC while minimizing the
number of pre-cached intermediate calculations that need to be stored.

1.7 Further Mixing Issues

As in any factor model, the factor loadings in our model are not identifiable in the likelihood. However,
the horseshoe prior on elements of Λ does help make these parameters identifiable in the posterior (except
for sign flips). In general, we find that coefficients of each row λk mix reasonably well. It is important
to note that the ordering of the rows in Λ from most-to-least important does not mix effectively. While
the correct ordering is important to ensure that important factors are not shrunk too much, we are
generally not interested in the order per se as much as the identities of each factor, and we find that
genomic prediction outcomes are relatively robust to mixing issues of factor order. To improve model
convergence, during the burn-in period, we periodically stop the MCMC chain, assess the order of the
factors, and manually re-order the factors based on current estimates of mk | τk. We also prune factors
when when the pairwise correlations among columns of F are too high (ρ > 0.6).

1.8 Additional strategies for computational efficiency.

When there is only one random effect in our model, we can gain further computational efficiency by
diagonalizing the model where we pre-multiply both sides of Eq. (2) by the transpose of the eigenvectors
from K. This makes V(h2) diagonal for all values of h2. By storing the Cholesky decomposition of these
diagonal matrices as sparse objects, we can take advantage of efficient sparse linear algebra libraries for
dramatic gains in efficiency. This strategy only works when Y is without missing data. However, we
can modify the strategy slightly by calculating eigenvalue decompositions of K̃s for each subset of the
partitioned trait sub-matrices Ỹs, and then pre-multiply each sub-matrix by the corresponding set of
eigenvectors.

When more than one random effect is included, complete diagonalization is no longer possible and so
we resort to pre-caching Cholesky decompositions of V(h2) for each value of h2. When random effects
are low-rank, Cholesky decompositions of their covariance matrices can sometimes be stored as sparse
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matrices to reduce memory and computational demands. We check the number of zero-elements in each
Cholesky decomposition to determine whether to store it as a sparse or dense matrix.

Finally, we code nearly all expensive linear algebra calculations in our R package in C++ using the
Eigen library with RcppEigen (Bates and Eddelbuettel 2013), and parallelize calculations across traits
whenever possible using OpenMP.
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2 Supplementary Figures
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Fig S1. Prediction accuracies for each target gene expression trait relative to MegaLMM. Each
panel shows the estimate accuracies (ρ̂g(ĝ,g) for each of the 20 target genes. The accuracy for MegaLMM

is on the x-axis and the accuracy of the other 4 methods is on the y-axis. The black line shows equal
accuracy. Points above the line show datasets where the accuracy of MegaLMM was greater than the
alternative method. These are the same results as presented in Figure 2A.
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Fig S2. Prediction accuracies for each target gene expression trait as a function of dataset
size. Each line traces the change in estimate prediction accuracy (ρ̂g(ĝ,g) for one of the 20 focal genes as
more secondary traits are added to the dataset. Each panel shows a different method. Methods K 0.50

and K 2.00 are MegaLMM with K set to either 0.5x or 2x the value used in Figure 2. These are the
same results as presented in Figure 2A.
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Fig S3. Accuracy of covariance estimates in simulated data. We generated 20 simulated datasets
each with 128 genes based on the Arabidopsis gene expression data. In each dataset, we sampled two sets
of 128 genes and used each to calculate an empirical correlation matrix. We converted the correlation
matrices into genetic (G) and residual (R) covariance matrices by sampling a h2 value independently from
[0.1, 0.8] for each gene, and then used the matrices and the genomic relationship matrix K to generate
genetic and residual values for 128 traits. Using subsets of these simulated data with varying numbers of
genes, we estimated genetic and residual covariances using each of the four comparison methods using the
same parameters as in Figure 2, and then assessed the accuracy of covariance estimation by calculating
the square-root of the mean squared error (RMSE) between each covariance value (excluding variances).
The whole procedure was repeated 20 times with different simulated datasets. Points and bars show the
mean and 1SE of the RMSE values for each method. Curves were estimated with ‘scales::loess’.
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Fig S4. Sensitivity of MegaLMM to changes in K. This figure parallels Figure 2 from the main
text except estimated prediction accuracies (A) and computational times (B) are shown for three runs
of MegaLMM with varying K. For each dataset size, K was either increased by a factor of 2 (K 2.00) or
decreased by a factor of 2 (K 0.50) . Otherwise datasets and parameters are the same as for Figure 2.
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Fig S5. Performance of single-trait and multi-trait genomic prediction for wheat yield across
20 experiments. The same analysis reported in Figure 3 was repeated for the 19 other treatment:year
datasets reported by Krause et al. (2019). In each panel, bars show the mean ± SE over five cross-
validation runs, each with a unique 50:50 testing:training partition. The same partitions were used for
each method in each run. MegaLMM methods are colored in blue. The hashed lines indicate a multivariate
prediction using the CV1 approach (i.e. no secondary traits included in the testing data for prediction).
The dataset in Figure 3 was 2014-2015 Optimal Bed.
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Fig S6. Relationship between genetic correlation and benefit of MvLMM across
Genomes2Fields site-years. In each panel, each point represents a single site-year. The x-axis shows
the maximum genetic correlation between the trait values for that site-year and all other site-years. The
y-axis is the difference in the Fisher Z-transformed estimates of genomic prediction accuracy between
the full MvLMM (implemented in MegaLMM) and a univariate GBLUP model (implemented in rrBLUP).
Traits included: days to silking (DTS), anthesis-silking interval (ASI), grain yield, and plant height.
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3 Supplementary Tables

Table S1. Default hyperparameters for user-customizable prior distributions. Default values
provided in the MegaLMM R package are provided. These values were used for the reported analyses unless
otherwise noted.

Parameter Distribution Hyperparameters Interpretation

σ2
Rj iG(α = ν − 1, β = 1/V ν) ν = 10, V = 0.5

The variance of each column of ER has
mean ≈ V , with spread determined by ν.

τ C+(0, π0/n(1− π0)2) π0 = 0.1
The proportion of effectively non-zero
elements in the first row of Λ is π0.

δh iG(aδ, bδ) aδ = 3, bδ = 1
The expected odds of being non-zero for

an element of (Λᵀ)h+1 decreases by a
factor of ≈ aδ/bδ relative to (Λᵀ)h.

τb2R
, τb2F

C+(0, π0/n(1− π0)2) π0 = 0.1
The proportion of effectively non-zero

elements in the first row of B2R or B2F is
π0.

h2
Rj ,h

2
Fj 1/l l = 20

Uniform over l equally spaced grid cells
on the unit simplex. When M > 1, l

counts the number of valid grid cells so is
less than lM .
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