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Simulation of HYSCORE Training Dataset. Training sets for machine learning were created with 

the EasySpin v5.2.131 saffron module in Matlab R2018a. 100,000 powder-type HYSCORE 

simulations were generated with the pulse sequence π/2-τ-π/2-t1-π-t2-π/2-τ-echo2 assuming a two-

spin system of a S = ½ electron spin coupled to a 14N nuclear spin (I = 1). Ideal pulse widths were 

employed, and the echo intensity was recorded as a function of t1 and t2 in steps of 20 ns along a 

500×500 grid of points. 

The EPR spectrum was modeled by an anisotropic g-tensor with gYY set to the center of the 

excitation pulse (determined by the microwave frequency fixed at 9 GHz and a randomized 

magnetic field in the interval 300-400 mT), and the gXX and gZZ components randomized but 

constrained to have a maximum span (gZZ – gXX) of 0.1. The EPR linewidths at the individual gXX, 

gYY, and gZZ orientations were randomized between 0-100 MHz using EasySpin’s HStrain 

parameter. Strong hyperfine interactions, electron-electron dipolar interactions, or other magnetic 

interactions that would result in resolvable splittings in the EPR spectrum were not accounted for 

in the simulations as this is currently not a supported feature in EasySpin’s saffron module. The 

excitation bandwidth of the pulse was randomly varied within the interval 10-100 MHz. 

The coupling constants for the simulations were randomly sampled from the following 

ranges: isotropic hyperfine interaction (a) = ±0-8 MHz, anisotropic hyperfine interaction (T) = 0-

1 MHz, hyperfine rhombicity (δ) = 0-1, nuclear quadrupole coupling constant (K) = 0-5 MHz, and 

nuclear quadrupole asymmetry parameter (η) = 0-1. The limits for a, T, and K were chosen based 

on the typical range of coupling constants observed by 14N HYSCORE investigations in the 

literature. δ and η are naturally limited to the range 0-1. The relative orientations of the hyperfine 

and nuclear quadrupole tensors were randomized with EasySpin’s sphrand function. Isotropic 

hyperfine coupling strain, or “a-strain”, was also accounted for in the simulations. a-strain 
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describes the case where an EPR spectrum is not characterized by one single value for a, but rather 

a distribution of values for a. This occurs when the EPR sample is not perfectly monomorphic, but 

instead contains a heterogeneous mixture of molecular structures that gives rise to a distribution 

of isotropic couplings. a-strain was modeled with a weighted sum of HYSCORE spectra simulated 

with different values of a, in order to approximate a Gaussian distribution of isotropic couplings.3 

The shape of this Gaussian distribution was randomly varied between a standard deviation of 0 

MHz (perfectly monomorphic case) and 0.3 MHz (large variance of a within the sample). Strain 

effects for T, δ, K, and η in HYSCORE spectra have not been reported in the literature to the best 

of our knowledge, and were therefore not accounted for in the simulations. 

The experimental settings for the HYSCORE simulations were chosen in the following 

manner. The time delays between pulses were sampled from the following ranges: τ = 50-300 ns 

and t1 and t2 initial values = 0-100 ns. The microwave frequency was set to 9 GHz (X-band) and 

the magnetic field was randomized within the range 300-400 mT. The flip angle of the π-pulse was 

randomly set to a value between that of a π/2-pulse (90°) and a perfect π-pulse (180°) to mimic the 

appearance of diagonal peak artifacts in the experimental spectra. Powder averaging was 

performed with a 2° spacing between sampled molecular orientations. 

 

Preprocessing of Time-domain Patterns. Simulated and experimental HYSCORE time-domain 

patterns were preprocessed before being passed through the neural network. A 3rd order 

polynomial baseline correction was applied, followed by fast Fourier transformation along both 

dimensions without any zero-filling. 

For experimental spectra exhibiting multiple interacting 14N nuclei, the signals were 

separated manually to obtain HYSCORE spectra corresponding to only a single 14N (Figure S1). 
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Regions that were removed from the spectrum during this treatment were replaced with noise. A 

cubic interpolation, using Matlab’s interp2 function, was used to recalculate the spectra to a 

frequency step size of 0.1 MHz as used in the simulations. 

Simulated and experimental spectra were symmetrized by averaging the regions on one 

side of the diagonal/antidiagonal with their nearly symmetric counterparts on the other side of the 

diagonal/antidiagonal. After symmetrization, the redundant areas of the spectrum were removed 

by reorganizing the triangular halves into a compact square matrix representation. The spectrum 

was then truncated along both dimensions to the frequency range 0-12.8 MHz, resulting in a square 

matrix of 128×128 points due to the 0.1 MHz step size. Finally, all spectra were normalized to a 

maximum intensity of 1. 

 

Neural Network Architecture. The neural network consists of convolutional layers for peak shape 

and pattern recognition, followed by fully connected layers that convert the spectral patterns into 

the desired parameters of interest. The 128×128 HYSCORE spectrum is concatenated with the 

experimental settings (magnetic field in units of T and pulse delays in units of µs), resulting in a 

128×128×N tensor, where the size of the third dimension depends on the number of experimental 

parameters (N-1). This tensor is passed through three convolutional layers with 16, 32, and 64 

channels, respectively. The kernel size is 3×3 and the stride is set to 2 in all cases. The output is 

then flattened along the image dimensions. After passage through one fully connected layer of size 

256, the network branches into five parallel fully connected layers each of size 64 for predicting 

the values of a, T, δ, K, and η. ReLU activations4 are applied to all layer outputs except for the five 

final classification layers, where the SoftPlus5 activation ln(1 + ex) is used instead. The SoftPlus 
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activation prevents the neural network from outputting negative numbers, constraining its form to 

that of a probability distribution for each parameter of interest. 

 

Neural Network Training. Neural networks were created and optimized with TensorFlow v1.6.0. 

Training was performed on 95,000 of the preprocessed HYSCORE simulations in batch sizes of 

100, with the remaining 5,000 set aside to validate there is no overfitting to the training data. Prior 

to each training pass, a random amount of noise between 0-15% was added to the training batch 

to improve the algorithm’s performance on noisy data. A Gaussian broadening filter was also 

applied to the spectra with a random standard deviation between 0-0.2 MHz to make the neural 

network robust to different degrees of spectral broadening and resolution that occur in real 

experimental data. An Adam optimizer6 set at a learning rate of 10-3 was used to minimize the 

cross-entropy loss function. Training was performed for 100,000 steps with 50% drop out7 on a 

14-core PC with 64 GB of RAM. 

 

Neural Network Design Considerations. In this work, a neural network is trained on simulations 

to make predictions about experimental data. As such, significant thought was required in 

designing the network architecture to ensure that the machine learning algorithm had the tools 

necessary to model the complex HYSCORE spectra, but without allowing it to overfit to features 

in the simulations that do not appear in the experiment. Here, the major considerations that went 

into the neural network implementation are discussed. 

Initial efforts made use of fully connected neural networks to model the 14N HYSCORE 

data. For spin systems of low hyperfine anisotropy (T » 0) where peak shape is essentially circular 

and symmetric, these models performed well for estimating a and K. However, these simple 
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models failed to scale well to systems with T > 0 where peaks exhibit complex, anisotropic shapes. 

Convolutional networks were found to be better at handling hyperfine anisotropy, and 

demonstrated that an estimate of T could be made directly from the 14N spectra. The number of 

convolutional layers and their channels were optimized while holding all other aspects of the 

network constant. A total of 3 convolutional layers was found to be optimal. Less than this number 

resulted in underfitting, and more than this number led to overfitting to features in the simulated 

HYSCORE spectra not present in the experimental spectra. In principle, if the quality of the 

simulations were improved (matching the characteristics of real spectra better), more 

convolutional layers could be added to improve the neural network’s performance further. A stride 

of 2 was favored over max pooling as striding is computationally faster and showed no difference 

in final prediction accuracy relative to max pooling. 

The second half of the neural network consists of a single fully connected layer of size 256 

followed by five fully connected layers of size 64 in parallel for predicting a, T, δ, K, and η. The 

role of the first fully connected layer is to interconnect all of the patterns recognized by the 

convolutional layers. As the magnetic coupling constants are all interrelated parameters, this 

information can be shared for predicting all five values, and allows for a reduction in both the 

number of neural network parameters, and consequently reduces overfitting to the training data. 

The numbers of layers and their sizes were optimized while holding all other aspects of the network 

constant. In total, the CNN comprises 3 convolutional layers and 1 fully connected layer, which 

then branches into 5 fully connected layers in parallel for predicting a, T, δ, K, and η (Figure 2). 
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Figure S1. Manual separation of the SQB8 (A) and rat mitoNEET9 (B) spectra into their individual 

14N components. The black boxes indicate the cropped regions of HYSCORE spectra. Deleted 

regions of the spectra were replaced with noise. In the case of rat mitoNEET, the feature at (4, 4) 

MHz marks a region of overlap between the H87-Nδ and Np nitrogens and was left in in both cases.  
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Transformation of Experimental 14N HYSCORE Spectra into Square Matrix Representation 
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Figure S2. Transformation of experimental 14N HYSCORE spectra into square matrix 

representation that were fed into the neural network to generate Figure 3 in the main text: (i) SQB 

RC (L-H190-Nδ)8, (ii) SQB RC (L-G225-Np)8, (iii) SQH cyt aa3 (H70-Nε)10, (iv) SQH cyt bo3 (R71-

Nε)11, (v) [2Fe-2S] rat mitoNEET (H87-Nδ)9, (vi) [2Fe-2S] rat mitoNEET (H87-Nε)9, (vii) [2Fe-

2S] rat mitoNEET (Np)9, (viii) VO2+ (Imidazole)12, and (ix) VO2+ (Histidine-Nα)212. 

  

(ix) 
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Figure S3. Performance of trained neural network HYnet-B0τ in Table 1 as a function of magnetic 

field. The absolute difference between the real and machine learning predicted magnetic coupling 

parameters (Δa, ΔT, ΔK, and Δη) was calculated from an average of 100 simulated HYSCORE 

spectra for each data point. The magnetic field was incremented in steps of 10 mT between 300-

400 mT.  

 

 

Figure S4. Performance of trained neural network HYnet-B0τ in Table 1 as a function of τ-value. 

The absolute difference between the real and machine learning predicted magnetic coupling 

parameters (Δa, ΔT, ΔK, and Δη) was calculated from an average of 100 simulated HYSCORE 

spectra for each data point. The τ-value was incremented in steps of 20 ns between 100-300 ns. 
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Δa
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Figure S5. Performance of trained neural network HYnet-B0τ in Table 1 as a function of the 

effective turning angle of the π-pulse. This parameter determines the ratio of the diagonal peak 

intensity to the cross-peak intensity, where turning angles <90° give very little spin inversion, 

resulting in almost no cross-peak intensity. The absolute difference between the real and machine 

learning predicted magnetic coupling parameters (Δa, ΔT, ΔK, and Δη) was calculated from an 

average of 100 simulated HYSCORE spectra for each data point. The π-pulse turning angle was 

incremented in steps of 18° between 0-180°. 

 

 

Figure S6. Performance of trained neural network HYnet-B0τ in Table 1 as a function of the noise-

to-signal ratio. Performance begins to degrade at a noise ratio of ~0.25 (signal-to-noise ratio of 

~4). The absolute difference between the real and machine learning predicted magnetic coupling 

parameters (Δa, ΔT, ΔK, and Δη) was calculated from an average of 100 simulated HYSCORE 

spectra for each data point. The noise ratio was incremented in steps of 0.05 between 0-0.5.   

Δa
 

Δa
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Figure S7. Two-pulse field-swept EPR spectrum of histidine-coordinated VO2+.12 HYSCORE 

spectra were acquired at 340 and 346 mT (red arrows). Experimental settings: Microwave 

frequency = 9.740 GHz, time between first and second pulses τ = 200 ns, temperature = 30 K. 

 

 

 

Figure S8. Two-pulse field-swept EPR spectrum of rat mitoNEET.9 The HYSCORE spectrum was 

acquired at the gYY orientation (red arrow). Experimental settings: Microwave frequency = 9.703 

GHz, time between first and second pulses τ = 400 ns, temperature = 12 K.  
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Comparison of Machine Learning Simulations with Experimental 14N HYSCORE Spectra 
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Figure S9. Comparison of simulations with machine learning predicted parameters with 

experimental 14N HYSCORE spectra: (i) SQB RC (L-H190-Nδ)8, (ii) SQB RC (L-G225-Np)8, (iii) 

SQH cyt aa3 (H70-Nε)10, (iv) SQH cyt bo3 (R71-Nε)11, (v) [2Fe-2S] rat mitoNEET (H87-Nδ)9, (vi) 

[2Fe-2S] rat mitoNEET (H87-Nε)9, (vii) [2Fe-2S] rat mitoNEET (Np)9, (viii) VO2+ (Imidazole)12, 

and (ix) VO2+ (Histidine-Nα)212. Simulations were performed in EasySpin1 using the mean values 

highlighted in blue in Table S1 as the hyperfine and nuclear quadrupole parameters. The α and β 

Euler angles of the hyperfine tensor were both set arbitrarily to 45º to prevent any unusual 

resonance conditions due to perfect alignment of the hyperfine and nuclear quadrupole tensors. No 

orientation selection, hyperfine rhombicity (δ), or a-strain3 were considered in these simulations.  

(ix) 
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Table S1. Neural network predictions for experimental spectra acquired at various experimental 

settings (results shown in Figure 3 are highlighted in blue, and a comparison with the previous 

literature values are in parentheses) 

Spin System a τ (ns)b Δt (ns)c a (MHz) T (MHz) K (MHz) η 

SQB RC 
(L-H190-Nδ) 

136 20 1.33±0.53 0.47±0.23 1.50±0.39 0.79±0.30 
136 32 1.46±0.50 0.31±0.24 1.48±0.37 0.81±0.30 
200 20 1.29±0.50 0.33±0.24 1.47±0.38 0.82±0.27 
200 32 1.34±0.48 0.25±0.24 1.42±0.37 0.84±0.23 

  (1.35) (0.35) (1.52) (0.69) 

SQB RC 
(L-G225-Np) 

136 20 0.44±0.40 0.16±0.26 2.93±0.31 0.77±0.26 

136 32 0.42±0.43 0.15±0.26 2.93±0.32 0.77±0.26 
200 20 0.41±0.41 0.13±0.25 3.10±0.35 0.64±0.24 
200 32 0.29±0.41 0.19±0.27 3.14±0.35 0.60±0.24 

  (0.4) (0.2) (2.96) (–) 
SQH cyt aa3 

(H70-Nε) 
136 20 2.04±0.49 0.24±0.26 1.55±0.41 0.15±0.25 

  (2.0±0.1) (0.2±0.1) (1.44±0.1) (0.25±0.1) 

SQH cyt bo3 
(R71-Nε) 

120 16 1.61±0.52 0.53±0.22 3.91±0.39 0.42±0.16 
152 16 1.55±0.52 0.49±0.22 3.80±0.34 0.45±0.15 
260 16 1.70±0.60 0.29±0.33 3.69±0.35 0.43±0.15 

  (1.8) (0.4) (3.72) (0.51) 
[2Fe-2S] 

rat mitoNEET 
(H87-Nδ)d 

136 32 5.73±0.53 0.80±0.29 2.69±0.41 0.87±0.20 

  (6.1) (0.8) (2.40) (–) 

[2Fe-2S] 
rat mitoNEET 

(H87-Nε)d
 

136 32 0.22±0.31 0.14±0.24 1.18±0.40 0.80±0.27 

  (0.32) (~0.2) (1.32) (–) 

[2Fe-2S] 
rat mitoNEET 

(Np)d
 

136 32 0.32±0.41 0.41±0.24 3.31±0.36 0.81±0.26 

  (0.5) (~0.2) (3.04) (–) 

VO2+ 
(Imidazole) 

256 24 6.23±0.53 0.28±0.24 2.35±0.44 0.76±0.31 
  (6.3) (0.45) (–) (–) 

VO2+ 
(Histidine-Nα)2

e 

104 24 4.86±0.46 0.17±0.25 2.82±0.39 0.88±0.21 
256 24 4.99±0.44 0.25±0.25 2.74±0.41 0.85±0.26 

  (5.0) (–) (2.32) (–) 

VO2+ 
(Histidine-Nα)2

f 

104 24 5.03±0.49 0.21±0.25 2.72±0.44 0.64±0.24 
256 24 5.10±0.53 0.28±0.22 2.64±0.45 0.81±0.26 

  (5.0) (–) (2.32) (–) 
aSpin system descriptions – SQB RC: Semiquinone in the QB ubiquinone binding site of the bacterial reaction center 
from Rhodobacter sphaeroides. SQH cyt aa3: The semiquinone in the QH high-affinity menaquinone binding site of 
the R70H mutant of the cytochrome aa3-600 menaquinol oxidase from Bacillus subtilis. SQH cyt bo3: The semiquinone 
in the QH high-affinity ubiquinone binding site of the cytochrome bo3 ubiquinol oxidase from Escherichia coli. [2Fe-
2S] rat mitoNEET: Reduced [2Fe-2S](Cys)3(His)1 cluster in rat mitoNEET.VO2+ (Imidazole): VO2+ coordinated to 
imidazole. VO2+ (Histidine-Nα)2: VO2+ coordinated to histidine. bτ is the time between the first and second pulses of 
the HYSCORE sequence. cΔt is the step size that t1 and t2 are incremented in the HYSCORE time-domain pattern. 
dSpectrum acquired at the gYY orientation (Figure S8). eSpectrum acquired at 340 mT (Figure S7). fSpectrum acquired 
at 346 mT (Figure S7). 
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