
S1 Text: Simulations

The simulation model

Our simulation starts with the equation for each SNP j

Γj = γj1β1 +
K∑
k=2

γjkβk + αj

where we are interested in estimating β1, the causal effect of our target risk factor X1. We

assume that αj
i.i.d.∼ N(0, τ 2) following the inSIDE assumption, while γjk are correlated with

γj1 for k = 2, 3, · · · , K due to the genetic correlations between X1 and the confounding
unmeasured risk factors X2, · · · , XK . Specifically, we assume that for each k = 2, 3, · · · , K,

γjk = ηjkγj1 + (1− ηjk)δjk

where
ηjk

i.i.d.∼ Bernoulli(πk), δjk
i.i.d.∼ N(0, τ 2k )

and the data are the summary statistics Γ̂j and γ̂1j where

Γ̂j
ind.∼ N(Γj, σ

2
Y j), γ̂j1

ind.∼ N(γj1, σ
2
Xj).

The simulation settings

We base on real data estimations to set realistic values of γj1 as well as the standard errors
σYj

and σXj
in our simulations. Specifically, we take the BMI as the risk factor and SBP

as the disease. With three-sample design, the BMI summary statistics from the GIANT
consortium are used for SNP selection, and data from the UK Biobank for the two traits
are used for estimation (see Table A of S3 Text). With a p-value threshold of 0.01, we
selected 786 independent SNPs. We treat the estimated γ̂j1 for these SNPs as the true
marginal associations γj1. The standard errors σYj

and σXj
are the same as obtained from

the GWAS summary statistics. We set τ 2 =
∑

j γ
2
j1/5 for size of the uncorrelated pleiotropy

and τ 22 = · · · = τ 2K = τ 2/2 for the SNPs effects on confounding risk factors when the SNPs
are not on the shared pleiotropic pathway. Instead of using original selection p-values, we
redefine the “selection p-value” as 2[1−Φ(|γj1|/σXj)] representing the signal strengths. Here
Φ(·) is the cumulative density function of the standard normal distribution.

Given the above settings, different πk corresponds to a different genetic correlation [1]
between X1 and Xk following:

ρg(X1, Xk) =
πk√

πk + (1− πk)/10

We examine 10 combinations of (β1, · · · , βK) where K = 1, 2 or 3. When there are pleiotropic
pathways, we consider both the scenario that the confounding risk factor has same or opposite
sign as the effect of the target risk factor. Specifically, the ten combinations are:
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• No pleiotropic pathways with β1 = 0.2, 0.5 and 1.

• True causal effect is zero, one pleiotropic pathway: (β1, β2) = (0, 1)

• True causal effect is zero, with two pleiotropic pathways: (β1, β2, β3) = (0,−1, 1) or
(0, 1, 2);

• True causal effect is nonzero, one pleiotropic pathway: (β1, β2) = (1,−1) or (1, 2);

• True causal effect is nonzero, with two pleiotropic pathways: (β1, β2, β3) = (1,−1, 2)
or (−, 1, 2).

For each combination, we vary the values of πk. When K = 2, there is only one pleiotropic
pathway, and we set π2 = 0.1, 0.3, 0.5, 0.7, 0.9. Here π2 = 0.1 indicates that ρg(X1, X2) is
as small as 0.23 and π2 = 0.9 is for the genetic correlation to be as large as 0.94. For
K = 3 where there are two pleiotropic pathways, we require ηjk = 1 in at most one k and
we set π2 = π3 = 0.1, 0.2, 0.3, 0.4. This means that the two pleiotropic pathways have 0
genetic correlation, while they have the same genetic correlation with X1, ranging from 0.23
(π2 = π3 = 0.1) to 0.59 (π2 = π3 = 0.4). For each β and π combination, we randomly repeat
the experiments by B = 100 times.

The simulation results

We compare GRAPPLE with 4 different MR methods that only take into account 1 risk
factor: MR-Egger, IVW, Weighted Median and CAUSE, as well as a recently proposed MR
method MVMR [2] for joint MR analysis of multiple risk factors. In the settings where there
are pleiotropic pathways, we compares two methods in GRAPPLE. One is GRAPPLE using
only the GWAS summary statistics for the target risk factor, where we use MR-RAPS to
estimate the causal effect. The other is to perform a multivariate MR analysis including
summary statistics from both the target risk factor and confounding risk factors.

First, when there is no pleiotropic pathway, all MR methods are able to provide a good
estimation of the true causal effects (Fig S2a). Similar to want we have observed in the
benchmarking results based on real data (Fig 2a), we observe that the common MR methods
MR-Egger, IVW and Weighted Median can provide conservatively biased estimation even
with a stringent selection threshold. GRAPPLE can keep providing an accurate and unbiased
estimate of the causal effect regardless of the selection threshold, with the accuracy increasing
with a more relaxed selection threshold. CAUSE may sometimes overestimate the true causal
effect, as what we have already seen in Fig 2a.

Next, we examine the power of GRAPPLE in detecting multiple modes and finding
marker genes for each mode. We use three measurements. One is the detection rate, which
is the chance of detecting more than one mode in the robustified profile likelihood. The
other two measures are the marker precision and recall. We compare the marker SNPs that
GRAPPLE returns with the set of SNPs that truly belong to the pleiotropic pathways. As
shown in Fig S2b, the detection of multiple modes performs the best when πk is neither
too large nor too small, so that each pathway has enough SNPs among the selected IVs
to contribute to a mode. When we vary the selection thresholds, we find that GRAPPLE
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is most sensitive to detect the modes with a stringent p-value threshold (10−8) where only
strongly associated SNPs are selected. On the other hand, including weakly associated SNPs
will increase the marker recall rate, making it more informative to identify the hidden risk
factors once the modes are detected.

Then, we compare GRAPPLE with other methods when there are pleiotropic pathways
(Figs S3-S5), using SNPs selected by different selection thresholds. We use two metrics for
evaluation: the accuracy in the estimation of the true causal effect, and the coverage of the
95% confidence intervals from each MR method. For CAUSE, we report the 95% credible
interval. When the true causal effect β1 = 0, the CI coverage is equivalent to one minus
the type-I error in claiming a non-zero causal effect. In terms of the estimation of the true
causal effects, we observe that all univariate MR methods using only summary statistics of
the target risk factor can have large bias when there are pleiotropic pathways, especially when
the confounding unmeasured risk factors are highly or even moderately correlated with the
target risk factor. In terms of the CI coverage, all univariate MR methods are generally not
reliable when there are pleiotropic pathways and result in a larger type-I error than expected.
Among all 5 univariate MR methods, CAUSE has the best coverage when the confounding
risk factors has a small genetic correlation with the target risk factor, a scenario where the
assumptions in CAUSE are likely to hold. Though our univariate GRAPPLE can sometimes
provide a less biased estimation of β1 compared with other univariate MR methods when
there are pleiotropic pathways, our CIs are always too optimistic. Fortunately, GRAPPLE
also has high detection rate of multi-modality in these scenarios with reasonably high marker
precision, so that we are aware of the existence of pleiotropic pathways and have information
to identify them.

Finally, we compare the multivariate GRAPPLE with MVMR, both of which use sum-
mary statistics from both the target and confounding risk factors (Figs S3-S5). Compared
to the univariate MR methods, both methods are much more accurate in estimation and CI
coverage. MVMR can suffer from weak instrument bias and is also sensitive to the genetic
correlation between confounding risk factors and the target risk factor. In contrast, our
multivariate GRAPPLE can keep providing accurate estimation of β1, as well as reliable CIs
with low type-I error regardless of either the genetic correlations of confounding risk factors
or the SNPs selection thresholds.
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