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Supplementary Figure 1. Whole Genome (WGS) and Whole Transcriptome 
(WTS) sequencing of Leiomyosarcoma. (A) 34 Toronto patients that were 
diagnosed with LMS were included in this study. 8/34 Toronto patients additionally 
had multi-region dissection and sequencing, metastatic relapse sequencing or both. 
Matched-blood or matched-normal tissue was used as a control for all cases. RNA-
sequencing was performed for 51/53 Toronto samples. (B) Raw sequencing data 
from 18 LMS genomes and 80 LMS transcriptomes were obtained from The Cancer 
Genome Atlas (TCGA). 1 TCGA sample was removed from subsequent analysis, 
after detection of a KIT variant (indicative of gastrointestinal stromal tumor not LMS).  
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Supplementary Figure 2��Genome Sequencing Coverage Metrics for LMS Tumors. (A)
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Supplementary Figure 3. Survival Differences in LMS Molecular Subtypes. (A) 
Patients were divided into LMOD1 high and LMOD1 low groups based on their 
LMOD1 expression (above/below one standard deviation of the mean). Irrespective 
of molecular subtype, LMOD1 expression may be a predictor of overall survival, as 
low LMOD1 expression correlated with inferior outcome. (B) Kaplan-Meier survival 
plots show that subtype 2 LMS has better overall survival than subtypes 1/3 
(p=0.029, log rank test). (C) Kaplan-Meier survival plots show that subtype 2 LMS 
has better disease-specific survival than subtypes 1/3 (p=0.04, log rank test). 
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Supplementary Figure 4. UMAP of DBSCAN Hierarchical Clustering. (A) 130 
LMS transcriptomes were clustered by Density-based spatial clustering of 
applications with noise (DBSCAN), recapitulating clusters observed by Principal 
Component Analysis (left UMAP, also see Fig. 1A). Additional inclusion of 12,419 
other cancers resulted in the sub-stratification of subtype 2 into subtype 2a and 2b. 
For Toronto patients with more than one sample (Ab6, Ab11, Ab13, Ab14, Ab15, 
Ab17), samples from the same patient cluster together (right UMAP). (B) Hierarchal 
distribution and visualization of uterine LMS (uLMS) and soft-tissue LMS (ST-LMS) 
molecular subtypes.  
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Supplementary Figure 5. UMAP of Genotype-Tissue Expression (GTEx) Normals and LMS 
Cancers. Uniform Manifold Approximation and Projection (UMAP) illustrates GTEx muscle-related 
normal tissues and LMS molecular subtypes clustering. LMS molecular subtypes cluster with 
different normal tissue of smooth muscle origin.  
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Supplementary Figure 6. Genomic Alterations in Smooth Muscle Genes. (A) 
Copy number plot of a representative LMS sample with an intragenic dystrophin 
(DMD) deletion. (B) Copy number plot shows a segmental 17p loss (TP53), 
accompanied by a neighbouring 17p gain (MYOCD) in a representative sample. (C) 
Copy number plot illustrates two indicative samples illustrating complex patterns of 
copy-number alterations resulting in MYOCD amplification. (D) Summary table of 
DMD deletions (DMD Del) and MYOCD amplifications (MYOCD amp) detected by 
WGS. DMD deletions occur predominantly in subtypes 1/3, while MYOCD 
amplifications occur preferentially in subtypes 2/3. “Wildtype” (WT) refers to samples 
where no alteration in DMD or MYOCD was detected.  
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Supplementary Figure 7. Dystrophin Expression in LMS. (A) Boxplot illustrates dystrophin 
expression (in transcripts per million, TPM) for LMS cancers with paired genome and RNA 
sequencing. Samples are categorized by subtype (subtype 1 = 9, subtype 2 = 48, subtype 3 = 
11) and anatomical location (abdominal = 25, extremity = 10, gynecological = 17, metastatic
 relapses = 16). 6 muscular dystrophy cases were included. The boxes represent the 25th and 
75th percentile (bottom and top of box), and median value (horizontal band). The whiskers 
indicate the variability outside the upper and lower quartiles. Most dystrophin deletions arise in 
subtype 1 and 3 gynecological LMS. Gynecological LMS have lower dystrophin expression
 regardless of deletion status. For subtype 1 metastatic relapses, two relapses from the same 
patient harbor the same DMD deletion. The other specimen does not harbor a DMD deletion 
and is derived from a gynecological primary tumor (not sequenced). Lower DMD expression is
observed in muscular dystrophy patients with a DMD alteration (compared to alterations in 
related genes). (B) Violin plots demonstrate dystrophin expression across normal GTEx muscle 
tissues (vascular = 110, digestive = 119 and gynecological = 42) and LMS molecular subtypes
(subtype 1 = 23, subtype 2 = 85, subtype 3 = 22).
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Supplementary Figure 8. Smooth Muscle (SM) Marker Expression (Additional Genes). Boxplots 
represent the expression (in transcripts per million, TPM), for SM genes. The boxes represent the 25th 
and 75th percentile (bottom and top of box), and median value (horizontal band). The whiskers indicate 
the variability outside the upper and lower quartiles. These 8 muscle genes were reported in Beck et al. 
�����DV�WKH�GHILQLQJ�IHDWXUHV�RI�/06�PROHFXODU�VXEW\SH����%HFN�HW�DO�·V�VXEJURXS�����7KHVH�VPRRWK�
muscle markers are under-expressed in LMS subtype 1 (n=23), to differing degrees, relative to subtypes 
2 (n=85) or 3 (n=22). SM expression in vascular (n=110), digestive (n=119) and gynecological (Gyn., 
n=42) normal tissues are also shown.  
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Supplementary Figure 9. Subtype 1 LMS clusters with Undifferentiated Pleiomorphic Sarcoma 
(UPS). Uniform Manifold Approximation and Projection (UMAP) demonstrates that LMS subtype 1
cancers cluster with UPS tumors obtained from The Cancer Genome Atlas (TCGA). 
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Supplementary Figure 10. Higher Immune Infiltration in LMS Subtypes. (A) 
Boxplot demonstrates leukocyte proportions in LMS subtypes. The boxes represent 
the 25th and 75th percentile (bottom and top of box), and median value (horizontal 
band). The whiskers indicate the variability outside the upper and lower quartiles. A 
higher leukocyte fraction is observed in Subtype 1 (n=16) than Subtypes 2 (n=46) or 
3 (n=17). Only TCGA samples were analyzed.  Orange bars represent myelocytes, 
whereas blue bars represent lymphocytes. (B) Heatmap represents lymphocyte and 
monocyte breakdown of leukocyte content reveals higher M2 macrophage content in 
LMS, with an enrichment in subtype 1 tumors (darker blue/higher number refers to 
higher proportion). Only TCGA samples were analyzed. (C) ARL4C expression is 
higher in Subtype 1 (n=23) than in subtypes 2 (n=85) or 3 (n=22).  
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:KROH�*HQRPHV��3&$:*��*URXQG�7UXWK��A ground-truth positive control dataset was obtained from 
PCAWG Network where SBS3, SBS5 and SBS40 were simulated in 1000 samples. The ground-truth
dataset was compared to signature output from this study. The two-sided Pearson correlation
coefficient was >0.99 indicating a strong correlation and sufficient power to discriminate SBS3 from 
SBS5 and SBS40. 
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Supplementary Figure 12

Supplementary Figure S12. Single Base Substitution (SBS) 3 Validation: 
Removing SBS3 from Decomposition. First, signatures were de novo extracted and 
GHFRPSRVHG�XVLQJ�WKH�IXOO�FDWDORJXH�RI�DYDLODEOH�&260,&�VLJQDWXUHV��7KH�FRVLQH�
VLPLODULWLHV�EHWZHHQ�WKH�UHFRQVWUXFWHG�VLJQDWXUHV�DQG�&260,&�VLJQDWXUHV�DUH�SORWWHG�LQ�
green. Removal of SBS3 from the catalogue of signatures available for signature 
decomposition results in a decrease in cosine similarity (plotted in yellow).  
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Supplementary Figure 14. Unidentified Signatures in LMS. Non-negative matrix 
factorization (NMF)-extracted signatures revealed 3 signatures (two indel and one 
double-nucleotide substitution) that were not identified in COSMIC, to date. These 
may represent novel signatures in LMS.  
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Supplementary Figure 15. LMS Cell Lines are Responsive to DNA Response 
Inhibitors (DDRi).   LMS cell lines and controls were treated with inhibitors for CHK1 

(LY2606368), ATR (AZD6738), WEE1(AZD1775) to create dose response curves 

using 24 distinct concentrations (0.013-10μM) with biological triplicates. Hs 789.Sk 

represents a non-transformed fibroblast cell line. Doses were randomized in a 

scattered manner across the plates to minimize positional artifacts. The EC50 values 

were calculated in Prism using a sigmoidal curve fit with three parameters. Vehicle 

treated cells were normalized to 100%. Source data are provided as a Source Data 

file. 
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Supplementary Figure 16. Bulk Sequencing of Primary and Metastatic Relapse 
Pairs (n=2 samples per patient). The clinical courses of two primary-relapse pairs 
(Ab13 and Ab15) and one relapse-relapse pair are shown (left column). All patients 
were treated with either chemotherapy (chemo) or radiation therapy (RT). For Ab14, 
only the metastatic relapses (MR1 and MR2) were genome and RNA-sequenced, as 
the diagnostic tumor (Dx) was not available. Pathogenic TP53 substitutions with 
clonal cancer cell fractions (CCFs) are present in all samples, thus supporting their 
obligate nature in LMS. 
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Supplementary Figure 17. Timing point mutations in LMS. Using informative 
regions of the genome, point mutations can be timed relative to DNA amplifications. 
(A) In case 1, there is an initial loss-of-heterozygosity (LOH) event, followed by a 
pathogenic variant. Subsequent whole-genome duplication (WGD) results in co-
amplification of the mutated allele. In this scenario, the mutation arises early (prior to 
DNA amplification). In case 2, similar LOH arises, however the mutation does not 
arise until after the amplification event. In this scenario, the mutation is a late event. 
(B) Using MutationTimeR, somatic mutations can be timed relative to clonal and 
subclonal copy number states. Variants are classified and timed given their copy 
number states and mutation copy number (MutCN) (see methods). In samples with 
chromosomal amplifications, the majority (63%) of point mutations are later events, 
arising after focal amplifications. 37% of mutations arise early, before these 
amplifications. The remaining mutations occur after the most recent common 
ancestor (MRCA) and before the diagnostic tumor (Dx). The most common 
pathogenic COSMIC cancer gene variants that arise early are TP53.   
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Supplementary Figure 18. Timing Copy Number Aberrations and TP53 in LMS. 
(A) Genome-wide copy number illustrates recurrent chromosomal losses of 
chromosomes 10, 13, 16, and 17. (B) Allele-specific copy-number in a representative 
sample shows that the aforementioned copy number losses are early events arising 
before genome doubling. (C) Dot plots show mutation copy number and total copy 
number for the most recurrent alteration in LMS, TP53 variants. In regions of copy-
neutral loss-of-heterozygosity (LOH) or copy-gain LOH (one copy loss, the other 
copy is amplified more than once), the TP53 mutation copy number equals the total 
copy number and has a high cancer cell fraction (CCF) (see Supplementary Figure 
17A). (D) Model for Leiomyosarcomagenesis: in an early mesenchymal progenitor, a 
pathogenic TP53 is obtained. RB1 alterations and ATRX deletions may also occur. 
These events are accompanied by genome-wide copy number losses in known 
tumor suppressor genes such as TP53, RB1 and PTEN. Whole genome duplication 
(WGD) occurs in ~40-50% of cases. WGD is an early-mid evolutionary event, 
frequently common to all regions of a tumor (in cases of multi-region sequencing) or 
both the primary and metastatic relapse. In other cases, WGD is unique to the 
primary or metastatic relapse. Based on clock-like mutagenesis analysis, LMS 
cancers diverge 10-30 years pre-diagnosis, suggesting the most recent common 
ancestor (MRCA) must precede the diagnostic tumor (Dx) by many years. Kataegis 
and chromothripsis are mid-late events in LMS. 
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Supplementary Figure 19. Clonal Evolution in LMS. (A) Single-nucleotide variant 
(SNV), indel and structural variant (SV) overlap of the bulk sequencing of primary-
metastatic relapse pairs also shows the high number of unique variants present in 
each tumor, suggesting parallel evolution between the diagnostic sample (Dx) and 
the later metastatic relapse (MR). (B) Circos plots illustrate differing structural 
variation between the diagnostic tumor (Ab17T), and the two metastatic relapses 
(MR1=Ab17Met1 and MR2=Ab17Met2). See Fig 3A for clinical course. Two separate 
chromothriptic events occur between the primary and relapses. (C) Copy number 
profiles of chromosome 7 further support a chromothriptic event that is unique to the 
primary tumor and not observed in the metastatic relapse.  
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Supplementary Figure 20. Deep, Targeted Sequencing of LMS Tumors. (A) The 
flow diagram illustrates the design approach of the targeted panel for deep sequencing 
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tumors, all substitutions (subs), insertion-deletions (indels), and structural variants (SVs) 
are considered. Over 75% of substitutions, all non-synonymous indels, and SVs with 
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Once pooled from sixteen samples, all regions were sequenced in every patient to a 
mean depth of 706X. (B) IGV screenshots show a representative example of a 
substitution variant present in a diagnostic tumor that is absent in the paired metastatic 
sample, even at 642X sequencing depth at that position.  
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Supplementary Figure 21. DPClust Subclonal Reconstruction of Patients Ab17 
and Ab12.  Treeomics-based phylogenetic trees (left) can be validated and refined 
by DPClust subclonal reconstruction. Diagnostic specimens (Dx), metastatic lesions 
(Met) and multiregion samples (Regions/Re) are shown. The average cancer cell 
fraction (CCF) per sample per cluster is shown (right dot plots). The CCF is the 
fraction of tumor cells carrying the mutation, where the clonal mutations appear in a 
cluster >0.9, as they are found more than 90% of tumor cells, and the subpopulation 
consists of tumor cells below 0.9. The CCF is based on the variant allele frequency 
(VAF), tumor purity and local copy number changes. Dot plots are annotated with the 
number of mutations assigned to each cluster in each sample. The color of each 
circle represents a distinct clone population (or cluster). Clones between samples 
are considered shared if the CCF of the clones is greater than 5% and the number of 
mutations in the cluster is greater than 5% of the total number of mutations assigned 
to the cluster. There must also be at least 5 mutations in each clone. DPClust 
produces two plausible trees for patient Ab12, the linear model was chosen for 
Figure 3B. Branch lengths are proportional to Treeomics mutation assignments, 
except when DPClust further resolves subclonal populations. In these cases, 
DPClust mutation assignments are used.  
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Supplementary Figure 22. DPClust Subclonal Reconstruction of Patient Ab6.  
Treeomics-based phylogenetic trees (left) can be validated and refined by DPClust 
subclonal reconstruction. Diagnostic specimens (Dx), metastatic lesions (Met) and 
multiregion samples (Regions/Re) are shown. The average cancer cell fraction 
(CCF) per sample per cluster is shown (right dot plots). The CCF is the fraction of 
tumor cells carrying the mutation, where the clonal mutations appear in a cluster 
>0.9, as they are found more than 90% of tumor cells, and the subpopulation 
consists of tumor cells below 0.9. The CCF is based on the variant allele frequency 
(VAF), tumor purity and local copy number changes. Dot plots are annotated with the 
number of mutations assigned to each cluster in each sample. The color of each 
circle represents a distinct clone population (or cluster). Clones between samples 
are considered shared if the CCF of the clones is greater than 5% and the number of 
mutations in the cluster is greater than 5% of the total number of mutations assigned 
to the cluster. There must also be at least 5 mutations in each clone. Branch lengths 
are proportional to Treeomics mutation assignments, except when DPClust further 
resolves subclonal populations. In these cases, DPClust mutation assignments are 
used.  
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Supplementary Figure 23. DPClust Subclonal Reconstruction of Patient Ab11.  
Treeomics-based phylogenetic trees (left) can be validated and refined by DPClust 
subclonal reconstruction. Diagnostic specimens (Dx), metastatic lesions (Met) and 
multiregion samples (Regions/Re) are shown. The average cancer cell fraction 
(CCF) per sample per cluster is shown (right dot plots). The CCF is the fraction of 
tumor cells carrying the mutation, where the clonal mutations appear in a cluster 
>0.9, as they are found more than 90% of tumor cells, and the subpopulation 
consists of tumor cells below 0.9. The CCF is based on the variant allele frequency 
(VAF), tumor purity and local copy number changes. Dot plots are annotated with the 
number of mutations assigned to each cluster in each sample. The color of each 
circle represents a distinct clone population (or cluster). Clones between samples 
are considered shared if the CCF of the clones is greater than 5% and the number of 
mutations in the cluster is greater than 5% of the total number of mutations assigned 
to the cluster. There must also be at least 5 mutations in each clone. Branch lengths 
are proportional to Treeomics mutation assignments, except when DPClust further 
resolves subclonal populations. In these cases, DPClust mutation assignments are 
used.  
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Supplementary Figure 24. Single Base Substitution (SBS) 1 is “clock-like” in 
LMS and increases with age. (A) The mutation rates (mutation/Gb/year) are plotted 
against the age of the patient for SBS1, SBS5, SBS8 and SBS40. The strongest 
correlation between mutation rate and age are seen for SBS1. SBS1 reflect the 
number of mitotic cell divisions, which is proportional to the chronological age of LMS 
patients. Ribbons represent the 95% confidence interval of the fitted lines. (B) Given 
the calculated SBS1 and SBS5 mutation rates (mutation/Gb/year) for two 
representative patients (Ab6 and Ab15), the expected number SBS1 and SBS5 
mutations was determined for the relapse samples. These were compared to the 
NMF-extracted SBS1 and SBS5 numbers from the relapse samples (observed). Only 
for SBS1, not SBS5 (or any other signature), was the expected and observed 
mutation accumulation similar. 
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Supplementary Figure 25. Smooth Muscle (SM) Gene Expression in Patient-
Derived Cell Lines. Plots show the expression (transcripts per million, TPM) of 
smooth muscle genes in normal tissue SM (left): vascular (n=110), digestive (n=119) 
and gynecological (Gyn., n=42) tissues. SM expression for SKLMS-1 and patient-
derived cell lines are shown on the right (each point represents a single cell line). 
The boxes represent the 25th and 75th percentile (bottom and top of box), and 
median value (horizontal band). The whiskers indicate the variability outside the 
upper and lower quartiles. 
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Supplemental Figure 26. Gating strategy for Traffic Light Reporter (TLR) assay. Blue 
Fluorescent Protein (BFP) positive cells were gated as the signal (Fluorescecnce channel 
(FL) 9 parameter: 405nm laser, 450/40 bandpass filter detector) above the untransfected 
control. From the BFP positive cells, Green Fluorescent Protein (GFP) (FL1 parameter: 
488nm laser, 525/40 bandpass filter detector) and mCherry (FL3 parameter: 561nm laser,
620/30 bandpass filter detector) signals were plotted and gates were created to identify the 
BFP+ GFP+ mCherry- or BFP+ GFP- mCherry+ cells. FS refers to the forward scatter. 
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Supplementary Figure 27. Quality Control for Patient Ab11. Battenberg derived 
copy number plots are provided for patient Ab11. Based on Treeomics and DPClust 
reconstructions, multiregion (MuRe) 3, MuRe4 and Met1 likely have missed a 
genome doubling event (see Methods).  


