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Supplementary Figure 1. Whole Genome (WGS) and Whole Transcriptome
(WTS) sequencing of Leiomyosarcoma. (A) 34 Toronto patients that were
diagnosed with LMS were included in this study. 8/34 Toronto patients additionally
had multi-region dissection and sequencing, metastatic relapse sequencing or both.
Matched-blood or matched-normal tissue was used as a control for all cases. RNA-
sequencing was performed for 51/53 Toronto samples. (B) Raw sequencing data
from 18 LMS genomes and 80 LMS transcriptomes were obtained from The Cancer
Genome Atlas (TCGA). 1 TCGA sample was removed from subsequent analysis,
after detection of a KIT variant (indicative of gastrointestinal stromal tumor not LMS).
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Supplementary Figure 2. Genome Sequencing Coverage Metrics for LMS Tumors. (A)
Genome coverage was calculated using the Genome Analysis Toolkit (GATK, v.2.8.1). A
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Supplementary Figure 2

up to 40X coverage. (B) Sixteen tumors were re-sequenced using Agilent SureSelect Technology.

Multi-region and paired primary-relapse samples were prioritized. Samples were also selected
based on DNA availability. Samples were sequenced to 600X-800X, (mean=706X). Full panel

minimum threshold of 30X was achieved (red dashed line), but most genomes had coverage
design details are described in Supplementary Figure 20.
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Supplementary Figure 3. Survival Differences in LMS Molecular Subtypes. (A)
Patients were divided into LMOD1 high and LMOD1 low groups based on their
LMOD1 expression (above/below one standard deviation of the mean). Irrespective
of molecular subtype, LMOD1 expression may be a predictor of overall survival, as
low LMOD1 expression correlated with inferior outcome. (B) Kaplan-Meier survival
plots show that subtype 2 LMS has better overall survival than subtypes 1/3
(p=0.029, log rank test). (C) Kaplan-Meier survival plots show that subtype 2 LMS
has better disease-specific survival than subtypes 1/3 (p=0.04, log rank test).
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Supplementary Figure 4. UMAP of DBSCAN Hierarchical Clustering. (A) 130
LMS transcriptomes were clustered by Density-based spatial clustering of
applications with noise (DBSCAN), recapitulating clusters observed by Principal
Component Analysis (left UMAP, also see Fig. 1A). Additional inclusion of 12,419
other cancers resulted in the sub-stratification of subtype 2 into subtype 2a and 2b.
For Toronto patients with more than one sample (Ab6, Ab11, Ab13, Ab14, Ab15,
Ab17), samples from the same patient cluster together (right UMAP). (B) Hierarchal
distribution and visualization of uterine LMS (uLMS) and soft-tissue LMS (ST-LMS)
molecular subtypes.
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Supplementary Figure 5. UMAP of Genotype-Tissue Expression (GTEx) Normals and LMS
Cancers. Uniform Manifold Approximation and Projection (UMAP) illustrates GTEx muscle-related
normal tissues and LMS molecular subtypes clustering. LMS molecular subtypes cluster with

different normal tissue of smooth muscle origin.
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Supplementary Figure 6. Genomic Alterations in Smooth Muscle Genes. (A)
Copy number plot of a representative LMS sample with an intragenic dystrophin
(DMD) deletion. (B) Copy number plot shows a segmental 17p loss (TP53),
accompanied by a neighbouring 17p gain (MYOCD) in a representative sample. (C)
Copy number plot illustrates two indicative samples illustrating complex patterns of
copy-number alterations resulting in MYOCD amplification. (D) Summary table of
DMD deletions (DMD Del) and MYOCD amplifications (MYOCD amp) detected by
WGS. DMD deletions occur predominantly in subtypes 1/3, while MYOCD
amplifications occur preferentially in subtypes 2/3. “Wildtype” (WT) refers to samples
where no alteration in DMD or MYOCD was detected.
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Supplementary Figure 7. Dystrophin Expression in LMS. (A) Boxplot illustrates dystrophin
expression (in transcripts per million, TPM) for LMS cancers with paired genome and RNA
sequencing. Samples are categorized by subtype (subtype 1 =9, subtype 2 = 48, subtype 3 =
11) and anatomical location (abdominal = 25, extremity = 10, gynecological = 17, metastatic
relapses = 16). 6 muscular dystrophy cases were included. The boxes represent the 25th and
75th percentile (bottom and top of box), and median value (horizontal band). The whiskers
indicate the variability outside the upper and lower quartiles. Most dystrophin deletions arise in
subtype 1 and 3 gynecological LMS. Gynecological LMS have lower dystrophin expression
regardless of deletion status. For subtype 1 metastatic relapses, two relapses from the same
patient harbor the same DMD deletion. The other specimen does not harbor a DMD deletion
and is derived from a gynecological primary tumor (not sequenced). Lower DMD expression is
observed in muscular dystrophy patients with a DMD alteration (compared to alterations in
related genes). (B) Violin plots demonstrate dystrophin expression across normal GTEx muscle
tissues (vascular = 110, digestive = 119 and gynecological = 42) and LMS molecular subtypes
(subtype 1 = 23, subtype 2 = 85, subtype 3 = 22).
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Supplementary Figure 8. Smooth Muscle (SM) Marker Expression (Additional Genes). Boxplots
represent the expression (in transcripts per million, TPM), for SM genes. The boxes represent the 25th
and 75th percentile (bottom and top of box), and median value (horizontal band). The whiskers indicate
the variability outside the upper and lower quartiles. These 8 muscle genes were reported in Beck et al.
2014 as the defining features of LMS molecular subtype 2 (Beck et al.’s subgroup 1). These smooth
muscle markers are under-expressed in LMS subtype 1 (n=23), to differing degrees, relative to subtypes
2 (n=85) or 3 (n=22). SM expression in vascular (n=110), digestive (n=119) and gynecological (Gyn.,
n=42) normal tissues are also shown.
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Supplementary Figure 9. Subtype 1 LMS clusters with Undifferentiated Pleiomorphic Sarcoma
(UPS). Uniform Manifold Approximation and Projection (UMAP) demonstrates that LMS subtype 1
cancers cluster with UPS tumors obtained from The Cancer Genome Atlas (TCGA).
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Supplementary Figure 10. Higher Immune Infiltration in LMS Subtypes. (A)
Boxplot demonstrates leukocyte proportions in LMS subtypes. The boxes represent
the 25th and 75th percentile (bottom and top of box), and median value (horizontal
band). The whiskers indicate the variability outside the upper and lower quartiles. A
higher leukocyte fraction is observed in Subtype 1 (n=16) than Subtypes 2 (n=46) or
3 (n=17). Only TCGA samples were analyzed. Orange bars represent myelocytes,
whereas blue bars represent lymphocytes. (B) Heatmap represents lymphocyte and
monocyte breakdown of leukocyte content reveals higher M2 macrophage content in
LMS, with an enrichment in subtype 1 tumors (darker blue/higher number refers to
higher proportion). Only TCGA samples were analyzed. (C) ARL4C expression is
higher in Subtype 1 (n=23) than in subtypes 2 (n=85) or 3 (n=22).
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Supplementary Figure 11. Single Base Substitution (SBS) 3 Validation: Pan-Cancer Analysis of
Whole Genomes (PCAWG) Ground Truth. A ground-truth positive control dataset was obtained from
PCAWG Network where SBS3, SBS5 and SBS40 were simulated in 1000 samples. The ground-truth
dataset was compared to signature output from this study. The two-sided Pearson correlation
coefficient was >0.99 indicating a strong correlation and sufficient power to discriminate SBS3 from
SBS5 and SBS40.
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Supplementary Figure S12. Single Base Substitution (SBS) 3 Validation:

Removing SBS3 from Decomposition. First, signatures were de novo extracted and
decomposed using the full catalogue of available COSMIC signatures. The cosine
similarities between the reconstructed signatures and COSMIC signatures are plotted in
green. Removal of SBS3 from the catalogue of signatures available for signature

decomposition results in a decrease in cosine similarity (plotted in yellow).
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Supplementary Figure 13. Infrequent Substitution Signatures. The heatmap

illustrates the signature activity of non-negative matrix factorization (NMF)-extracted
substitution signatures present in less than 5% of samples. In Figure 2A, these are

summarized as ‘Other’. Source data are provided as a Source Data file.
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Supplementary Figure 14. Unidentified Signatures in LMS. Non-negative matrix
factorization (NMF)-extracted signatures revealed 3 signatures (two indel and one
double-nucleotide substitution) that were not identified in COSMIC, to date. These
may represent novel signatures in LMS.
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Supplementary Figure 15. LMS Cell Lines are Responsive to DNA Response
Inhibitors (DDRi). LMS cell lines and controls were treated with inhibitors for CHK1
(LY2606368), ATR (AZD6738), WEE1(AZD1775) to create dose response curves
using 24 distinct concentrations (0.013-10uM) with biological triplicates. Hs 789.Sk
represents a non-transformed fibroblast cell line. Doses were randomized in a
scattered manner across the plates to minimize positional artifacts. The ECsp values
were calculated in Prism using a sigmoidal curve fit with three parameters. Vehicle
treated cells were normalized to 100%. Source data are provided as a Source Data

file.
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Supplementary Figure 16. Bulk Sequencing of Primary and Metastatic Relapse
Pairs (n=2 samples per patient). The clinical courses of two primary-relapse pairs
(Ab13 and Ab15) and one relapse-relapse pair are shown (left column). All patients
were treated with either chemotherapy (chemo) or radiation therapy (RT). For Ab14,
only the metastatic relapses (MR1 and MR2) were genome and RNA-sequenced, as
the diagnostic tumor (Dx) was not available. Pathogenic TP53 substitutions with
clonal cancer cell fractions (CCFs) are present in all samples, thus supporting their
obligate nature in LMS.
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Supplementary Figure 17. Timing point mutations in LMS. Using informative
regions of the genome, point mutations can be timed relative to DNA amplifications.
(A) In case 1, there is an initial loss-of-heterozygosity (LOH) event, followed by a
pathogenic variant. Subsequent whole-genome duplication (WGD) results in co-
amplification of the mutated allele. In this scenario, the mutation arises early (prior to
DNA amplification). In case 2, similar LOH arises, however the mutation does not
arise until after the amplification event. In this scenario, the mutation is a late event.
(B) Using MutationTimeR, somatic mutations can be timed relative to clonal and
subclonal copy number states. Variants are classified and timed given their copy
number states and mutation copy number (MutCN) (see methods). In samples with
chromosomal amplifications, the majority (63%) of point mutations are later events,
arising after focal amplifications. 37% of mutations arise early, before these
amplifications. The remaining mutations occur after the most recent common
ancestor (MRCA) and before the diagnostic tumor (Dx). The most common
pathogenic COSMIC cancer gene variants that arise early are TP53.
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Supplementary Figure 18. Timing Copy Number Aberrations and TP53 in LMS.
(A) Genome-wide copy number illustrates recurrent chromosomal losses of
chromosomes 10, 13, 16, and 17. (B) Allele-specific copy-number in a representative
sample shows that the aforementioned copy number losses are early events arising
before genome doubling. (C) Dot plots show mutation copy number and total copy
number for the most recurrent alteration in LMS, TP53 variants. In regions of copy-
neutral loss-of-heterozygosity (LOH) or copy-gain LOH (one copy loss, the other
copy is amplified more than once), the TP53 mutation copy number equals the total
copy number and has a high cancer cell fraction (CCF) (see Supplementary Figure
17A). (D) Model for Leiomyosarcomagenesis: in an early mesenchymal progenitor, a
pathogenic TP53 is obtained. RB1 alterations and ATRX deletions may also occur.
These events are accompanied by genome-wide copy humber losses in known
tumor suppressor genes such as TP53, RB1 and PTEN. Whole genome duplication
(WGD) occurs in ~40-50% of cases. WGD is an early-mid evolutionary event,
frequently common to all regions of a tumor (in cases of multi-region sequencing) or
both the primary and metastatic relapse. In other cases, WGD is unique to the
primary or metastatic relapse. Based on clock-like mutagenesis analysis, LMS
cancers diverge 10-30 years pre-diagnosis, suggesting the most recent common
ancestor (MRCA) must precede the diagnostic tumor (Dx) by many years. Kataegis
and chromothripsis are mid-late events in LMS.
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Supplementary Figure 19. Clonal Evolution in LMS. (A) Single-nucleotide variant
(SNV), indel and structural variant (SV) overlap of the bulk sequencing of primary-
metastatic relapse pairs also shows the high number of unique variants present in
each tumor, suggesting parallel evolution between the diagnostic sample (Dx) and
the later metastatic relapse (MR). (B) Circos plots illustrate differing structural
variation between the diagnostic tumor (Ab17T), and the two metastatic relapses
(MR1=Ab17Met1 and MR2=Ab17Met2). See Fig 3A for clinical course. Two separate
chromothriptic events occur between the primary and relapses. (C) Copy number
profiles of chromosome 7 further support a chromothriptic event that is unique to the
primary tumor and not observed in the metastatic relapse.
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Supplementary Figure 21. DPClust Subclonal Reconstruction of Patients Ab17
and Ab12. Treeomics-based phylogenetic trees (left) can be validated and refined
by DPClust subclonal reconstruction. Diagnostic specimens (Dx), metastatic lesions
(Met) and multiregion samples (Regions/Re) are shown. The average cancer cell
fraction (CCF) per sample per cluster is shown (right dot plots). The CCF is the
fraction of tumor cells carrying the mutation, where the clonal mutations appear in a
cluster >0.9, as they are found more than 90% of tumor cells, and the subpopulation
consists of tumor cells below 0.9. The CCF is based on the variant allele frequency
(VAF), tumor purity and local copy number changes. Dot plots are annotated with the
number of mutations assigned to each cluster in each sample. The color of each
circle represents a distinct clone population (or cluster). Clones between samples
are considered shared if the CCF of the clones is greater than 5% and the number of
mutations in the cluster is greater than 5% of the total number of mutations assigned
to the cluster. There must also be at least 5 mutations in each clone. DPClust
produces two plausible trees for patient Ab12, the linear model was chosen for
Figure 3B. Branch lengths are proportional to Treeomics mutation assignments,
except when DPClust further resolves subclonal populations. In these cases,
DPClust mutation assignments are used.
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Supplementary Figure 22. DPClust Subclonal Reconstruction of Patient Ab6.
Treeomics-based phylogenetic trees (left) can be validated and refined by DPClust
subclonal reconstruction. Diagnostic specimens (Dx), metastatic lesions (Met) and
multiregion samples (Regions/Re) are shown. The average cancer cell fraction
(CCF) per sample per cluster is shown (right dot plots). The CCF is the fraction of
tumor cells carrying the mutation, where the clonal mutations appear in a cluster
>0.9, as they are found more than 90% of tumor cells, and the subpopulation
consists of tumor cells below 0.9. The CCF is based on the variant allele frequency
(VAF), tumor purity and local copy number changes. Dot plots are annotated with the
number of mutations assigned to each cluster in each sample. The color of each
circle represents a distinct clone population (or cluster). Clones between samples
are considered shared if the CCF of the clones is greater than 5% and the number of
mutations in the cluster is greater than 5% of the total number of mutations assigned
to the cluster. There must also be at least 5 mutations in each clone. Branch lengths
are proportional to Treeomics mutation assignments, except when DPClust further
resolves subclonal populations. In these cases, DPClust mutation assignments are
used.
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Supplementary Figure 23. DPClust Subclonal Reconstruction of Patient Ab11.
Treeomics-based phylogenetic trees (left) can be validated and refined by DPClust
subclonal reconstruction. Diagnostic specimens (Dx), metastatic lesions (Met) and
multiregion samples (Regions/Re) are shown. The average cancer cell fraction
(CCF) per sample per cluster is shown (right dot plots). The CCF is the fraction of
tumor cells carrying the mutation, where the clonal mutations appear in a cluster
>0.9, as they are found more than 90% of tumor cells, and the subpopulation
consists of tumor cells below 0.9. The CCF is based on the variant allele frequency
(VAF), tumor purity and local copy number changes. Dot plots are annotated with the
number of mutations assigned to each cluster in each sample. The color of each
circle represents a distinct clone population (or cluster). Clones between samples
are considered shared if the CCF of the clones is greater than 5% and the number of
mutations in the cluster is greater than 5% of the total number of mutations assigned
to the cluster. There must also be at least 5 mutations in each clone. Branch lengths
are proportional to Treeomics mutation assignments, except when DPClust further
resolves subclonal populations. In these cases, DPClust mutation assignments are
used.
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Supplementary Figure 24. Single Base Substitution (SBS) 1 is “clock-like” in
LMS and increases with age. (A) The mutation rates (mutation/Gb/year) are plotted
against the age of the patient for SBS1, SBS5, SBS8 and SBS40. The strongest
correlation between mutation rate and age are seen for SBS1. SBS1 reflect the
number of mitotic cell divisions, which is proportional to the chronological age of LMS
patients. Ribbons represent the 95% confidence interval of the fitted lines. (B) Given
the calculated SBS1 and SBS5 mutation rates (mutation/Gb/year) for two
representative patients (Ab6 and Ab15), the expected number SBS1 and SBS5
mutations was determined for the relapse samples. These were compared to the
NMF-extracted SBS1 and SBS5 numbers from the relapse samples (observed). Only
for SBS1, not SBS5 (or any other signature), was the expected and observed
mutation accumulation similar.
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Supplementary Figure 25. Smooth Muscle (SM) Gene Expression in Patient-
Derived Cell Lines. Plots show the expression (transcripts per million, TPM) of
smooth muscle genes in normal tissue SM (left): vascular (n=110), digestive (n=119)
and gynecological (Gyn., n=42) tissues. SM expression for SKLMS-1 and patient-
derived cell lines are shown on the right (each point represents a single cell line).
The boxes represent the 25th and 75th percentile (bottom and top of box), and
median value (horizontal band). The whiskers indicate the variability outside the
upper and lower quartiles.
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Supplemental Figure 26. Gating strategy for Traffic Light Reporter (TLR) assay. Blue
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Supplementary Figure 27. Quality Control for Patient Ab11. Battenberg derived
copy number plots are provided for patient Ab11. Based on Treeomics and DPClust
reconstructions, multiregion (MuRe) 3, MuRe4 and Met1 likely have missed a
genome doubling event (see Methods).



