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Supplementary Methods

Drug curation

OHSU and FIMM drug identifiers were reconciled using the Drug Target Com-
mons [1].

Fitting drug response curves

Prior to curve fitting, raw drug response data were harmonized so that con-
centrations were expressed in nM (OHSU concentrations were converted from
M) and responses were expressed both as percent viability (FIMM responses
were converted from percent inhibition by subtracting them from 100%) and as
percent inhibition (OHSU responses were converted from percent viability by
subtracting them from 100%).

Drug inhibition values y, at concentration x (in linear, nM space) were fit
to the 4-parameter log-logistic function (LL4)

d—c
LLA(x) = c+ 1+ cbloE() Toa(] (S1)
and the 4-parameter logistic function (L4)
d—c
L4(.13) =c+ W (82)

where e is the EC5 (in linear space) and b is the slope parameter, independently
for each drug-sample replicate. These functions do not constrain the asymptotes
c and d (Supplementary Fig. 26A). Fits were calculated using the function drm
in the R package drc [2]. Conceptually, inhibition values y, at concentration x
were also fit to the 3-parameter log-logistic function (LL3)

d

LL3(x) = {1 e —tog (@]

(S3)

again independently for each drug-sample replicate (Supplementary Fig. 26A).
This form effectively constrains one of the asymptotes to zero sensitivity, while
the second (d) is left free. Whether zero is the low- or high-concentration asymp-
tote is controlled by the sign of the slope parameter b. However, forcing zero
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to be the low-concentration sensitivity asymptote (by constraining the sign of
b) would negatively affect the goodness of fit for curves that are essentially flat
[i.e., those with (positive or negative) slope b near zero|. Instead, we evaluate
the impact of filtering sensitivity curves that are non-monotonically increasing
(see section Filtering drug response curves and calculating AUCs below). Here,
e retains its interpretation from Eq. S1 as the ECyg. In practice, the viability
values ¢, = 100 — y, are fit to = using the logLogisticRegression function
in the R package PharmacoGx [3] (with parameter trunc=FALSE to prevent vi-
ability values from being truncated to lie between 0% and 100% prior to curve
fitting), which is equivalent to fitting the sensitivity values y, to Eq. S3.

Drug response curve quality of fit metrics

To ameliorate the noise previously observed in large-scale drug screens [4], we
independently filtered the FIMM and OHSU ez vivo functional data. Briefly,
we fit 3- (LL3) and 4-parameter log-logistic (LL4) curves to the dose-response
data. We excluded non-AML patients or those exhibiting gross dissimilarities
across replicates from analysis. We excluded any drug-sample pair having a
concentration range outside the most common (dataset-specific) concentration
range for that corresponding drug. We further excluded a drug-sample screen
if it did not include all concentration points and only analyzed one sample per
drug-patient pair. Additionally, we assessed the impact of an outlier-removal
strategy that excluded drug-sample pairs: (1) whose fits were not monotonically
increasing; (2) that had large differences between fits that did (LL3) and did not
(LLA4) constrain the curve to asymptote to zero response at low drug concentra-
tion; or (3) had a replicate screen (technical in OHSU and biological in FIMM)
to which it strongly differed (Supplementary Figs. 26-31). However, we found
that this outlier-removal strategy had little impact on prediction performance
and, hence, did not apply it elsewhere. We summarized drug response as area
under the dose-response curve (AUC), which was more stable across LL3, LL4,
and 4-parameter logistic (L4) curve fits than ECsy (Supplementary Figs. 1-2).

Four quality of fit metrics were defined for each drug-sample pair and sub-
sequently used for filtering and outlier removal:

1. LLA(Zmin) — LLA(Zmax): the difference between the LL4-predicted sensi-
tivity at the minimum (2in) and maximum (xpax) concentrations (Sup-
plementary Fig. 26B). LL4(z) was evaluated at by plugging the param-
eters returned from drm into Eq. S1.

2. Omax: the maximum change in sensitivity, dmax = max; sensitivity(z;_1) —
sensitivity (z;), between neighboring concentration points x;_; and x; (Sup-
plementary Fig. 26C).

3. RMSE (LL4): Root-mean-square error, RMSE = /). 0;, calculated
from residuals ¢; = |LL4(z;) — sensitivity(z;)| between the LL4-predicted
and observed drug sensitivities (Supplementary Fig. 26D). The residuals



0; were calculated by invoking the function residuals from package drc
on the fit object returned from drm.

4. |LL3 — LL4||11: integral of absolute difference (i.e., the L'-norm) in
log, space between LL3 and LL4 fits,|LL3 — LL4||ry = [} ™*|LL3(z) —
LLA(x)|dlogo(z) (Supplementary Fig. 26E). The integral was calculated

numerically by passing the integrand mwﬂi(x) — LL4(z)| to the R

function integrate and evaluating from %, t0 Tmax (in linear space).

m is the Jacobian resulting from the transformation dlog,y(z) =

#ﬁlo) needed to perform the integral in linear space. As above, LL4(x)
was evaluated at x by plugging the parameters returned from drm into
Eq. S1. LL3(z) was evaluated at x (in linear space) by converting the
predicted fractional viabilities returned by the function .Hill in pack-
age PharmacoGx into predicted percent sensitivities by subtracting them
from one and multiplying by 100. Fractional viabilities were calculated
as .Hill(logl0(x), pars=c(HS, Einf/100, loglO(EC50))) where HS,
Einf, and EC50 are the fit parameters returned by logLogisticRegression.

Filtering drug response curves and calculating AUCs

The following steps were applied to filter noise and remove outliers in the OHSU
and FIMM (MCM) datasets, but not the FIMM (CM) dataset. The steps were
applied in the order indicated, though some steps were used only to remove
outliers. We found our analysis to be robust to outliers and hence outliers
were removed only in assessing their impact (Supplementary Fig. 32). The
table below indicates whether the step was included in routine and/or outlier
removal analysis. It also indicates the corresponding column in Supplementary
Tables 1 and 17.

1. Restrict to AML samples. i.e., in OHSU require dxAtSpecimenAcquisition
== "ACUTE MYELOID LEUKAEMIA (AML) AND RELATED PRECURSOR NEOPLASMS"
and in FIMM (MCM) require diagnosis == "C92.0 Acute myeloid leukaemia
[AML]".

2. In the published OHSU dataset, drug sensitivities above 100% have been
truncated to 100%. Multiple truncated sensitivities lead to ambiguity in
defining the response and/or in assessing outliers. Hence, we remove any
curve having multiple truncated sensitivities. We do allow at most one
truncated sensitivity, anticipating that it will be filtered by subsequent
steps if it is inconsistent with the remaining non-truncated sensitivities
(e.g., is non-monotonic with respect to them).

3. Exclude curves that do not have the expected (i.e., most common) num-
ber of concentration points in their respective dataset: seven concentration
points in the OHSU dataset and five concentration points in the FIMM
dataset. Exceptions with too many concentration points may reflect repli-
cates that are not individually labeled as such, whereas exceptions with



too few points will not capture the concentration-response relationship as
well as those with the expected number of points.

. Exclude patients with dissimilar replicates, i.e., exclude patients having
two samples ¢ and j or two replicates ¢ and j of the same sample whose
mean absolute difference in response AUC across all drugs D, exceeds 10:
ﬁ > aeplAUC; 4 — AUC; 4| > 10. This excludes the 12 patients 652,
1153, 1353, 1730, 1989, 2001, 2254, 2314, 2443, 2685, 2694, and 4201 from
the OHSU dataset and the two patients FHRB_784 and FHRB_1064 from
the FIMM dataset.

. Exclude any curve for drug d having a concentration range that does not
encompass the most common concentration for d, as defined individually
for each dataset. We (re-)evaluated the drug response AUCs for each
drug d using its respective common concentration range as the integration
bounds. Note that we do not enforce the same concentration range for a
given drug across datasets.

. Filter curves having large dpnax or RMSE (LL4). We assume that 0pax
and RMSE (LL4) reflect technical noise in the dose-response data and
that this noise is random and independent across drug-sample screens, in-
cluding across replicates. Hence, whereas the responses across replicates
(biological or technical) would otherwise be expected to be similar [as
measured by the root-mean-square distance (RMSD) between responses
of the replicates], noise reflected in dy,ax and RMSE (LL4) will reduce their
similarity (i.e., increase the RMSD). Our general strategy is to maximize
the difference between (the distribution of ) RMSDs of replicate pairs that
do and do not pass the d,.x and RMSE (LL4) filters. To simplify, we
focus on pairwise RMSDs by using the first two replicates (if more than
two). For given thresholds in 0. and RMSE (LL4), we separate repli-
cates into those in which both drug-sample screens pass the threshold and
those in which one or both do not. We then use a one-sided Wilcoxon test
of the difference between the RMSDs calculated from replicates that pass
the threshold and those that do not. We search the space of thresholds
in the range 2 to 100 in steps of 1 for dax and in the range 2 to 40 in
steps of 0.5 for RMSE (LL4). We choose the thresholds that minimize
the Wilcoxon p-value. Note that minimizing intra-replicate RMSDs using
||LL3 — LL4| 11 would not be appropriate: unlike dy,ax and RMSE (LL4),
large ||LL3 — LL4| 11 (generally indicative of noisy data) is not indepen-
dent across screens (within the pair). For example, if a patient is not
sensitive to a given drug, replicates derived from that patient will ex-
hibit low, near-zero sensitivities for that drug, which may be negative due
to technical variance. This would lead to large ||LL3 — LL4||11 values,
indicating, as intended, differences in the LL3 fit (that will not model
negative sensitivities) and the LL4 fit (that does) and, hence, that the
dose-response data can not be robustly fit and should be excluded. Never-
theless, the RMSD between these replicates within the pair could be small,



in contrast to the assumption that large values in the fit metrics [dmax,
RMSE (LL4), or |LL3 — LL4| 1] should correlate with large RMSD. The
Omax cutoff is 0% .. = 24 in the OHSU dataset and 4}, = 21 in the FIMM
dataset (Supplementary Figs. 27 and 28). The RMSE (LL4) cutoff is
RMSE (LL4)* = 7 in the OHSU dataset and RMSE (LL4)* = 11.5 in the

FIMM dataset.

. Filter curves having large || LL3— LL4||r;. LL3 fits constrain the modeled
sensitivity to be non-negative and further fix the lower asymptote at zero.
L4 fits impose no such constraint. As such, we hypothesize that dose-
response data with sensitivities below 0% will be artificially constrained
by the LL3 model, but not by the LL4 model, and hence the difference be-
tween the two fits, | LL3— LL4| 1, will be large. As such, we define a null
distribution of | LL3 — LL4||1; values over a subset of data likely enriched
for non-noisy fits (i.e., those passing the above filters and having sensitiv-
ities within the expected range of 0% to 100%) and exclude dose-response
data (including those outside this expected range) having ||LL3 — LL4| 11
values that are outliers with respect to this null distribution. Specifically,
we use a gamma distribution as the null distribution (by using the method
of moments to define the mean p and variance o2 of the “non-noisy fits”
and translating them to the gamma scale and shape parameters as o2/
and p? /o2, respectively) and filter any of the n dose-response curves pass-
ing the above six filters with a ||LL3 — LL4||; value greater than would
be expected by chance (i.e., the smallest | LL3 — LL4||1 value at which
the cumulative distribution function reaches 1/n). The ||LL3 — LL4| 11
cutoff ||LL3 — LL4||}, = 8.7 in the OHSU dataset (where n = 21,128)
and |[LL3 — LLA|;, = 6.7 in the FIMM dataset (where n = 11,511;
Supplementary Figs. 29 and 30). The cumulative distribution function is
inverted using the ggamma function in R.

. Filter curves having large LL4(x iy ) — LL4(2max ), which should nominally
be in the range -100% to 0%. We hypothesize that dose-response curves
outside of this range will be enriched for noisy data that should be filtered.
Similar to step 7 above, we define a null distribution over a subset of the
data expected to be enriched for non-noisy drug responses (namely, that
passing the above filters) and then exclude any screens within the entire
set of data passing the above filters that is extremal relative to this null
distribution. As expected, the distribution of LL4(Zmin) — LL4(Zmax)
values of those screens that pass the above filters excluding the 0y a5 filter
is shifted to the right relative to those screens that pass all of the above
filters including the Opmax filter (Supplementary Fig. 31). Here, we use a
Gaussian distribution to model the null distribution and fit it using the
right half of the single peak passing all filters in the OHSU dataset or the
right half of the rightmost peak passing all filters in the FIMM dataset. We
determined the peak/mean of the Gaussian p by maximizing the density
(of values less than zero). The standard deviation o of the (full) Gaussian



10.

11.

distribution was then determined using the mean U of points exceeding p

as done previously [5]
s
o=U-p/3- (54)

As in step 7 above, we define a cutoff in LL4(Zmin) — LL4(Tmax) as the
least such value at which the cumulative distribution reaches 1/n, where n
is the number of dose-response curves passing the above seven filters. The
LLA(Tmin) — LLA(Tmax) cutoff [LLA(2min) — LLA(Tmax)]” = 58.0 in the
OHSU dataset (where n = 21,481) and [LL4(2min) — LLA(Zmax)]” = 49.5
in the FIMM dataset (where n = 12,230; Supplementary Fig. 31). The
cumulative distribution function is inverted using the gnorm function in

R.

Exclude any sample (not patient) for which RNA-seq expression data are
not available.

If there are multiple screens per patient (after applying filters one through

nine above), keep only that one having the best fit [i.e., the lowest RMSE (LL3)].

If there are replicates, we first define the screen’s RMSE (L L3) as the max-
imum RMSE (LL3) across replicates.

If there are multiple samples per patient (after applying filters one through

10 above), keep only that one having the best fit [i.e., the lowest RMSE (LL3)].

If there are replicates, we first define the sample’s RMSE (LL3) as the
maximum RMSE (LL3) across replicates.



Drug response curve filtering applied in each analysis

Filter number

Filter

Filter column name

Routine analysis

Outlier analysis

T W N~

Exclude non-AML

Exclude curves with > 1 truncated sensitivities
Exclude curves with too few or too many concentration points
Exclude dissimilar samples / screens

Exclude curves outside common concentration range
Exclude based on 6.5

Exclude based on RMSE (LL4)

Exclude based on ||LL3 — LL4|| 11

Exclude based on LL4(%min) — LLA(2max)

Exclude based on lack of expression data

Exclude based on multiple screens per patient
Exclude based on multiple samples per patient

filter.non.aml
filter.num.100s
filter.num.pts
filter.dissimilar.replicates
filter.restrict.range
filter.max.delta
filter.rmse.l14
filter.l11.norm.norm
filter.left.minus.right.asymptote
filter.expr
filter.redundant.screen
filter.redundant.sample

Yes
No
Yes
Yes
Yes
No
No
No
No
Yes
Yes
Yes

Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes




Visualizing drug correlations

Individual correlations were plotted with geom_smooth in R package ggplot?2 us-
ing method=’1m’ and other arguments default, which displays a linear regression
fit and a 95% confidence interval. Pairwise correlations are shown as a heatmap
created with the Heatmap, HeatmapAnnotation, and rowAnnotation functions
in the R ComplexHeatmap package. Correlations passed to Heatmap where calcu-
lated using the R function cor and arguments use=’pairwise.complete.obs’
and method=’pearson’.

Area under the drug response curve

We calculated the Area Under the drug response Curve (AUC) by integrating
the sensitivity curve in log,, space from the minimum =z, to the maximum
ZTmax concentration and by normalizing by the width in log;, space of this con-
centration range. Hence, a larger AUC indicates a sample’s higher sensitivity
to the drug. For the LL3 fits the integral

1 ZTmax
AVC = / LL3(x)dlogo(x
loglo(xmax) - loglo(ajmin) = ( ) 10( )

min

was computed using computeAUC from the PharmacoGx R library. Although the
loglogisticFunction used for fitting is parameterized by viabilities, the inte-
gral computed by computeAUC is parameterized by sensitivities = 1 - viabilities,
as stated in the documentation and confirmed in the source code. A similar
integral involving an LL4 fit was calculated analytically using supplemental Eq.
1 and Eq. 3 provided by Yadav and colleagues [6]. The resulting (concentra-
tion range-normalized) AUC is analogous to DSS; with the minimum activity
t = 0 [6]. The normalized integral involving an L4 fit was calculated numerically
via adaptive quadrature using the integrate function.

We compared the robustness of AUC and EC5q values across different models
(namely, Eqs. S1, S2, and S3). We found that AUC values were more consistent
across models in both the OHSU and FIMM datasets and that this held true
when evaluated across all drug response curves (without restriction to a subset
of drugs or to AML samples) and when limited (for visualization purposes) to
those having: (1) ECso values within the tested drug concentration range, (2)
EC5q values whose absolute value is within the 95th percentile, (3) and non-
negative AUCs (Supplementary Figs. 1 and 2). In the full datasets, ECxo values
were uncorrelated between LL4 and L4 fits (OHSU: r = 1.88 x 10~°; FIMM
r = 2.41 x 107°) and between LL4 and LL3 fits (OHSU: pearson correlation
r = 0.02; FIMM r = —1.67 x 10~3), while AUCs were highly correlated between
LL4 and L4 fits (OHSU: r = 0.99; FIMM; r = 0.99) and between LL4 and LL3
fits (OHSU: r = 0.85; FIMM: r = 0.91). The following 95th percentiles were
used in the scatterplots (OHSU LL4: 41849.70, L4: 14694.05, LL3: 10%; FIMM
LL4: 40951.53, L4: 17649.42, LL3: 65714.22).



Correlation of GRD with clinical characteristics

We tested the association of GRD with patient response to standard induction
therapy and with patient survival. For these purposes, we defined GRD on
a per-patient basis rather than on the per-sample basis used when modeling
(against sample-specific expression data) and in heatmap visualizations. We first
removed drug fits of non-AML patients, with fewer than the expected number
of concentration points, or with dissimilar replicates (all as described above),
but retained fits of drugs assayed in patients without accompanying expression
data (either at the sample or patient level) or assayed as biological or technical
replicates within a patient. After this filtering step, we confirmed that each
individual drug was assayed over a consistent concentration range within (but
not necessarily across) datasets. We then defined the patient-level GRD by first
averaging unnormalized response AUCs for each patient / drug combination
across any biological or technical replicates and then by averaging these across
all 87 drugs in common between the OHSU and FIMM datasets for each patient.

Analysis was restricted to the OHSU dataset using published clinical an-
notations [7], as similar annotations were not available for the FIMM dataset.
Patient 2429 in the dataset was removed from the analysis because this in-
dividual was associated with multiple samples having inconsistent overall sur-
vival times (151 days and 255 days). Patients were further limited to those
with AML (dxAtSpecimenAcquisition=="ACUTE MYELOID LEUKAEMIA (AML)
AND RELATED PRECURSOR NEOPLASMS") that were treated with standard induc-
tion chemotherapy (typeInductionTx == "Standard Chemotherapy"). We fur-
ther restricted patients to those refractory to induction therapy (responseToInductionTx
== "Refractory") or achieving a complete response (CR; responseToInductionTx
== "Complete Response") or a complete response with incomplete hemato-
logic recovery (CRi; responseToInductionTx == "Complete Response i")to
standard induction therapy. Finally, we excluded patients unannotated for over-
all survival, vital status, or cause of death.

The association between GRD and patient response to induction therapy
(CR/CRI versus refractory) was tested via a two-sided Wilcoxon rank sum test
using wilcox.test.

We tested association between GRD and patient survival by: (1) right cen-
soring long follow-up times, (2) fitting a Cox proportional hazards model, and
(3) confirming that the proportional hazards assumption was not violated, as
explained in more detail below.

We right censored long follow-up times so their distribution would reflect
those expected in a clinical trial in which patients are enrolled uniformly through-
out the trial period. This motivation follows that used in performing pooled
analyses over multiple clinical trials [8, 9]. Specifically, since patients enter
the trial at different dates, at any particular date they will also have different
follow-up times. We assume that patient accrual is uniform and that the follow-
up times of censored patients are also uniform. Hence, we plotted right-censored
(i.e., alive) patients according to increasing survival times and visually observed
that the distribution became non-uniform at 610 days (Supplementary Fig. 9).
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Patients were right-censored at this time point (i.e., their overall survival time
was set to 610 days and their vital status and cause of death were set to alive).

We further restricted the above patient cohort criteria to those with vital
status annotated as alive or dead. We dichotomized these patients into a “High
GRD” group having a GRD in the top quartile and a “Low GRD” group having
a GRD in the bottom quartile. We then performed a Cox proportional hazards
analysis with survival as the response variable (i.e., a Surv object with time
parameter the overall survival and event parameter the GRD group) and GRD
group as the independent variable. We fit the model using coxph from the
survival R library. Finally, we confirmed that there was no evidence that the
proportional hazards assumption was violated. Specifically, we applied cox. zph,
which found no evidence that the Schoenfeld residuals were time dependent
(p=0.48).

Expression data post-processing

We assessed potential outliers through principal component analysis (PCA) of
the [log,(CPM)] expression data. We did so by applying prcomp (with default
arguments) to an expression matrix whose columns were genes and rows were
samples. OHSU samples 14-00800 and 20-00062 were outliers in a bi-variate plot
displaying the first two principal components of the OHSU expression data.
These samples had relatively poor alignment quality metric values, including
number of aligned reads (< 6th percentile), and were excluded from analysis.

As expected, in a combined analysis of the OHSU and FIMM datasets, the
first principal component explained a large proportion of the variance (29%)
and separated the two datasets. We corrected for this batch effect by applying
ComBat from the sva R package and confirmed it was removed by again plotting
the first two principal components [10, 11].

Gene filtering

Expressed and highly variable genes were used as input for downstream mod-
eling. Genes were first subsetted to those that were expressed independently
across two datasets and subsequently into those that were highly variable in the
two datasets. Significantly, the two datasets used, OHSU (used for training in
downstream analyses) and TCGA AML, were independent of any datasets used
for model validation. Genes identified as expressed in OHSU were highly concor-
dant with those identified as expressed in TCGA. Gene expression variability
in RNA-seq data has previously been shown to vary smoothly as a function
of mean gene expression [12, 13]. According to this mean-variance trend line,
lowly-expressed genes are expected to have higher variability (in log space) than
highly-expressed genes. This reflects the large contribution in lowly-expressed
genes of technical variability (owing to counting statistics) to total variability,
which additionally includes biological variation. Modeling should focus on bi-
ological variation. Further, those genes with extreme and consistent (across
datasets) biological variation are most likely to be robust biomarkers driving
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phenotypes (i.e., ex vivo drug response in this study). Hence, the degree of
biological variation was defined as the residual between the observed and pre-
dicted variation (positive residual indicates observed variation is greater than
predicted variation) and expressed genes were prioritized according to this vari-
ation residual. Variation residuals were highly concordant across OHSU and
TCGA datasets. The intersection of expressed genes (in both the OHSU and
TCGA datasets) with largest (positive) residuals in both the OHSU and TCGA
datasets were those used for downstream modeling. Technical details follow.

RNA-seq counts for TCGA AML data were obtained using the R library
TCGAbiolinks. Specifically, a query was defined with the command GDCquery (project
= "TCGA-LAML", data.category = "Transcriptome Profiling", experimental.strategy
"RNA-Seq", data.type = "Gene Expression Quantification", workflow.type
"HTSeq - Counts", legacy = FALSE), the query was downloaded via GDCdownload,
and prepared with GDCprepare. Results were extracted via assay from R library
SummarizedExperiment using argument "HTSeq - Counts." Throughout this
manuscript, TCGA data are always subsetted to those AML cases selected here.

RNA-seq read counts for the OHSU and TCGA datasets were converted to
counts per million (in log, space) via cpm with default parameters in R library
edgeR.

Outlier samples detected above (via PCA) were excluded from the OHSU
dataset for subsequent gene filtering (and downstream modeling). Within each
dataset, samples had consistent gene expression profiles (Supplementary Fig. 14),
further indicating that outliers were properly removed. As expected, profiles in
all samples in both datasets had a large density peak at low expression values
and a discernible (though more modest) “rightmost” density peak at high ex-
pression. Samples in the TCGA dataset also exhibited intermediate peaks. The
low expression peak represents lowly- or un-expressed genes. The rightmost
peak, with to-be-determined mean/location i, was interpreted as the profile of
robustly-expressed genes, as prior analysis of RN A-seq cancer profiles has shown
that it reflects biologically-relevant genes associated with an active promoter as
distinguished from genes whose expression falls below u, represent technical or
biological noise, and are associated with repressed promoters [5]. Following that
work, a Gaussian distribution was fit to the rightmost peak at p after first ex-
cluding its left half (less than p) whose boundary is ill defined (particularly in
the TCGA dataset) and, hence, would bias estimation of the Gaussian stan-
dard deviation parameter . This was done by first determining the location of
rightmost density peak p as the point at which the first derivative in the den-
sity changes sign (i.e., in principle, the slope should be positive before the peak,
zero at the peak, and negative past the peak): the density was approximated
between minimum (0) and maximum (10) expression values (using density in
R), a spline was fit to that approximated density (using splinefun), and the
location of the rightmost peak p was taken as the least x value having a first
derivative (evaluated by passing deriv=1 to the fit spline) whose sign differs
from the first derivative of its neighbor). The related prior approach that de-
fined zFPKM [5] (and used in filtering drug-response data above) determined
the peak of the rightmost peak y by simply maximizing the density. This would
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not have been directly applicable to the OHSU and TCGA datasets, since the
rightmost peak p is not a global maximum. Hence, the described derivative ap-
proach (guided by the minimum and maximum boundaries), was more robust in
these datasets. The standard deviation o of the (full) Gaussian distribution was
then determined using the mean U of points exceeding p as done previously [5]
using Eq. S4. zFPKM was previously defined as

logo(FPKM) —
o

z2FPKM =

and a threshold value of zFPKM = -3 was found to discriminate between genes
associated with active or repressed chromatin states in ENCODE cell line data.
Rather than dichotomize genes as expressed or unexpressed within a sample,
we defined a continuous, quantitative summary measure of expression across
samples within a dataset for each gene, showed that this measure is consistent
across datasets, and finally thresholded this measure to describe genes expressed
in AML generally.

To define the gene expression summary measure, we began by defining the
probability that each gene was expressed in a given sample. Assuming that the
rightmost peak represents expressed genes allowed us to define the probability
that a gene with [log,(CPM)] expression z is expressed as the p-value

/ N (2’ p, 0)dz’

where N(z'; u,0) is the normal distribution with mean p and standard devi-
ation o evaluated at z’ (Supplementary Figs. 15A-C). We summarized these
per-sample p-values across samples by defining their empirical cumulative dis-
tribution function (ECDF) across samples within a dataset (Supplementary
Figs. 15D-F). We then used the area under the ECDF (ECDF AUC) to char-
acterize the cross-sample expression of a gene. Genes with consistently high
expression across samples (i.e., high probabilities of being expressed) have low
ECDF AUC (i.e., near zero; Supplementary Figs. 15A D), those with consis-
tently low expression across samples (i.e., low probabilites of being expressed)
have high ECDF AUC (i.e., near one; Supplementary Figs. 15C,F), and those
with intermediate expression have correspondingly intermediate ECDF AUC
(Supplementary Figs. 15B,E). ECDF AUC was approximated by computing
the ECDF by passing a gene’s per-sample p-values to the R function ecdf, eval-
uating the returned function at each point in the sequence from 0 to 1 in steps
of 0.001, and finally dividing the sum of function evaluated at the points by the
length of the sequence.

ECDF AUC values were highly correlated between the OHSU and TCGA
datasets (Pearson correlation r» = 0.95; p < 2.2x 10716 ; Supplementary Fig. 16).
Further, ECDF AUC values were strongly peaked near one in both datasets,
suggesting a large set of genes are consistently unexpressed across AML datasets.
To establish a dataset-specific cutoff between expressed and unexpressed genes,
we plotted the ECDF AUC histograms (margins of Supplementary Fig. 16)
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at greater resolution (Supplementary Fig. 17). Both datasets showed similar
trends consisting of three linear phases: a first phase (starting at zero ECDF
AUC) in which frequency increases with ECDF AUC, a second phase in which
frequency increases more gradually with ECDF AUC, and a final phase in which
frequency increases sharply with ECDF AUC. We used the breakpoint between
the second and third phases to differentiate between expressed genes to the left
of the breakpoint (having small AUCs that are not obviously distinguishable
from one another) and unexpressed genes to the right of the breakpoint (having
large AUCs that rapidly diverge from those AUCs to the left). To determine an
objective cutoff, we applied piecewise regression: we calculated the histogram
of ECDF AUC values using 100 bins (using hist in R with breaks=100 and
probability=TRUE), excluded the top five bins with largest density, fit a linear
regression model with density as the response and the mid-point of the ECDF
AUC bins as the predictor (using 1m in R), and segmented the regression with
initial breakpoint estimates at 0.5 and 0.8 [using segmented from the R library
segmented with psi=c(0.5, 0.8)] (Supplementary Fig. 17). This resulted in
similar cutoffs for the two datasets (OHSU: 0.86; TCGA: 0.87). The overlap
between genes identified as expressed (below the cutoff; OHSU: 10,614 genes;
TCGA: 10,754 genes) versus unexpressed (above the cutoff) in both datasets
was highly significant (Fisher’s exact test p < 2.2 x 1071¢). Both results reflect
the consistency in relative level of expression of genes across the two datasets.
We defined as AML-expressed genes as those 9,805 genes that were expressed
in both datasets.

We next subsetted the AML-expressed genes to those that were highly vari-
able. Often highly-variable genes are selected as those with largest standard
deviation (of expression across samples) or largest coefficient of variation (CV,
i.e., standard deviation normalized by the mean). However, neither of these
approaches account for the observation in RNA-seq data that a gene’s variation
in expression (e.g., the square root of the standard deviation across samples in
log space) is smoothly and inversely related to its mean expression (in log space
and across samples) [12, 13]. To account for this, we fit a smooth (LOESS or
locally estimated scatterplot smoothing) regression curve to model the square
root of the standard deviation across samples of gene expression [log,(CPM)] as
a function of the mean across samples of gene expression [log,(CPM)]. The dip
in the trendline at low (mean) expression values (Supplementary Figs. 18A,D)
disappeared when genes were limited to those expressed in AML (Supplemen-
tary Figs. 18B,E), which revealed the expected and previously-observed trend
with lowly-expressed genes having high variation (in log space; i.e., fractional
variation in real space) and highly-expressed genes having low variation. We as-
sumed that the majority of genes do not exhibit exceptional variation that would
drive phenotypic differences and that this “expected” variation is predicted by
the mean-variance trend line. Hence, we focused on those genes with extreme
variation by first calculating their residual variation relative to the trend line.

Residual variation was highly correlated between the OHSU and TCGA
datasets (Pearson correlation r = 0.86; p < 2.2x10716; Supplementary Fig. 19A).
We defined a cutoff (see below) in residual variation independently in each
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dataset, such that AML-expressed genes above the cutoff were deemed highly
variable. This resulted in similar cutoffs for the two datasets (OHSU: 0.09;
TCGA: 0.11). This approach does not bias towards selection of lowly-expressed
genes (with high variation) as does making a cutoff based on standard devia-
tion (or CV) alone (Supplementary Figs. 18C,F). The overlap between AML-
expressed genes identified as highly variable (above the cutoff; OHSU: 2,811
genes; TCGA: 2,551 genes) versus those having stable expression (below the cut-
off) in both datasets was highly significant (Fisher’s exact test p < 2.2 x 10716).
As observed above with expression, these results reflect the consistency in rel-
ative level of variation of genes across the two datasets. We considered those
AML-expressed genes identified as highly variable in both datasets as highly
variable in AML and used them for downstream modeling (n = 2,132; Supple-
mentary Table 3).

The LOESS trend line was fit using loess(y ~ x, span=0.3, degree=1,
family="symmetric", iterations=4, surface="direct") in R, where z is
the mean calculated across samples of gene expression [log,(CPM)] and y is the
square root of standard deviation across samples of gene expression [log, (CPM)].
Residuals were calculated by passing the result fit object to the residuals
function.

Cutoffs in residual variation were established based on the 1-standard devi-
ation contour centered at the point of maximal density in the two-dimensional
space defined by the residual variation values in both datasets. As these di-
mensions are highly correlated, the contour is ellipsoidal. To define that ellipse,
we rotated the original space defined by the OHSU and TCGA residual varia-
tions (Supplementary Fig. 19A) into the space defined by the first two principal
components of the residual variations (Supplementary Fig. 19B). This simpli-
fies the definition of the contour as the dimensions are orthogonal in this space.
To prevent the heavy tails (particularly in the PC1 dimension) from biasing
the contour, we restricted the domain to those points less than the point of
maximum density in both dimensions (Supplementary Fig. 19C), fit a (univari-
ate) Gaussian distribution to those points and defined its 1-standard deviation
contour about the point of maximal density (Supplementary Fig. 19D), and,
finally, rotated the 1-standard deviation contour back into the original space
and defined the dataset-specific cutoffs as the maximal points along the contour
and in the corresponding dimension (OHSU: 0.09; TCGA: 0.11; Supplementary
Fig. 19E).

The above was done as follows: A matrix M was defined with two columns,
holding the residual variations in each of the two datasets. We defined a stan-
dardized matrix My (i.e., with columns of zero mean and unit standard devi-
ation) via scale (with arguments scale=TRUE and center=TRUE) and defined
the scale matrix S as a diagonal matrix whose elements are the inverse of the
scale factors returned by scale (in the scaled.center attribute). We per-
formed a principal component analysis of the scaled matrix M, using prcomp
(with arguments scale=FALSE and center=FALSE), which returns the matrix
M, s of (scaled) data elements rotated from the original space into the princi-
pal component space in the returned value x and the rotation matrix R that
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performs this operation in the returned value rotation, i.e., M, ; = M;R. The
inverse rotation (i.e., that rotates data from the principal component to the
original space) is performed by the inverse matrix R~!, which, for a rotation
matrix, is simply the transpose RT: M, = M, R~ = M, sRT. Rotation into
this principal component space decouples the x and y axes of the original space
such that the covariance matrix of the Gaussian distribution describing the data
in the original space is diagonalized in the principal component space—i.e., uni-
variate Gaussian distributions can be fit to the rotated data. We calculated the
point of maximal density (upc1,ppce) of the rotated data M, s using kernel
density estimation (i.e., by passing its columns to the R function kde2d in li-
brary MASS and specifying that 200 grid points should be used in the estimation
with n=200) and used ppc; and ppce as the centers/means of univariate Gaus-
sian distributions whose standard deviations opci and opcs were calculated
via Eq. S4. These two univariate distributions are equivalent to the bivariate
Gaussian distribution with mean vector p, s = (upci, upcg)T and diagonal co-
variance matrix ¥, s with elements 03, and 03q,. Given the transformation
M=M,S"1= MnsR_lS_l, we transform the covariance matrix back into the
original (unscaled) space via

L =EM"M]=E[ST"TRTM M, RS
=S TTRTEM M, JR'ST =S TTRTTS, (RIS

As in the transformed space, we use the point of maximal density p = (tta, fty)
of the data M in the original space determined via kde2d as the mean/center of
a bivariate Gaussian distribution. We calculate 1-standard deviation contours
(i-e., encompassing 68% of the data) using ellipse in library mixtools with
arguments npoints=200 and alpha=1-(pnorm(1)-pnorm(-1)). To calculate
the contour in the original space we pass ellipse p and X, whereas to calculate
the contour in the transformed space we pass it p, s and 3, ;.

Drug response and GRD modeling

As described above, modeling was restricted to a single sample (assayed for
both drug response and gene expression) per patient. Each drug was indepen-
dently modeled. For modeling, drug response AUC, GRD, and gene expression
log,(CPM) values were standardized—i.e., each drug (or the GRD) was trans-
formed so as to have zero mean response and unit standard deviation and,
similarly, each gene was transformed to have zero mean expression and unit
standard deviation.

Observed GRD was modeled using gene expression only. Observed GRD
for patient sample s is the mean over drug d of the unnormalized AUCy,, i.e.,
(1/ns) >4 AUCy s, where ng is the number of drugs assayed for sample s. Drugs
included in the sum are those 87 drugs in common between OHSU and FIMM.

Drug response was modeled using four sets of features: (1) gene expression
only; (2) observed GRD only; (3) gene expression and observed GRD; (4) gene
expression and predicted GRD. So as to avoid circularity and over-fitting, the
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observed GRD when used as a feature in modeling drug d is calculated by
excluding d from the mean, i.e., as [1/ (ns — 1)] Zd,;éd AUCy 5. Similarly, the
predicted GRD when used as a feature in modeling drug d is the prediction
in the FIMM dataset of the model trained on the observed GRD calculated
without drug d in the OHSU dataset.

Ridge regression models were fit using cv.glmnet from the glmnet R pack-
age, using parameters family = "gaussian", type.measure = "mse", nfolds
= 5, standardize = FALSE (since standardization is performed prior to calling
cv.glmnet, as described above), alpha = 0 (to specify ridge regression), and
intercept = FALSE (to exclude an intercept from the model). Observed or
predicted GRD was not penalized when included as a feature along with gene
expression. This was accomplished by defining a vector with an entry for each
feature, setting that entry to zero if it corresponds to GRD and to one otherwise,
and passing this vector as the penalty.factor argument of cv.glmnet. Ridge
predictions were extracted from a fitted model by passing it to predict with ar-
gument s = lambda.lse. Features and their associated weights were extracted
from a fitted model by passing it to coefficients along with argument s =
lambda. 1se.

Bayesian multi-source regression

BMSR models drug response based on the expression of Ng genes according to
y(d) ~ N(X(d)ﬁ(d),o(d)I) ; (S5)

where y(@ e RNex! is the response vector for a particular drug across the
Ny patient samples in dataset d € {FIMM, OHSU}, X(9 ¢ RNaxNc ig the
corresponding expression matrix over Ng genes, ﬂ(d) € R¥ex! is the gene
regression coefficient vector, and I is the Ng x N¢g identity matrix. Since the
expression of each gene was z-transformed to zero mean and unit variance, we
do not include an intercept term in the model. The standard deviation o(® is
assumed to have the non-informative noise prior

oD~ IG(1,1),
where IG(a, B) is the Inverse Gamma distribution!

B(X

IG(z;0, ) = (o)

(1f)"+ e 82

and T'(+) is the Gamma function.
BMSR performs joint regression across the two datasets by modeling the
coeflicient vector ﬁ(d) using the joint hierarchical prior

B~ N(8B,0.5)

Thttps://mc-stan.org/docs/2_21/functions-reference/inverse-gamma-distribution.html
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parameterized by the shared mean coefficient vector 3 € RV6*1, Each of its
components (3, corresponding to gene g is regularized using the Finnish horse-
shoe prior [14]
Bg ~ N(0,X27%)
Ay ~ CT(0,1)
T ~ C’+ (0, TQ)
_ P D4 o
Neg—po VN4 '

where C*(u, o) is the half-Cauchy distribution with location y and scale o. The
scalar A4 induces localized gene-wise regularization and the scalar 7 is the global
regularization parameter that induces the number of active genes (pg) a priori.
The Cauchy distribution is defined as?

70

1 1

D e T P

BMSR is implemented using the R interface to the STAN programming
language [15]. Model inference was performed using STAN’s implementation
of Hamiltonian Monte Carlo Sampler [15] with 500 samples of the posterior
preceded by a burnin of another 500 iterations. The model was run for a single
chain, with STAN’s adapt_delta set to a high value (0.999) to avoid divergences.
We used 5 fold-cross validation to select the optimal value of the user-defined
hyper-parameter pg = [5,20,100], which tunes the a priori number of genes
for prediction. The optimal value of py was identified as the one with minimal
cross-validation root mean squared error of the predicted responses.

The BMSR-predicted (scalar) response y,(,d) for a patient p with expression
]([,d) in dataset d was calculated as the expected value of the posterior
predictions, i.e., by averaging over the S posterior sample vectors ﬂgd)

S
SRl B
s=1

vector x

ybd) =

0|+~

where - is the dot product. The coefficient vectors 8Y used for identifying
predictive biomarkers in dataset d and displayed in Figs. 3 and 5 are similarly
calculated as averages over posterior samples

S
- 1
5O~ Ly g
S s=1

The Finnish horse-shoe prior encourages the dataset-specific coefficients ﬁ(d)
to either have large magnitude in both datasets (i.e., representing genes whose

2https://me-stan.org/docs/2_21/functions-reference/cauchy-distribution.html
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expression makes a large contribution to the response) or small magnitude in
both datasets (i.e., genes with little or no contribution) and to have the same
direction (i.e., sign) in both datasets.

BMSR is available at https://github.com/suleimank/bmsr.

Bayesian multi-source multi-task regression

Bayesian multi-source multi-task regression (BMSMTR) simultaneously ana-
lyzes both multiple datasets (multi-source) and multiple drugs (multi-task) in
the set of drugs Z. It does so by generalizing Eq. S5 according to

Y o N ( x@ ﬁ(cow(z‘),U(d)I) ’

with the response vector y(%?) e RNex! for dataset d and drug i € 7 distributed
about a mean that is a product of a factor X (@) B(d) common to drugs in Z and
a factor w® ~ N(0.5,0.5) specific to drug .

The additional computational time required of BMSMTR relative to BMSR
was mitigated by reducing the number of input gene features. Amongst the
9,805 AML-expressed genes, we selected the top 500 genes with highest residual
variation in the each of the OHSU and TCGA datasets. There was a large
overlap between the two datasets, with 609 genes selected and used as input
features to BMSMTR.

BMSMTR is available at https://github.com/suleimank/bmsr.

Feature overlap across models

Overlap between ridge model features trained independently on the OHSU and
FIMM datasets was calculated as a function of the number of top features
considered nyop. Specifically, independently in each dataset we sorted the ngenes
genes according to the magnitude of their ridge model coefficient. We then
calculated noverlap as the number of genes amongst the highest magnitude nyop
genes in both datasets additionally having coefficients with the same sign in
both models. This was plotted against the number of genes expected to overlap
Nexpected overlap USINg a hypergeometric model, i.e., (nfop) /(2ngenes), where the
2 in the denominator accounts for the fact that a gene can have a positive or
non-positive coefficient.

Gene set enrichment analysis

Gene set enrichment analysis (GSEA) was performed using the fgsea function in
the fgsea R package [16]. Enrichment was performed on a vector stats, where
the i*® component of stats is the average coefficient of feature i across ridge
models independently trained on FIMM and OHSU using gene expression fea-
tures. Enrichment was performed independently with respect to the gene ontol-
ogy (GO) [17, 18], Hallmark, Biocarta, KEGG, Reactome, and monocyte genes
defined by CIBERSORT [19]. For GO, Entrez gene identifiers were associated

19



with GO terms using org.Hs.egGO2ALLEGS from the org.Hs.eg.db R library

and then translated to symbols using org.Hs.egSYMBOL. The mapping between

GO terms and gene symbols was uploaded to Synapse and is accessible with

Synapse ID syn20641475. Hallmark [20], BioCarta (https://cgap.nci.nih.gov/Pathways/BioCarta_Pathways),
and KEGG [21], and Reactome [22] Gene Matrix Transposed (GMT) files were

downloaded from MSigDG [23] at the listed URLSs, processed using gmtPathways,

and uploaded to Synapse where they are accessible with the listed identifiers:
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Gene sets used in analysis

Gene Set  URL Synapse ID

Hallmark  http://software.broadinstitute.org/gsea/msigdb/download-file.jsp?filePath=/resources/msigdb/6.0/h.all.v6.0.symbols.gmt syn10507487
Biocarta  http://software.broadinstitute.org/gsea/msigdb/download file.jsp?filePath=/resources/msigdb/6.0/c2.cp.biocarta.v6.0.symbols.gmt ~ syn10507483
KEGG http://software.broadinstitute.org/gsea/msigdb/download file.jsp?filePath=/resources/msigdb/6.0/c2.cp.kegg.v6.0.symbols.gmt syn10507485
Reactome  http://software.broadinstitute.org/gsea/msigdb/download file.jsp?filePath=/resources/msigdb/6.0/c2.cp.reactome.v6.0.symbols.gmt  syn10507486




For purposes of GSEA, monocyte genes were those defined as differentially
expressed in monocytes relative to the other 21 leukocyte populations exam-
ined by the CIBERSORT deconvolution method [19]. fgsea was run with the
parameters minSize = 2, maxSize = 1000, and nperm = 10000.

Defining monocytic signature

We defined a monocytic signature of venetoclax response by (1) identifying
venetoclax biomarkers using BMSR, (2) limiting these to genes associated with
monocytes, and (3) compressing the expression of these genes into a single score
using gene set variation analysis (GSVA) [24].

We identified venetoclax biomarkers by combining the BMSR coefficients
across the FIMM and OHSU datasets for each gene using Stouffer’s method.
Specifically, we translated the BMSR coeflicients into z-scores independently for
each dataset—i.e., such that they have zero mean and unit standard deviation.
We then calculated the combined z-score z; for gene i using its z-scores z; 4
across datasets: z; = % > e {FIMM,0HSU} Zid- Finally, we calculated the p-

value of z; using the standard normal distribution function (i.e., using pnorm
with default parameters) and selected as venetoclax biomarkers those with a
nominal (uncorrected) p-value < 0.01.

We defined monocyte-associated genes as those that were differentially ex-
pressed (p < 0.05) between monocytes and more than half of the following 18
populations derived from umbilical cord or peripheral blood [GSE24759 [25]]:
CD4+ central memory, CD4+ effector memory, CD8+ central memory, CD8+
effector memory, CD8+ effector memory RA, early B cell, mature B cells capa-
ble of class switching, mature class-switched B cells, mature B cells, mature
CD45+CD164+CD3- NK cells, mature CD56-CD16+CD3- NK cells, mature
CD56-CD16-CD3- NK cells, NKT cells, naive CD44 T cells, naive CD8+ T
cells, naive B cells, plasmacytoid dendritic cells, and pro B cells. Differential
expression was determined using the functions 1mFit, eBayes, and topTable
within the 1imma R package, all invoked with default parameters [26, 27].

These two steps identified the following monocyte-associated venetoclax
biomarkers: BCL3, CD14, LILRB1, LRP1, MAFB, PSAP, SLC15A3, and
SLCTAT. We manually confirmed that each of these genes were highly expressed
in monocytes relative to other stem and hematopoietic progenitor populations
[GSE42519 [28], accessed using the online BloodSpot tool [29]]. We defined the
monocytic signature by compressing the expression of these genes into a single
score using the gsva function from the GSVA R package with default parameters.
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Supplementary Figures
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Supplementary Figure 1: AUC is more robust than EC5y in OHSU dataset.
Density plot comparing (A) ECjso values from 4-parameter log-logistic (LL4)
and 4-parameter logistic (L4) fits, (B) AUCs from LL4 and L4 fits, (C) ECsg
values from LL4 and 3-parameter log-logistic (LL3) fits, and (D) AUCs from
LL4 and LL3 fits in OHSU dataset. Solid black line: regression line; dashed
black line: identity line. r: Pearson correlation. Plotted values of drug response
curves: with LL4- and L4-derived EC'5q values between minimum and maximum
tested drug concentration and having absolute value less than the 95th percentile
and with non-negative LL4- and L4-derived AUCs (A and B) or with LL4-
and LL3-derived EC5y values between minimum and maximum tested drug
concentration and having absolute value less than the 95th percentile and with
non-negative LL4-derived AUCs (C and D).
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Supplementary Figure 2: AUC is more robust than EC5y in FIMM dataset.
Density plot comparing (A) ECsy values from 4-parameter log-logistic (LL4)
and 4-parameter logistic (L4) fits, (B) AUCs from LL4 and L4 fits, (C) ECsg
values from LL4 and 3-parameter log-logistic (LL3) fits, and (D) AUCs from
LL4 and LL3 fits in FIMM dataset. Solid black line: regression line; dashed
black line: identity line. r: Pearson correlation. Plotted values of drug response
curves: with LL4- and L4-derived EC5q values between minimum and maximum
tested drug concentration and having absolute value less than the 95th percentile
and with non-negative LL4- and L4-derived AUCs (A and B) or with LL4-
and LL3-derived EC5y values between minimum and maximum tested drug
concentration and having absolute value less than the 95th percentile and with
non-negative LL4-derived AUCs (C and D).

A B

Supplementary Figure 3: Drugs common to both datasets are enriched for kinase
inhibitors that are highly correlated. Pairwise drug Pearson correlations across
(A) OHSU and (B) FIMM datasets. Drugs (n = 87) ordered in both datasets
according to hierarchical clustering of drugs in OHSU dataset (complete linkage
clustering based on distance defined as 1 - correlation). Class: drug class;
Diff /epi: differentiation/epigenetic; HSP: heat shock protein.
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Supplementary Figure 4: Mean response across patients is highly correlated
between OHSU and FIMM datasets. Mean response across patients (MRP)
for each drug (n = 87) common to the OHSU (x axis) and FIMM (y axis)
datasets. MRP is mean of raw AUCs for an individual drug over patients. r:
Pearson correlation; dashed line: identity line; blue line: linear regression fit;
gray shading: 95% confidence interval.
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Supplementary Figure 5: Consistency of drug response across datasets is im-
pacted by drug response dynamic range. (A) Density of cross-dataset drug cor-
relation. (B, C) Cross-dataset drug correlation versus interquartile range (IQR)
of drug response AUC in (B) OHSU and (C) FIMM datasets. Cross-dataset
drug correlation is the correlation of two dataset-specific drug response profiles.
The drug response profile for a drug is the vector of correlations of its response
with that of response to all other drugs in the dataset. r: Pearson correlation;
blue line: linear regression fit; gray shading: 95% confidence interval.
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Supplementary Figure 6: A patient’s ex vivo responses are similar across all
drugs. AUCs calculated across all patient-derived ex vivo samples (columns)
and drugs (rows) in OHSU (A; 338 samples and 122 drugs) and FIMM (B; 37
samples and 470 drugs) datasets. Red values correspond to higher AUC or more
sensitive samples, blue are less sensitive, black are filtered, and gray are missing.
Standardized AUCs (i.e., with mean zero and standard deviation one across
patients) displayed in heatmap. Raw AUCs displayed in top and side panels.
General response across drugs (GRD) is mean of raw AUCs for an individual
patient over drugs; Mean response across patients (MRP) is mean of raw AUCs
for an individual drug over patients. Samples ordered by GRD in each dataset.
Drugs ordered by MRP in each dataset. One sample displayed per patient, with
sample assayed across highest number of drugs displayed in cases with multiple
samples per patient. Class: drug class; Diff/epi: differentiation/epigenetic;
HSP: heat shock protein.
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Supplementary Figure 7: General response across drugs is stable across drug
set used to compute it. GRD computed across all drugs in the OHSU (A, B,
C; n=122) or FIMM (D; n=477) datasets versus that computed from drugs
excluding class III TKIs (A; n=97), from drugs excluding all TKIs (B; n=74),
or from drugs common to OHSU and FIMM (C, D; n=87). TKI: tyrosine kinase
inhibitor. Each point corresponds to a patient. r: Pearson correlation; blue line:
linear regression fit; gray shading: 95% confidence interval.
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Supplementary Figure 8: Patients achieving complete response to induction
chemotherapy are enriched for those with high general response across drugs.
General response across drugs (GRD; y axis) of each patient (x axis) in OHSU
dataset. Patients ordered by GRD, with indicated response to standard in-
duction chemotherapy. CR/CRi: complete response / complete response with
incomplete hematologic recovery.
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Supplementary Figure 9: Several patients have extreme follow-up times. Over-
all survival of patients in OHSU dataset who remained alive throughout the
study period, ordered by increased survival time. Solid black line demonstrates
uniform distribution of follow-up times up to 610 days (indicated by horizontal
dotted line).
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Supplementary Figure 10: Ez vivo general response across all drugs is associated
with clinical response and improved patient outcome. (A) GRD in patients
that achieve complete remission (CR) or complete remission with incomplete
hematologic recovery (CRi) to standard induction chemotherapy (n=118) versus
those refractory to induction (n=50) in OHSU dataset. **: Wilcoxon rank sum
p < 0.01. Boxplot indicates median, lower and upper hinges (at first and third
quartiles, respectively), lower whisker [at the least value at most 1.5 x IQR
(inter-quartile range or distance between first and third quartiles) below the
lower hinge] and upper whisker (at the greatest value at most 1.5 x IQR above
the upper hinge). (B) Kaplan Meier survival curves of patients in OHSU dataset
with GRD above the upper quartile (red; ”responders”; n=42) and of those with
GRD below the lower quartile (blue; "non-responders”; n=42). Data are right
censored at 610 days. GRD is computed across all drugs in OHSU dataset. HR:
Cox proportional hazard ratio.

Variable N Estimate P
FLT3.TD negative 189 * Reference

positive 59 ' —l— | 6.87(4.47,9.27) <0.001
NPM1 MT 71 * Reference

wWT 177 - -1.62 (-3.93, 0.69) 0.168
ethnicity Asian 8 i Reference

Black 7| —— -1.61 (-9.72, 6.51) 0.697

HispNative 27 —— -1.07 (-7.35, 5.21) 0.738

White 206 >—%—.—< 3.52 (-2.17, 9.20) 0.224
age 248 [ ] -0.08 (-0.13, -0.02) 0.007
sex Female 120 n Reference

Male 128 - 3.27 (1.26, 5.29) 0.002

Supplementary Figure 11: FLT3-ITD is independently associated with general
response across drugs. Multivariate analysis of OHSU dataset. Single patient
with AdmixedWhite ancestry excluded from analysis.
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Supplementary Figure 12: FLT3-ITD is associated with increased general re-
sponse across drugs. GRD versus FLT3 status (WT/non-ITD or ITD) and
NPM1 status (WT or MT) in (A) OHSU, (B) FIMM, and (C) Tavor datasets.
Two-sided Wilcoxon signed rank p values in discovery OHSU dataset and one-
sided Wilcoxon signed rank p values in FIMM and Tavor datasets. ITD: internal
tandem duplication; WT: wild type; MT: mutant. Boxplot indicates median,
lower and upper hinges (at first and third quartiles, respectively), lower whisker
[at the least value at most 1.5 x IQR (inter-quartile range or distance between
first and third quartiles) below the lower hinge] and upper whisker (at the great-
est value at most 1.5 x IQR above the upper hinge).
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Supplementary Figure 13: FLT3-ITD is associated with increased general re-
sponse across drugs independent of drug set used to compute it. GRD versus
FLTS status (WT/non-ITD or ITD) and NPM1 status (WT or MT). GRD
computed across all drugs in the OHSU dataset, across drugs excluding class
IIT TKIs, across drugs excluding all TKIs, or across drugs common to OHSU
and FIMM. Each point corresponds to a patient. Two-sided Wilcoxon signed
rank p values. TKI: tyrosine kinase inhibitor; ITD: internal tandem duplication;
WT: wild type; MT: mutant. Boxplot indicates median, lower and upper hinges
(at first and third quartiles, respectively), lower whisker [at the least value at
most 1.5 x IQR, (inter-quartile range or distance between first and third quar-
tiles) below the lower hinge] and upper whisker (at the greatest value at most
1.5 x IQR above the upper hinge).
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Supplementary Figure 14: Expression distributions are consistent across sam-
ples. Density of gene expression [base-2 logarithm of counts per million,
log,(CPM)] in (A) OHSU (n = 565) and (B) TCGA (n = 151) samples. OHSU
samples filtered to exclude outliers detected via PCA.
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Supplementary Figure 15: Cumulative distribution function of probability that
gene is expressed evaluated over samples quantifies gene expression within a
dataset. (A-C) Normal distribution (dashed line) fitted to rightmost peak of
gene expression [base-2 logarithm of counts per million, log,(CPM)] density
in a sample. Rightmost peak assumed to represent expressed genes; hence
probability of a gene being expressed at a given level is p-value of associated
expression relative to fitted normal distribution. (D-F) Empirical cumulative
distribution function (ECDF) of a gene’s p-values across all samples within a
dataset. Area under the ECDF curve (ECDF AUC; red shading) quantifies
that gene’s expression across dataset. Examples shown for highly- (RNF40;
panels A and D), moderately- (EVI5L; panels B and E), and lowly-expressed
(PGLYRPI1; panels C and F) genes. For indicated gene in indicated sample,
p-value for that gene’s level of expression (x axis; dotted vertical line; panels
A-C) in that sample is highlighted in the p-value ECDF across all samples (dot;
panels D-F).
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Supplementary Figure 16: Genes are expressed consistently across datasets.
Density across genes of ECDF AUCs in both OHSU and TCGA datasets (center
plot) and histograms of ECDF AUCs within TCGA (right panel) or OHSU
(bottom panel) datasets. Dashed lines: ECDF AUC cutoffs.
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Supplementary Figure 17: Elbow in frequency of ECDF AUCs establishes
dataset-specific cutoff between unexpressed and expressed genes. Histogram
frequency of ECDF AUCs in (A) OHSU and (B) TCGA datasets. Solid line:
piecewise regression fit to frequency of ECDF AUCs with two breakpoints (dot-
ted and dashed vertical lines). Elbow (second breakpoint; dashed vertical line)
used as cutoff between unexpressed and expressed genes.
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Supplementary Figure 18: Genes used as features are expressed and have high
variation above mean-variance trend line. (A,D) Density across genes of mean
of and variation in their expression in (A) OHSU and (D) TCGA datasets.
Mean calculated across samples in dataset of gene expression [base-2 logarithm
of counts per million, log,(CPM)]. Variation calculated as square root of stan-
dard deviation across samples of gene expression [log,(CPM)]. Solid curve:
mean-variance LOESS trend line. (B,E) Density of gene expression mean of
and variation in AML-expressed genes in (B) OHSU and (E) TCGA datasets.
(C,F) AML-expressed genes identified as highly variable independently in (C)
OHSU (n = 2,811) and (F) TCGA (n = 2,551) datasets. Highly variable is
defined relative to mean-variance trend line—i.e., according to residual between
observed and trend-predicted variation. The intersection of the two genesets
were considered highly-variable, AML-expressed genes (n = 2,132) and used
for downstream analysis. Genes above dashed line (OHSU: n = 2,811; TCGA:
n = 2,551) would be selected instead based on highest variation (y axis).
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Supplementary Figure 19: Consistency of variation of expressed genes across
datasets establishes variation cutoff. (A) Density and contour lines (blue curves)
across genes of variation of gene expression in OHSU (x axis) and TCGA (y axis)
datasets. Variation calculated as square root of standard deviation across sam-
ples of gene expression [log,(CPM)|. Dashed black line: PC1; Dashed green
line: PC2. (B) Density and contour lines of gene variance projected (i.e., ro-
tated) onto PC1 (x axis) and PC2 (y axis). (C) Density and contour lines of gene
variation projected onto PC1 and PC2, restricted to values less than empirically-
estimated point of maximum density. Univariate normal distributions were fit
independently to restricted values independently in each dimension. (D) Over-
lay of fitted 1-standard deviation contour line from fitted normal distribution
(solid black curve) and empirical contour lines (blue curves) on density plot pro-
jected onto PC1 and PC2. (E) Overlay of fitted 1-standard deviation contour
line from normal distribution (fitted in principal component space and rotated
back into linear space; black curve) and empirical contour lines (blue curves) on
density plot.
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Supplementary Figure 20: Candidate GRD biomarker expression. Expression
(standardized base-2 logarithm of counts per million, log,(CPM)] of BMSR-~
prioritized GRD biomarkers in (A) OHSU and (B) FIMM datasets. Samples
are ordered according to GRD. GRD is computed across drugs common to
OHSU and FIMM datasets.
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Supplementary Figure 21: BMSR-nominated biomarkers of general response
across drugs are consistently correlated with individual drug response across
datasets. Distribution of correlation of individual drugs (n=87 common drugs;
y axis) from general response across drugs (GRD) signature with indicated gene
(x axis) across (A) OHSU and (B) FIMM datasets. Genes are ordered according
to their mean (across drugs) drug correlation. ****: Two-sided paired Wilcoxon
signed rank Benjamini Hochberg (BH)-adjusted p < 0.0001; ***: BH-adjusted
p < 0.001; **: BH-adjusted p < 0.01.
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Supplementary Figure 22: Drug prediction is correlated with interquartile range
in response. Prediction performance (Pearson correlation of observed and pre-
dicted drug response in FIMM dataset; x axis) versus interquartile range (IQR)
of drug response AUC in (A) OHSU and (B) FIMM datasets. r: Pearson cor-
relation; blue line: linear regression fit; gray shading: 95% confidence interval.
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Supplementary Figure 23: Drug response predicted using GRD covariate com-
puted across all drugs is highly correlated with that computed across common
drugs. Correlation of drug response observed in FIMM dataset relative to that
predicted from OHSU training dataset using GRD as a covariate (A) predicted
or (B) observed across all drugs (y axis) or drugs common to FIMM and OHSU
(x axis). Each point corresponds to a drug (n=8T7). r: Pearson correlation; blue
line: linear regression fit; gray shading: 95% confidence interval.
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Supplementary Figure 24: Expression-based predictions of drug response in-
dicate concordance of independent ex vivo datasets and may be improved by
incorporating general response across drugs (computed across all drugs). Per-
formance (Pearson correlation between observed and model-predicted drug re-
sponse; y axis) of ridge regression models trained on OHSU data and tested
on FIMM data using genes as predictors (Gene Expression), genes and GRD
predicted by applying ridge regression to gene expression (Gene Expression +
Predicted GRD), or genes and GRD calculated from drug response data (Gene
Expression + Observed GRD). Drug d is excluded from observed and predicted
GRD in modeling d’s response. GRD is computed across all drugs in the OHSU
or FIMM dataset, as appropriate. Each point corresponds to a drug (n=87).
*#4%: One-sided paired Wilcoxon signed rank p < 0.0001; **: p < 0.01. Boxplot
indicates median, lower and upper hinges (at first and third quartiles, respec-
tively), lower whisker [at the least value at most 1.5 x IQR (inter-quartile range
or distance between first and third quartiles) below the lower hinge| and upper
whisker (at the greatest value at most 1.5 x IQR above the upper hinge).
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Supplementary Figure 25: Prediction of general response across drugs is im-
pacted by domain of drugs considered. Observed (x axis) versus model-predicted
(v axis) GRD, with GRD computed across all drugs. r: Pearson correlation;
blue line: linear regression fit; gray shading: 95% confidence interval.
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Supplementary Figure 26: Measures quantitatively summarize drug response
curves. (A) LL3 (solid line) and LL4 (dashed line) fits to observed
drug sensitivity sensitivity(z) (dots; y axis) as a function of drug con-
centration = ( log;,; nM; x axis). (B) Difference in fitted sensitivity,
LLA(xmin) — LL4A(Tmax), between LL4 fit at minimum (z,,) and max-
imum (Zmax) concentration points. (C) Maximum change in sensitivity,
Omax = max; [sensitivity(x;_1) — sensitivity(z;)], between neighboring concen-
tration points z;_1 and x;. (D) Root-mean-square error, RMSE = /). 07,
calculated from residuals 6; = |LL4(x;) — sensitivity(x;)| between LL4 fit and
observed drug sensitivity. (E) Integral of absolute difference in log space be-
tween LL3 and LLA4 fits, |[LL3 — LL4|| 11 = f;;:::X|LL3(x) — LL4(x)|dlogo(x)
(blue shading). (F) Area under the LL3 curve calculated in log space, AUC =
[Fmax LL3(x)dlogyo(x) (red shading).
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Supplementary Figure 27: Intra-replicate root-mean-square difference estab-
lishes optimal cutoffs of quality of fit metrics RMSE (LL4) and 0,,.x. Heatmap
of values [— log;(p); Wilcoxon rank sum test p-value] indicating the significance
in differences between the distribution of intra-replicate root-mean-square dif-
ferences (RMSDs) of those drug response curves passing a quality of fit filter
[i.e., with Opayx less than the value on the x axis and RMSE (LL4) less than the
value on the y axis] and the distribution of RMSDs of those drug response curves
excluded by that filter. Black lines indicate optimal cutoffs (i.e., that minimize
the p-value) 6%, of Omax (vertical line) and RMSE (LL4)* of RMSE (LL4)
(horizontal line) for (A) OHSU [d%,. = 24 and RMSE (LL4)* = 7] and (B)
FIMM [6} .« = 21 and RMSE (LL4)* = 11.5] datasets. RMSDs calculated
between responses of two technical replicates for OHSU and of two biological
replicates for FIMM.
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Supplementary Figure 28: Optimal cutoffs of quality of fit metrics RMSE (LL4)
and dpax segregate drug response curves according to intra-replication variance.
Intra-replicate root-mean-square differences (RMSDs; y axis) of drug response
curves that do or do not pass optimized quality of fit filter (x axis) in (A) OHSU
or (B) FIMM datasets. RMSDs calculated between responses of two technical
replicates for OHSU dataset and of two biological replicates for FIMM dataset.
Boxplot indicates median, lower and upper hinges (at first and third quartiles,
respectively), lower whisker [at the least value at most 1.5 x IQR (inter-quartile
range or distance between first and third quartiles) below the lower hinge] and
upper whisker (at the greatest value at most 1.5 x IQR above the upper hinge).
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Supplementary Figure 29: Gamma distributions characterize empirical ||LL3 —
LL4||1, distributions. Gamma distribution (red curve) fit to ||LL3 — LL4||1
density (gray bar) for (A) OHSU and (B) FIMM datasets.
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Supplementary Figure 30: Bounded sensitivity range establishes optimal cutoff
of quality of fit metric ||LL3 — LL4||p1. ||LL3 — LL4| 11 values (y axis) for
those drug response curves having all drug sensitivity values that do or do
not all lie between 0 and 100% (x axis) in the (A) OHSU and (B) FIMM
datasets. Boxplot indicates median, lower and upper hinges (at first and third
quartiles, respectively), lower whisker [at the least value at most 1.5xIQR (inter-
quartile range or distance between first and third quartiles) below the lower
hinge] and upper whisker (at the greatest value at most 1.5 x IQR above the
upper hinge). Points indicate outliers. Black horizontal line indicates optimal
cutoff | LL3 — LL4|}, of |LL3— LLA4| 1 (OHSU: ||[LL3—LL4| %, = 8.7; FIMM:
|ILL3 — LL4|]5, = 6.7). Boxplot indicates median, lower and upper hinges (at
first and third quartiles, respectively), lower whisker [at the least value at most
1.5 x IQR (inter-quartile range or distance between first and third quartiles)
below the lower hinge] and upper whisker (at the greatest value at most 1.5xIQR
above the upper hinge).
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Supplementary Figure 31: Tail of distribution establishes optimal cutoff of qual-
ity of fit LL4(2min) — LL4(Zmax). Density of LL4(Zmin) — LLA(2mayx) for those

drug response curves passing (blue; dmax < 0% ,,) or failing (red; dmax > 95ax)
the dmax-filter for the (A) OHSU (4} .. = 24) and (B) FIMM (6%, = 21)

datasets. Fit of Gaussian distribution (dashed curve) to single (OHSU) or
right-most (FIMM) peak passing dmax-filter. Black vertical line indicates
optimal cutoff [LLA(Zmin) — LLA(¥max)]” of LLA(min) — LLA(Tmax) (OHSU:
[LLA(Zmin) — LLA(Zmax)]” = 58.0; FIMM: [LLA(Zmin) — LLA(Zmax)]” = 49.5).
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Supplementary Figure 32: Filtering of drug data does not affect prediction
performance for most drugs. Prediction performance (Pearson correlation of
observed and predicted drug response in FIMM dataset using ridge regression
trained on OHSU gene expression data) of filtered (x axis) on unfiltered (y
axis) drug response data. Labeled drugs include venetoclax and those having a
difference in performance between a filtered and unfiltered analysis greater than
0.3.
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Supplementary Figure 33: Robust venetoclax resistance prediction is dependent
on gene expression biomarkers and not general response across drugs. Perfor-
mance (Pearson correlation) of ridge regression models trained on OHSU data
and tested on FIMM data using only observed GRD as a predictor variable (x
axis) or using gene expression and observed GRD (y axis). Each point corre-
sponds to a drug (n = 86).
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Supplementary Figure 34: Integrative analysis reveals monocyte-associated
biomarkers predictive of venetoclax resistance. (A,C) Observed (x axis) ver-
sus model-predicted (y axis) venetoclax response. (A) Expression-based ridge
regression model trained on (n = 170) OHSU samples and tested on (n = 26)
FIMM samples. (C) Expression-based Bayesian regression model trained using
five-fold cross validation on combined OHSU and FIMM datasets (n = 159)
and tested on held-out fold yielding median performance across the five folds
(n = 37). (B,D) Coefficients of genes (n = 2,132) in OHSU (x axis) or FIMM (y
axis) datasets following (B) training of ridge regression model independently on
both datasets or (D) training of Bayesian regression modeling simultaneously
on both datasets (n = 196). r: Pearson correlation; dashed line: identity line;
blue line: linear regression fit; gray shading: 95% confidence interval. Labeled
genes were those having extremal (Stouffer’s p < 0.01) combined coefficients
across both datasets. Boxplot indicates median, lower and upper hinges (at
first and third quartiles, respectively), lower whisker [at the least value at most
1.5 X IQR (inter-quartile range or distance between first and third quartiles) be-
low the lower hinge| and upper whisker (at the greatest value at most 1.5 x IQR
above the upper hinge).
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Supplementary Figure 35: Expression of monocyte-associated venetoclax
biomarkers are consistently upregulated in venetoclax-resistant samples. Ex-
pression (standardized base-2 logarithm of counts per million, log,(CPM)] of
BMSR-prioritized, monocyte-associated venetoclax biomarkers in (A) OHSU
and (B) FIMM datasets. Samples are ordered according to venetoclax response
(AUC).
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Supplementary Figure 36: Genes with expression correlated with venetoclax
resistance are enriched for monocytic markers. Gene set enrichment analysis of
genes ranked according to mean standardized ridge regression coefficients from
models independently trained on OHSU and FIMM datasets.
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Supplementary Figure 37: Venetoclax response is correlated with blast fraction.
Venetoclax response (AUC) versus percentage of blasts in (A) peripheral blood
(PB) or (B) bone marrow (BM) in OHSU dataset. r: Pearson correlation; blue
line: linear regression fit; gray shading: 95% confidence interval.
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Supplementary Figure 38: Monocytic cell fractions are higher and more variable
than lymphocyte fractions in ex vivo samples. CIBERSORT-derived fractions
of monocytes and lymphocytes (B, CD4 T, CD8 T, and NK cells) in (A) FIMM
and (B) OHSU. B cell fractions are the sum of naive and memory B and plasma
cell fractions; CD4 T cell fractions are the sum of naive CD4 T, resting memory
CD4 T, activated memory CD4 T, and regulatory T cell fractions; NK cell
fractions are the sum of resting and activated NK cell fractions.
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Supplementary Figure 39: Prediction model controlling for lymphocyte fraction
is highly correlated with model that does not. Correlation of drug response ob-
served in FIMM dataset relative to that predicted from OHSU training dataset
using gene expression (x axis) versus using gene expression and lymphocyte frac-
tion (y axis). Each point corresponds to a drug (n=87). r: Pearson correlation;
blue line: linear regression fit; gray shading: 95% confidence interval.
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Supplementary Figure 40: BMSR-derived monocytic signature is stable across
datasets jointly analyzed. Revised monocytic signature using genes inferred
from joint BMSR analysis of FIMM (CM) and Tavor (y axis) versus original
monocytic signature using genes inferred from joint BMSR analysis of FIMM
and OHSU (x axis) in (A) FIMM, (B) FIMM (CM), (C) OHSU, and (D) Tavor
datasets. Each point corresponds to one patient [FIMM: n=>50; FIMM (CM):
n=42; OHSU: n=313; Tavor: n=43]. r: Pearson correlation; blue line: linear
regression fit; gray shading: 95% confidence interval.
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Supplementary Figure 41: BMSR-derived monocytic signature is stable across
number of datasets jointly analyzed. Revised monocytic signature using genes
inferred from joint BMSR analysis of FIMM, OHSU, and Tavor (y axis) versus
original monocytic signature using genes inferred from joint BMSR analysis of
FIMM and OHSU (x axis) in (A) FIMM, (B) FIMM (CM), (C) OHSU, and (D)
Tavor datasets. Each point corresponds to one patient [FIMM: n=>50; FIMM
(CM): n=42; OHSU: n=313; Tavor: n=43]. r: Pearson correlation; blue line:
linear regression fit; gray shading: 95% confidence interval.
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Supplementary Figure 42: Monocyte-associated genes and associated signature
robustly predict resistance to BCL-2 inhibitors. Pearson correlation of response
of indicated drug (venetoclax or navitoclax; top) versus expression of indicated
gene or venetoclax monocyte signature (“Signature”) across FIMM (MCM),
OHSU, FIMM (CM), Lee, or Tavor datasets. Dataset / drug combinations are
indicated as “Training” if they were used to derive the signature and biomark-
ers and “Validation” otherwise. BCL2A1, CLEC7A, and CD14 have previously
been nominated as biomarkers using the OHSU dataset (which should be consid-
ered a training dataset for these genes). BCL2/MCL1 is the ratio of expression
of BCL2 and MCL1, i.e., the difference in their log expression. ****: p < 0.0001;
¥ p < 0.001; **: p < 0.01; *: p < 0.05.
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Supplementary Figure 43: Venetoclax biomarkers proposed in the literature
have highly coordinated expression with monocytic signature. Pairwise pearson
correlation of venetoclax biomarkers in the (A) OHSU, (B) FIMM, (C) FIMM
CM, (D) Lee, and (E) Tavor datasets.
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Supplementary Figure 44: Monocytic signature is correlated with MEK in-
hibitor response. Pairwise Pearson correlations of monocytic signature (Vene-
toclax Signature), BCL-2 inhibitor response (venetoclax and navitoclax), and
MEK inhibitor response (selumetinib, trametinib, and PD184352) in the (A)
OHSU, (B) FIMM, and (C) FIMM CM datasets. Above diagonal: raw Pearson
correlations; absence of red or blue circle indicates correlation is not significant
(p > 0.05). Below diagonal: Pearson correlation of MEK inhibitor m and mono-
cytic signature normalized by Pearson correlation of m and best fit line of m
versus other MEK inhibitors m’ # m.
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Supplementary Figure 45: Integrative analysis reveals monocyte-associated
biomarkers predictive of MEK inhibitor response. Coefficients of genes (n=609)
and observed GRD in OHSU (x axis) or FIMM (y axis) datasets following train-
ing of Bayesian regression modeling simultaneously on both datasets (n=259).
Labels indicate observed GRD or the ten genes having the greatest absolute
mean coefficient across both datasets.
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