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SUPPLEMENTARY INFORMATION for 

Extensive bidirectional genetic overlap between bipolar disorder and cardiovascular 

disease phenotypes  

 

SUPPLEMENTARY METHODS 

Participants 

We obtained GWAS results in the form of summary statistics (p-values and z-scores). Data on 

bipolar disorder (BIP) were retrieved from Psychiatric Genomics Consortium (PGC)1. The 

BIP dataset consisted of 20 352 cases and 31 358 controls from 32 samples1. Among the 

cases, 14,879 individuals were diagnosed with BIP type I (BIP1), 3,421 with BIP type II 

(BIP2), 977 with schizoaffective disorder, bipolar type (SAB), and the remaining BIP not 

otherwise specified (NOS)1. Further, we used data from GWASs on cardiovascular disease 

(CVD) phenotypes, including the CVD risk factors body mass index2 (n=795 640), type 2 

diabetes mellitus (T2D)3 (n=159 208), total cholesterol (TC)4 (n=188 578), low-density 

lipoprotein (LDL) cholesterol4 (n=188 578), high-density lipoprotein (HDL) cholesterol4 

(n=188 578), systolic and diastolic blood pressure (n=745 820-757 601)5, along with coronary 

artery disease (CAD, n=332 477, including 71 602 CAD cases and 260 875 controls)6. We 

repeated the previously published cond/conjFDR analysis of genetic overlap between BIP and 

BMI7. Details about the inclusion criteria, genotyping and phenotype characteristics, see the 

original publications1-6. There was no sample overlap between the BIP GWAS1 and the CVD 

phenotype GWASs.  

MiXeR 

We applied causal mixture models8, 9 to the GWAS summary statistics, using the MiXeR tool 

(https://github.com/precimed/mixer). For each SNP, 𝑖, univariate MiXeR models its additive 

https://github.com/precimed/mixer
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genetic effect of allele substitution, 𝛽𝑖, as a point-normal mixture, 𝛽𝑖 = (1 − 𝜋1)𝑁(0,0) +

𝜋1𝑁(0, 𝜎𝛽
2), where 𝜋1 represents the proportion of non-null SNPs (`polygenicity`) and 𝜎𝛽

2 

represents variance of effect sizes of non-null SNPs (`discoverability`). Then, for each SNP, 𝑗, 

MiXeR incorporates LD information and allele frequencies for M=9,997,231 SNPs extracted 

from 1000 Genomes Phase3 data by LD score regression software9, 10, and estimate the 

expected probability distribution of the signed test statistic, 𝑧𝑗 = 𝛿𝑗 + 𝜖𝑗 = 𝑁 ∑ √𝐻𝑖𝑟𝑖𝑗𝛽𝑖 +𝑖

𝜖𝑗, where 𝑁 is sample size, 𝐻𝑖 indicates heterozygosity of i-th SNP,  𝑟𝑖𝑗 indicates allelic 

correlation between i-th and j-th SNPs, and 𝜖𝑗 ∼ 𝑁(0, 𝜎0
2) is the residual variance. Further, 

the three parameters, 𝜋1, 𝜎𝛽
2, 𝜎0

2, are fitted by direct maximization of the likelihood function. 

The number of trait-influencing variants (i.e. variants with pure genetic effects not induced by 

LD) is estimated as 𝑀𝜋1, where M=9,997,231 gives the number of SNPs in the reference 

panel. 

In the cross-trait analysis, MiXeR models additive genetic effects as a mixture of four 

components, representing null SNPs in both traits (𝜋0); SNPs with a specific effect on the 

first and on the second trait (𝜋1 and 𝜋2, respectively); and SNPs with non-zero effect on both 

traits (𝜋12). In the last component, MiXeR models variance-covariance matrix as 𝚺𝟏𝟐 =

[
𝜎1

2 𝜌12𝜎1𝜎2

𝜌12𝜎1𝜎2 𝜎2
2 ] where 𝜌12  indicates correlation of effect sizes within the shared 

component, and 𝜎1
2 and 𝜎2

2 correspond to the discoverability parameter estimated in the 

univariate analysis of the two traits. After fitting parameters of the model, genetic correlation 

is calculated as 𝑟𝑔 =
𝜌12𝜋12

√(𝜋1+𝜋12)(𝜋2+𝜋12)
. Further information is available in8. 

To evaluate model fit, i.e. the ability of the MiXeR to predict the actual GWAS data, 

we constructed modelled vs. actual conditional Q-Q plots (Supplementary Figures 3-6). 

Optimal model fit is indicated in the conditional Q-Q plots by the model-based curves closely 

following the actual Q-Q curves8. Model fit was also assessed using negative log-likelihood 
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plots8, which visualizes the performance of the best model versus models with minimum and 

maximum polygenic overlap (Supplementary Figures 3-6). The best model represents the 

MiXeR model of polygenic overlap between phenotypes. The minimum model represents a 

scenario of least possible overlap, and the maximum model represents a scenario of largest 

possible overlap. In the negative log-likelihood plot (Supplementary Figures 3-6), the 

minimum model is represented by the point furthest to the left, the maximum model is 

represented by the point furthest to the right, and the best model is represented by the lower 

point of the curve. The lowest point on the curve (y-axis) indicates better model fit8.  

To filter situations with insufficiently powered GWAS summary statistics, we use 

Akaike information criterion (𝐴𝐼𝐶 = 2𝑘 − 2 ln 𝐿), where 𝑘 is the number of free parameters 

in the model,  𝐿 is the value of the likelihood function, and 𝑛 is the effective number of SNPs 

used in optimization procedure. We calculate the difference between AIC for the full bivariate 

model, 𝑘 = 3, and AIC for the reduced bivariate model, 𝑘 = 2, due to 𝜋12 being constrained 

to smallest or largest possible ( 𝜋12
𝑚𝑖𝑛 = 𝑟𝑔√𝜋1

𝑢 𝜋2
𝑢 and 𝜋12

𝑚𝑎𝑥 = min (𝜋1
𝑢 , 𝜋2

𝑢), respectively). A 

positive value of AIC indicates that GWAS summary statistics have enough information to 

distinguish the custom polygenic overlap, as shown on the MiXeR Venn diagrams, from the 

constrained models with minimal (𝜋12
𝑚𝑖𝑛) and maximum (𝜋12

𝑚𝑎𝑥) polygenic overlap.   

 

Conditional False Discovery Rate  

The ‘enrichment’ seen in the conditional Q-Q plots can be directly interpreted in terms of true 

discovery rate (TDR = 1 – false discovery rate (FDR))11. More specifically, for a given p-

value cutoff, the FDR is defined as  

FDR(p) = π
0
F

0
(p) / F(p),  [1]  

where π
0 is the proportion of null SNPs, F

0 is the null cumulative distribution function (cdf), 

and F is the cdf of all SNPs, both null and non-null12. Under the null hypothesis, F
0 is the cdf 
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of the uniform distribution on the unit interval [0,1], so that Eq. [1] reduces to  

FDR(p) = π
0
p / F(p),  [2]  

The cdf F can be estimated by the empirical cdf q = Np / Ν, where Np is the number of SNPs 

with p-values < p, and N is the total number of SNPs. Replacing F by q in Eq. [2], we get  

Estimated FDR(p) = π
0
p / q,  [3]  

which is biased upwards as an estimate of the FDR13. Replacing π
0
 in Equation [3] with unity 

gives an estimated FDR that is further biased upward;  

q* = p / q,  [4]  

If π
0 is close to one, which is probably true for most GWASs, the increase in bias from Eq. [3] 

is minimal. Therefore, the quantity 1 – p/q, is biased downward and thus a conservative 

estimate of the TDR. Referring to the Q-Q plots, we see that q* is equivalent to the nominal 

p-value divided by the empirical quantile, as defined previously. We can thus read the FDR 

estimate directly off the Q-Q plot as  

-log10(q*) = log10(q) – log10(p),  [5]  

demonstrating that the estimated FDR is directly related to the horizontal shift of the curves in 

the Q-Q plots from the expected line x = y, i.e. a larger shift corresponds to a smaller FDR.  

 

Conditional Q-Q plots 

Q-Q plots compare a nominal probability distribution against an empirical distribution. In the 

presence of all null relationships, nominal p-values form a straight line on a Q-Q plot when 

plotted against the empirical distribution. For BIP and CVD phenotype SNPs and for each 

categorical subset (strata), -log10 nominal p-values were plotted against -log10 empirical p-

values (conditional Q-Q plots). Leftward deflections of the observed distribution from the 

projected null line illustrate increased tail probabilities in the distribution of test statistics (z-

scores) and consequently an over-abundance of low p-values compared to that expected by 
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chance, also called ‘enrichment’. This is illustrated in Supplementary Figures 1-2. 

Under large-scale testing paradigms, such as GWAS, we can calculate quantitative 

estimates of likely true associations from the distributions of summary statistics12, 14. 

Conditional Q-Q plots of nominal p-values from GWAS summary statistics visualizes this 

enrichment of statistical association relative to that expected under the global null hypothesis. 

The usual Q-Q curve has the nominal p value, denoted by "p", as the y-ordinate and the 

corresponding value of the empirical cdf, denoted by "q", as the x-ordinate. Under the global 

null hypothesis the theoretical distribution is uniform on the interval [0,1]. As is common in 

GWAS, we instead plot -log10 p against -log10 q to emphasize tail probabilities of the 

theoretical and empirical distributions. Therefore, genetic enrichment is illustrated with a 

leftward shift in the Q-Q curve, corresponding to a larger fraction of SNPs with nominal -

log10 p-value greater than or equal to a given threshold. Conditional Q-Q plots are constructed 

by creating subsets of SNPs based on levels of an auxiliary measure for each SNP, and 

computing Q-Q plots separately for each level. If SNP enrichment is captured by variation in 

the auxiliary measure, which is expressed as successive leftward deflections in a conditional 

Q-Q plot as levels of the auxiliary measure increase. We constructed conditional Q-Q plots of 

empirical quantiles of nominal -log10 values for SNP association for all SNPs, and for subsets 

(strata) of SNPs determined by the nominal p-values of their association with the conditional 

phenotypes, and vice versa. In particular, we computed the empirical cumulative distribution 

(cdf) of nominal p-values for a given phenotype for all SNPs and for SNPs with significance 

levels below the indicated cut-offs for the conditional phenotypes (-log10(p) ≥ 1, -log10(p) ≥ 2, 

-log10(p) ≥ 3 corresponding to p < 0.1, p < 0.01, p < 0.001 respectively). The nominal p-

values (–log10(p)) are plotted on the y-axis, and the empirical quantiles (–log10(q), where q=1-

cdf(p)) are plotted on the x-axis. To assess for polygenic effects below the standard GWAS 

significance threshold, we focused the conditional Q-Q plots on SNPs with nominal –log10(p) 
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< 7.3 (corresponding to p > 5x10-8). We controlled for spurious enrichment by calculating all 

conditional Q-Q plots after random pruning averaged over 500 iterations. At each iteration, 

one SNP in every LD block (defined by an r2 >0.1) was randomly selected and the empirical 

cdfs were computed using the corresponding p-values. 

 

Detection of SNPs using conditional and conjunctional FDR 

The FDR can be interpreted as the probability that a SNP is null given that its p-value is as 

small as or smaller than its observed p-value. The conditional FDR (condFDR) is an extension 

of the standard FDR, which incorporates information from GWAS summary statistics of a 

second phenotype to adjust its significance level. The condFDR is defined as the probability 

that a SNP is null in the first phenotype given that the p-values in the first and second 

phenotypes are as small as or smaller than the observed ones. It is important to note that 

ranking SNPs by the standard FDR or by p-values gives the same ordering of SNPs.  In 

contrast, ranking SNPs by condFDR will reorder SNPs when the primary and secondary 

phenotypes are genetically related. The conjunctional FDR (conjFDR) is defined as the 

posterior probability that a SNP is null for either phenotype or both simultaneously, given that 

its p-values for association with both phenotypes are as small as or smaller than the observed 

p-values15-19. A conservative estimate of the conjFDR is obtained by the maximum condFDR 

for a given SNP after repeating the condFDR procedure for both traits and inverting their 

roles.
20. Given that complex correlations in regions with intricate LD can bias FDR 

estimation21, we excluded SNPs in the extended major histocompatibility complex and 

chromosome 8p23.1 (genome build 19 locations 25119106–33854733 and 7242715–

12483982, respectively) and SNPs in LD (r2>0.1) with such SNPs before fitting the FDR 

models. P-values were corrected for inflation using a genomic inflation control procedure15. 
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Genomic loci definition 

We defined independent genomic loci using the FUMA, an online tool for functional mapping 

of genetic variants (http://fuma.ctglab.nl/)22. Summary statistics from the GWASs on BIP and 

CVD phenotypes were used as input for FUMA. First, independent significant SNPs were 

identified as SNPs with condFDR < 0.01 and independent from each other at LD  

r2 < 0.6. Secondly, lead SNPs were identified by retaining those independent significant SNPs 

that were independent from each other at r2 < 0.1. Next, distinct genomic loci were identified 

by merging physically overlapping lead SNPs (LD blocks < 250 kb apart) selecting a SNPO 

with the most significant p-value as a lead SNP if the merged locus. Borders of the genomic 

loci were determined by identifying all SNPs in LD (r2 ≧ 0.6) with one of the independent 

significant SNPs in the locus. The region containing all of these candidate SNPs was regarded 

as a single independent genomic locus. All LD information was calculated from the 1000 

Genomes Project reference panel23. 

 

Effect sizes and genetic correlation 

Effect size (z-scores) of the shared SNPs were obtained from the original summary statistics 

(see original publications1, 3, 4, 6, 24). We estimated the genetic correlation using LD score 

regression25. LD score regression was estimated using the Python-based package available at 

https://github.com/bulik/ldsc. The procedure is described in the documentation of the package 

(https://github.com/bulik/ldsc/wiki/Heritability-and-Genetic-Correlation). 

 

Identification of novel BIP loci  

We identified novel BIP loci by comparing the identified loci at conjFDR <0.05 with the loci 

reported in the original BIP GWAS1, the most recent BIP GWAS26, the NHGRI-EBI 

catalog27, previous cond/conjFDR analyses and other studies reporting genome-wide 

http://fuma.ctglab.nl/
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significant BIP loci1, 7, 28-45. The most recent BIP GWAS26 was not yet published and the 

genomewide data were not available for analyses when the current study was performed. 

Thus, we had to obtain the main results of the BIP GWAS from the preprint version on 

MedRxiv for comparison with the findings of our current analysis. The main results of the 

BIP GWAS did not change from preprint to published version26. 

  

Functional annotation 

We used FUMA22, an online annotation platform (http://fuma.ctglab.nl/) to functionally 

annotated all candidate SNPs in the genomic loci with a condFDR or conjFDR value<0.10 

having an r2≧0.6 with one of the independent significant SNPs. SNPs were annotated with 

Combined Annotation Dependent Depletion (CADD) scores46, RegulomeDB47 scores, and 

chromatin states48, 49. The CADD score is a deleterious score of variants computed by 

integrating 63 functional annotations46. The higher the score, the more deleterious. A CADD 

score above 12.37 is the threshold to be potentially pathogenic46. The RegulomeDB score is a 

categorical score to guide interpretation of regulatory variants47. It is based on information 

from eQTLs and chromatin marks, ranging from 1a to 7 with lower scores indicating a higher 

likelihood of having a regulatory function. Scores are as follows: 1a=eQTL + Transcription 

Factor (TF) binding + matched TF motif + matched DNase Footprint + DNase peak; 

1b=eQTL + TF binding + any motif + DNase Footprint + DNase peak; 1c=eQTL + TF 

binding + matched TF motif + DNase peak; 1d=eQTL + TF binding + any motif + DNase 

peak; 1e=eQTL + TF binding + matched TF motif; 1f=eQTL + TF binding / DNase peak; 

2a=TF binding + matched TF motif + matched DNase Footprint + DNase peak; 2b=TF 

binding + any motif + DNase Footprint + DNase peak; 2c=TF binding + matched TF motif + 

DNase peak; 3a=TF binding + any motif + DNase peak; 3b=TF binding + matched TF motif; 

4=TF binding + DNase peak; 5=TF binding or DNase peak; 6=other; 7=Not available47.  
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The chromatin state represents the accessibility of genomic regions (every 200bp) with 

15 categorical states predicted by a hidden Markov model based on 5 chromatin marks for 

127 epigenomes in the Roadmap Epigenomics Project48. A lower state indicates increased 

accessibility, with states 1-7 referring to open chromatin states. We annotated the minimum 

chromatin state across tissues to SNPs. The 15-core chromatin states as suggested by 

Roadmap are as follows: 1=Active Transcription Start Site (TSS); 2=Flanking Active TSS; 

3=Transcription at gene 5’ and 3’; 4=Strong transcription; 5= Weak Transcription; 6=Genic 

enhancers; 7=Enhancers; 8=Zinc finger  genes & repeats; 9=Heterochromatic; 

10=Bivalent/Poised TSS; 11=Flanking Bivalent/Poised TSS/Enh; 12=Bivalent Enhancer; 

13=Repressed PolyComb; 14=Weak Repressed PolyComb; 15=Quiescent/Low. Standardized 

SNP effect sizes were calculated for the most impactful SNPs by transforming the sample 

size-weighted meta-analysis Z score, in line with Zhu et al.49.  

Furthermore, using FUMA22, we linked lead and candidate SNPs to genes applying 

either of three gene mapping strategies: 1) positional mapping to align SNPs to genes based 

on their physical proximity (i.e., within a 10kb window), 2) expression quantitative trait locus 

(eQTL) mapping to match cis-eQTL SNPs to genes whose expression is associated with 

allelic variation at the SNP level, and 3) chromatin interaction mapping to link SNPs to genes 

based on three-dimensional DNA–DNA interactions between each SNP’s genomic region and 

nearby or distant genes. We evaluated eleven eQTL databases in FUMA which contains 

eQTL information from multiple human tissue types including several brain regions 

(http://fuma.ctglab.nl/tutorial#eQTLs). The eQTL analyses were corrected for multiple 

comparisons using an FDR threshold of 0.05. FUMA contains Hi-C data of over 21 tissue/cell 

types including human brain tissue (https://fuma.ctglab.nl/tutorial#chromatin-interactions). 

We used an FDR of 1 x 10-6 to define significant chromatin interactions based on the 

suggestion by Schmitt et al.50. FUMA was also used to identify previously reported GWAS 
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associations in the NHGRI-EBI catalog27 and to evaluate gene ontology (GO)51 gene-set 

enrichment for the genes mapped to all (candidate and lead) SNPs in the identified shared loci 

and genes nearest to lead SNPs in the shared loci at conjFDR<0.05. Finally, we performed 

pathway over-represented analyses of genes mapped to all (candidate and lead) SNPs in the 

shared loci using ConsensusPathDB52. ConsensusPathDB integrates interaction networks 

involving binary and complex protein-protein, genetic, metabolic, signaling, gene regulatory 

and drug-target interactions, along with biochemical pathways52. ConsensusPathDB integrates 

30 public interaction/pathway resources and has regular content updates, ensuring that this 

database stays up-to-date and comprehensive52. Other GWASs of overlapping loci between 

complex traits have also applied ConsensusPathDB for pathway analysis7, 53. Further, to 

assess patterns of gene expression in the brain, we performed analysis of mapped genes with 

reference to RNA-Seq data from Brainspan to selected spatio-temporal gene quantifications at 

p<0.05 after Bonferroni correction54-56. Weighted gene co-expression network analysis 

(WGCNA) was used to the RNA-Seq dataset from Brainspan to identify pre-determined 

clusters of co-expressed genes enriched with mapped genes for each phenotypic pair57. Spatio-

temporal expression heatmaps were generated for the identified clusters57.  Analyses were 

corrected for multiple comparisons. 

 

SUPPLEMENTARY RESULTS 

MiXeR results 

MiXeR results, including number of shared and unique trait-influencing variants and 

corresponding standard error, are presented in Figure 1 and Table 1. Using MiXeR we 

discovered extensive polygenic overlap between BIP and BMI, sharing 6.6k out of 12.5k 

variants involved, as illustrated by the Venn diagram (Figure 1a). The shared variants 

represent 81.5% of the genetic variants influencing BIP (8.1k) and 60% of the variants 
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underlying BMI (11.0k). MiXeR also revealed polygenetic overlap between BIP and SBP, 

sharing 1.8k out of 10.7k variants, as visualized in the Venn diagram (Figure 1b). The shared 

variants with SBP represent 22.2% of the genetic variants influencing BIP (8.1k), and 40.9% 

of variants influencing SBP (4.4k). Likewise, MiXeR identified polygenic overlap with DBP, 

sharing 1.6k out of 10.4K variants, as seen in the Venn diagram (Figure 1c). The shared 

variants with DBP represent 19.8% of the variants influencing BIP (8.1k) and 41.0% of the 

variants influencing DBP (3.9k). Finally, using MiXeR we discovered genetic overlap 

between BIP and CAD, sharing 0.9k out of 8.6k variants, as shown in the Venn diagram 

(Figure 1d). The overlapping variants constitute 11.1% of the genetic variants influencing BIP 

(8.1k) and 64.3% of the variants influencing CAD (1.4k).  

The MiXeR estimates adequately model the GWAS data, as indicated by the model-

based Q-Q plots following the actual Q-Q plots (Supplementary Figures 3-6). However, the 

model for BIP and CAD followed the actual Q-Q plots less closely at lower p-values 

(Supplementary Figure 6), suggesting caution in interpreting the data. A larger CAD GWAS 

is necessary to obtain more reliable MiXeR estimates. The negative log-likelihood plots also 

illustrated adequate model fit, as indicated by the lowest point on the curve at n=the estimated 

number of shared variants (Supplementary Figures 3-6). Further, AIC demonstrated sufficient 

power of the model (Supplementary MiXeR Table). The positive AIC values indicate that the 

MiXeR model is adequately powered to differentiate the estimated polygenic overlap from 

minimum possible overlap (best vs. min. overlap) and maximum possible overlap (best vs 

max. overlap) (Supplementary MiXeR Table). 

MiXeR was not applied for the other CVD phenotypes due to inadequate model fit, as 

demonstrated in the negative log-likelihood plots not showing a clear minimum on the curve 

(Supplementary Figures 7a-d). 
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Conditional FDR results  

We observed consistent enrichment in BIP conditional on associations with CVD phenotypes 

(Supplementary Figure 1), and enrichment in CVD phenotypes given associations with BIP 

(Supplementary Figure 2). This indicates polygenic overlap between BIP and CVD 

phenotypes. To increase statistical power, we leveraged the pleiotropic enrichment using 

condFDR analysis and re-ranked BIP SNPs conditional on their association with CVD 

phenotypes, and vice versa. At condFDR<0.01, we identified 52 loci associated with 

BIP conditional on their association with BMI (as previously reported7); 45 loci conditional 

on SBP; 42 loci conditional on DBP, 22 conditional on TC, 21 conditional on LDL, 22 

conditional on HDL, 32 loci conditional on T2D and 36 loci conditional on CAD 

(Supplementary Tables 1-8). Next, we identified multiple loci associated with CVD 

phenotypes conditional on associations with BIP, including 679 loci associated with BMI (as 

previously reported7), 920 loci associated with SBP, 937 loci associated with DBP and 196 

loci associated with TC (Supplementary Tables 9-12). Several loci were also associated with 

LDL (n=147), HDL (n=191), T2D (n=71) and CAD (n=130) conditional on BIP 

(Supplementary Tables 13-16).  

 

Effect directions of shared lead SNPs between BIP and CVD phenotypes 

We evaluated the directionality of allelic effects of the shared lead SNPs between the 

phenotypes by investigating their z-scores. As denoted by the sign of the effect sizes, there 

was a pattern of mixed effect directions of the shared SNPs between BIP and CVD risk 

factors (Table 2). We discovered the same effect direction in 36/69 loci (52%) in BMI and 

BIP as previously reported7, 26/53 loci (49.1%) in SBP and BIP, 25/53 loci (47.2%) in DBP 

and BIP, 4/15 loci (26.7 %) in TC and BIP, 6/13 loci (46.2%) in LDL and BIP, 4/10 loci 
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(40%) in HDL and BIP, 1/4 loci (25%) in T2D and BIP, and 7/10 loci (70%) in CAD and BIP 

(Supplementary tables 17-24).   

 

Gene-mapping results 

Gene-mapping of lead SNPs: Among SNPs shared between BIP and BMI (69), positional 

mapping aligned the SNPs to 48 genes, cis-eQTL mapping implicated 22 genes, and 

chromatin interaction mapping implicated no genes (Supplementary Table 17). Among lead 

SNPs shared with SBP (53), positional mapping linked the SNPs to 42 genes, cis-eQTL 

mapping indicated 28 genes, and chromatin interaction mapping implicated 4 genes 

(Supplementary Table 18). Among the SNPs shared with DBP (53), positional mapping 

linked the SNPs to 42 genes, cis-eQTL mapping linked the SNP to 30 genes, and chromatin 

interaction mapping implicated 5 genes (Supplementary Table 19). Of SNPs shared with TC 

(15), positional mapping aligned the SNPs to 13 genes, cis-eQTL mapping implicated 10 

genes, and chromatin interaction mapping implicated 2 genes (Supplementary Table 20). 

Among SNPs shared with LDL (13), positional mapping linked the SNPs to 10 genes, cis-

eQTL mapping indicated 8 genes, and chromatin interaction mapping implicated no genes 

(Supplementary Table 21). Among SNPs shared with HDL (10), positional mapping linked 

the SNPs to 6 genes, cis-eQTL mapping indicated 8 genes, and chromatin interaction mapping 

implicated one gene (Supplementary Table 22). Among the SNPs shared with T2D (4), 

positional mapping linked the SNP to 2 genes, cis-eQTL mapping indicated 3 genes, and 

chromatin interaction mapping implicated no genes (Supplementary Table 23). Among the 10 

SNPs shared with CAD, positional mapping linked the SNP to 6 gene, cis-eQTL mapping 

indicated 6 genes, and chromatin interaction mapping implicated one gene (Supplementary 

Table 24). Since chromatin interaction mapping and eQTL mapping were restricted to genes 
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in the brain, the current results implicated that most of the shared loci were linked to genes 

expressed in the brain. 

 Gene-mapping of candidate SNPs: Using FUMA, we linked the candidate SNPs in the 

shared loci between BIP and BMI to 226 protein-coding genes (Supplementary Table 34). 

Positional mapping linked the SNPs to 159 genes, cis-eQTL mapping linked the SNP to 124 

genes, and chromatin interaction mapping implicated 3 genes (Supplementary Table 34). 

FUMA linked the candidate SNPs in the shared loci between BIP and SBP to 226 protein-

coding genes (Supplementary Table 35). Positional mapping linked the SNPs to 159 genes, 

cis-eQTL mapping indicated 124 genes, and chromatin interaction mapping implicated 3 

genes (Supplementary Table 35). FUMA linked the candidate SNPs in the shared loci 

between BIP and DBP to 282 protein-coding genes (Supplementary Table 36). Positional 

mapping linked the SNPs to 205 genes, cis-eQTL mapping linked the SNP to 138 genes, and 

chromatin interaction mapping implicated 20 genes (Supplementary Table 36). FUMA linked 

the candidate SNPs in the shared between BIP and TC to 109 protein-coding genes 

(Supplementary Table 37). Positional mapping linked the SNPs to 66 genes, cis-eQTL 

mapping linked the SNP to 69 genes, and chromatin interaction mapping implicated no genes 

(Supplementary Table 37). FUMA linked the candidate SNPs in the shared between BIP and 

LDL to 74 protein-coding genes (Supplementary Table 38). Positional mapping linked the 

SNPs to 40 genes, cis-eQTL mapping linked the SNP to 53 genes, and chromatin interaction 

mapping implicated no genes (Supplementary Table 38). FUMA linked the candidate SNPs in 

the shared between BIP and HDL to 68 protein-coding genes (Supplementary Table 39). 

Positional mapping linked the SNPs to 35 genes, cis-eQTL mapping linked the SNP to 41 

genes, and chromatin interaction mapping implicated 6 genes (Supplementary Table 39). 

FUMA linked the candidate SNPs in the shared between BIP and T2D to 23 protein-coding 

genes (Supplementary Table 40). Positional mapping linked the SNPs to 14 genes, cis-eQTL 
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mapping linked the SNP to 16 genes, and chromatin interaction mapping implicated no genes 

(Supplementary Table 40). FUMA linked the candidate SNPs in the shared between BIP and 

CAD to 63 protein-coding genes (Supplementary Table 41). Positional mapping linked the 

SNPs to 34 genes, cis-eQTL mapping linked the SNP to 44 genes, and chromatin interaction 

mapping implicated one gene (Supplementary Table 41). In line with the genes mapped to 

lead SNPs, the majority of the genes mapped to candidate SNPs in the shared loci between 

BIP and CVD phenotypes were expressed in the brain. 
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Supplementary Figure 1. Polygenic overlap between BIP and CVD phenotype. Conditional 

Q-Q plots of nominal versus empirical −log10p values (corrected for inflation) in BIP below 

the standard GWAS threshold of p < 5 × 10−8 as a function of significance of association 

with CVD phenotype, at the level of p < 0.1, p < 0.01, p < 0.001, respectively. The blue lines 

indicate all SNPs. The dashed lines indicate the null hypothesis. The Q-Q plot for BIP and 

BMI is previously published in Bahrami et al. 20207. Abbreviations: BIP, bipolar disorder; 

CVD, cardiovascular disease; BMI, body mass index; SBP, systolic blood pressure; DBP, 

diastolic blood pressure; TC, total cholesterol; HDL, high-density lipoprotein cholesterol; 

LDL, low density lipoprotein cholesterol; T2D, type 2 diabetes; CAD, coronary artery 

disease. The conditional Q-Q plots build on the condFDR method. 
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Supplementary Figure 2. Polygenic overlap between BIP and CVD phenotype. Conditional 

Q-Q plots of nominal versus empirical −log10p values (corrected for inflation) in CVD 

phenotype below the standard GWAS threshold of p < 5 × 10−8 as a function of significance 

of association with BIP, at the level of p < 0.1, p < 0.01, p < 0.001, respectively. The blue 

lines indicate all SNPs. The dashed lines indicate the null hypothesis. The Q-Q plot for BIP 

and BMI is previously published in Bahrami et al. 20207. Abbreviations: BIP, bipolar 

disorder; CVD, cardiovascular disease; BMI, body mass index; SBP, systolic blood pressure; 

DBP, diastolic blood pressure; TC, total cholesterol; HDL, high-density lipoprotein 

cholesterol; LDL, low density lipoprotein cholesterol; T2D, type 2 diabetes; CAD, coronary 

artery disease. The conditional Q-Q plots build on the condFDR method. 
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Supplementary Figure 3. Venn Diagrams, conditional Q-Q plots, and negative log-likelihood plot, 

respectively. Venn diagrams of shared and unique trait-influencing variants, showing polygenic overlap (gray) 

between bipolar disorder (BIP) (blue) and body mass index (BMI) (orange). The numbers in the Venn 

diagram indicate the estimated quantity of trait-influencing variants (in thousands), explaining 90% of SNP 

heritability in each phenotype, followed by standard error. Conditional Q–Q plots of observed versus 

expected −log10 p-values in the primary trait as a function of significance of association with a secondary trait 

at the level of p < 0.1, p < 0.01, p < 0.001. Blue line indicates all SNPs. Dotted lines in blue, orange, green, 

and red indicate model predictions for each stratum. Black dotted line is the expected Q–Q plot under null 

hypothesis. Negative log-likelihood plot: minus log-likelihood calculated for the bivariate model as a function 

of 𝜋 parameter. The remaining parameters of the model were constrained to their fitted values. Figure 

generated from MiXeR. 
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  Supplementary Figure 4. Venn Diagrams, conditional Q-Q plots, and negative log-likelihood plot, respectively. 

Venn diagrams of shared and unique trait-influencing variants, showing polygenic overlap (gray) between 

bipolar disorder (BIP) (blue) and systolic blood pressure (SBP) (orange). The numbers in the Venn diagram 

indicate the estimated quantity of trait-influencing variants (in thousands), followed by standard error. 

Appearance of the Q-Q plot and negative log-likelihood plot are described below Supplementary Figure 3. 

Figure generated from MiXeR. 
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Supplementary Figure 5. Venn Diagrams, conditional Q-Q plots, and negative log-likelihood plot, 

respectively. Venn diagrams of shared and unique trait-influencing variants, showing polygenic overlap (gray) 

between bipolar disorder (BIP) (blue) and diastolic blood pressure (DBP) (orange). The numbers in the Venn 

diagram indicate the estimated quantity of trait-influencing variants (in thousands), followed by standard 

error. Appearance of the Q-Q plot and negative log-likelihood plot are described below Supplementary Figure 

3. Figure generated from MiXeR. 
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Supplementary Figure 6. Venn Diagrams, conditional Q-Q plots, and negative log-likelihood plot, 

respectively. Venn diagrams of shared and unique trait-influencing variants, showing polygenic overlap (gray) 

between bipolar disorder (BIP) (blue) and coronary artery disease (CAD) (orange). The numbers in the Venn 

diagram indicate the estimated quantity of trait-influencing variants (in thousands, followed by standard error. 

Appearance of the Q-Q plot and negative log-likelihood plot are described below Supplementary Figure 3. 

Figure generated from MiXeR. 
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Supplementary MiXeR Table. Results of cross-trait analysis 

with the MiXeR model 

Trait 1 Trait 2                                 AIC 

best vs min. overlap  best vs max. overlap  

BIP BMI 52.14 5.69 

BIP SBP 23.21 35.21 

BIP DBP 17.68 36.64 

BIP CAD 6.00 3.69 

AIC - results from Akaike information criterion, showing AIC 

calculated for the full versus reduced bivariate MiXeR model, 

constrained to minimal feasible polygenic overlap (“best vs min.”) 

or to the complete polygenic overlap (“best vs max.”). A positive 

AIC value provides evidence for the polygenic overlap, shown in 

the MiXeR Venn diagram. BIP: Bipolar disorder; BMI, body mass 

index; SBP, systolic blood pressure; DBP, diastolic blood pressure; 

CAD, coronary artery disease. 
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Supplementary Figure 7a-d. Venn Diagrams, conditional Q-Q plots, and negative log-likelihood plot, 

respectively. Venn diagrams of shared and unique trait-influencing variants, showing polygenic overlap (gray) 

between bipolar disorder (BIP) (blue) and a) type 2 diabetes (T2D) (orange), b) total cholesterol (TC) 

(orange), c) low-density lipoprotein (LDL) (orange) and d) high-density lipoprotein (HDL) (orange). The 

numbers in the Venn diagram indicate the estimated quantity of trait-influencing variants (in thousands), 

explaining 90% of SNP heritability in each phenotype, followed by standard error. Conditional Q–Q plots of 

observed versus expected −log10 p-values in the primary trait as a function of significance of association with 

a secondary trait at the level of p < 0.1, p < 0.01, p < 0.001. Blue line indicates all SNPs. Dotted lines in blue, 

orange, green, and red indicate model predictions for each stratum. Black dotted line is the expected Q–Q plot 

under null hypothesis. Negative log-likelihood plot: minus log-likelihood calculated for the bivariate model as 

a function of 𝜋 parameter. The remaining parameters of the model were constrained to their fitted values. 

Figure generated from MiXeR. 
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d) BIP & TC 

b) BIP & SBP 

c) BIP & DBP 

a) BIP & BMI 
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  e) BIP & LDL f) BIP & HDL 

g) BIP & T2D h) BIP & CAD 
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Supplementary Figure 8. Spatio-temporal gene expression for all genes mapped to candidate SNPs 

associated with bipolar disorder (BIP) and each CVD phenotype, including a) body mass index (BMI), 

b) systolic blood pressure (SBP), c) diastolic blood pressure (DBP), d) total cholesterol (TC), e) low-

density lipoprotein (LDL) cholesterol, f) high-density lipoprotein (HDL) cholesterol, g) type 2 diabetes 

(T2D), h) coronary artery disease (CAD). Period of development on the x axis and neuroanatomical 

region on the y axis. We used RNA-Seq data from Brainspan and Weighted gene co-expression network 

analysis. Brain regions abbreviations: S1C: Primary Somatosensory Cortex; STC: Superior Temporal 

Cortex; ITC: Inferior Temporal Cortex; MFC: Medial Prefrontal Cortex; OFC: Orbital Prefrontal Cortex; 

M1C: Primary Motor Cortex; V1C: Primary Visual Cortex; VFC: Ventrolateral Prefrontal Cortex; IPC: 

Posterior Inferior Parietal Cortex; A1C: Primary Auditory Cortex; DFC: Dorsolateral Prefrontal Cortex; 

AMY: Amygdala; HIP: Hippocampus; CBC: Cerebellar Cortex; MD: Mediodorsal Nucleus of the 

Thalamus; STR: Striatum. 

 



30 
 

References  

1. Stahl EA et al. Genome-wide association study identifies 30 loci associated with bipolar 
disorder. Nature genetics 2019; 51(5): 793-803. 

 
2. Turcot V et al. Protein-altering variants associated with body mass index implicate pathways 

that control energy intake and expenditure in obesity. Nat Genet 2018; 50(1): 26-41. 

 
3. Scott RA et al. An Expanded Genome-Wide Association Study of Type 2 Diabetes in 

Europeans. Diabetes 2017; 66(11): 2888-2902. 

 
4. Willer CJ et al. Discovery and refinement of loci associated with lipid levels. Nat Genet 2013; 

45(11): 1274-1283. 

 
5. Evangelou E et al. Genetic analysis of over 1 million people identifies 535 new loci associated 

with blood pressure traits. Nature genetics 2018; 50(10): 1412-1425. 

 
6. Nelson CP et al. Association analyses based on false discovery rate implicate new loci for 

coronary artery disease. Nat Genet 2017; 49(9): 1385-1391. 

 
7. Bahrami S et al. Shared Genetic Loci Between Body Mass Index and Major Psychiatric 

Disorders: A Genome-wide Association Study. JAMA Psychiatry 2020. 

 
8. Frei O et al. Bivariate causal mixture model quantifies polygenic overlap between complex 

traits beyond genetic correlation. Nature communications 2019; 10(1): 2417-2417. 

 
9. Holland D et al. Beyond SNP heritability: Polygenicity and discoverability of phenotypes 

estimated with a univariate Gaussian mixture model. PLOS Genetics 2020; 16(5): e1008612. 

 
10. Bulik-Sullivan BK et al. LD Score regression distinguishes confounding from polygenicity in 

genome-wide association studies. Nature Genetics 2015; 47(3): 291-295. 

 
11. Benjamini Y, Hochberg Y. Controlling the False Discovery Rate: A Practical and Powerful 

Approach to Multiple Testing.  Journal of the Royal Statistical Society. Series B 
(Methodological), vol. 57. Blackwell Publishing1995, pp 289-300. 

 
12. Efron B. Size, power and false discovery rates. The Annals of Statistics 2007; 35(4): 1351–

1377. 

 
13. Purcell S et al. PLINK: a tool set for whole-genome association and population-based linkage 

analyses. American journal of human genetics 2007; 81(3): 559-575. 

 
14. Schweder T, Spjotvoll E. Plots of P-Values to Evaluate Many Tests Simultaneously. Biometrika 

1982; 69(3): 493-502. 



31 
 

 
15. Andreassen OA et al. Improved detection of common variants associated with schizophrenia 

by leveraging pleiotropy with cardiovascular-disease risk factors. American journal of human 
genetics 2013; 92(2): 197-209. 

 
16. Andreassen OA et al. Improved detection of common variants associated with schizophrenia 

and bipolar disorder using pleiotropy-informed conditional false discovery rate. PLoS genetics 
2013; 9(4): e1003455. 

 
17. Andreassen OA et al. Genetic pleiotropy between multiple sclerosis and schizophrenia but 

not bipolar disorder: differential involvement of immune-related gene loci. Molecular 
psychiatry 2015; 20(2): 207-214. 

 
18. Andreassen OA, Thompson WK, Dale AM. Boosting the power of schizophrenia genetics by 

leveraging new statistical tools. Schizophrenia bulletin 2014; 40(1): 13-17. 

 
19. Andreassen OA et al. Abundant genetic overlap between blood lipids and immune-mediated 

diseases indicates shared molecular genetic mechanisms. PloS one 2015; 10(4): e0123057. 

 
20. Nichols T, Brett M, Andersson J, Wager T, Poline JB. Valid conjunction inference with the 

minimum statistic. Neuroimage 2005; 25(3): 653-660. 

 
21. Schwartzman A, Lin X. The effect of correlation in false discovery rate estimation. Biometrika 

2011; 98(1): 199-214. 

 
22. Watanabe K, Taskesen E, van Bochoven A, Posthuma D. Functional mapping and annotation 

of genetic associations with FUMA. Nat Commun 2017; 8(1): 1826. 

 
23. The 1000 Genomes Project Consortium. A global reference for human genetic variation. 

Nature 2015; 526(7571): 68-74. 

 
24. Locke AE et al. Genetic studies of body mass index yield new insights for obesity biology. 

Nature 2015; 518(7538): 197-206. 

 
25. Bulik-Sullivan B et al. An atlas of genetic correlations across human diseases and traits. 

Nature Genetics 2015; 47(11): 1236-1241. 

 
26. Mullins N et al. Genome-wide association study of more than 40,000 bipolar disorder cases 

provides new insights into the underlying biology. Nature Genetics 2021; 53(6): 817-829. 

 
27. MacArthur J et al. The new NHGRI-EBI Catalog of published genome-wide association studies 

(GWAS Catalog). Nucleic Acids Res 2017; 45(D1): D896-D901. 

 



32 
 

28. Smeland OB et al. Genome-wide analysis reveals extensive genetic overlap between 
schizophrenia, bipolar disorder, and intelligence. Mol Psychiatry 2019. 

 
29. Drange OK et al. Genetic Overlap Between Alzheimer's Disease and Bipolar Disorder 

Implicates the MARK2 and VAC14 Genes. Front Neurosci 2019; 13: 220. 

 
30. O'Connell KS et al. Identification of genetic overlap and novel risk loci for attention-

deficit/hyperactivity disorder and bipolar disorder. Mol Psychiatry 2019. 

 
31. Andreassen OA et al. Improved detection of common variants associated with schizophrenia 

and bipolar disorder using pleiotropy-informed conditional false discovery rate. PLoS Genet 
2013; 9(4): e1003455-e1003455. 

 
32. Lee PH et al. Genomic Relationships, Novel Loci, and Pleiotropic Mechanisms across Eight 

Psychiatric Disorders. Cell 2019; 179(7): 1469-1482.e1411. 

 
33. Genomic Dissection of Bipolar Disorder and Schizophrenia, Including 28 Subphenotypes. Cell 

2018; 173(7): 1705-1715.e1716. 

 
34. Hou L et al. Genome-wide association study of 40,000 individuals identifies two novel loci 

associated with bipolar disorder. Hum Mol Genet 2016; 25(15): 3383-3394. 

 
35. Green EK et al. Replication of bipolar disorder susceptibility alleles and identification of two 

novel genome-wide significant associations in a new bipolar disorder case-control sample. 
Mol Psychiatry 2013; 18(12): 1302-1307. 

 
36. Ikeda M et al. A genome-wide association study identifies two novel susceptibility loci and 

trans population polygenicity associated with bipolar disorder. Mol Psychiatry 2018; 23(3): 
639-647. 

 
37. Qi X et al. An integrative analysis of genome-wide association study and regulatory SNP 

annotation datasets identified candidate genes for bipolar disorder. Int J Bipolar Disord 2020; 
8(1): 6. 

 
38. Chen DT et al. Genome-wide association study meta-analysis of European and Asian-ancestry 

samples identifies three novel loci associated with bipolar disorder. Mol Psychiatry 2013; 
18(2): 195-205. 

 
39. Ferreira MA et al. Collaborative genome-wide association analysis supports a role for ANK3 

and CACNA1C in bipolar disorder. Nature genetics 2008; 40(9): 1056-1058. 

 
40. Psychiatric GCBDWG. Large-scale genome-wide association analysis of bipolar disorder 

identifies a new susceptibility locus near ODZ4. Nat Genet 2011; 43(10): 977-983. 

 



33 
 

41. Gordovez FJA, McMahon FJ. The genetics of bipolar disorder. Mol Psychiatry 2020; 25(3): 
544-559. 

 
42. Rødevand L et al. Polygenic overlap and shared genetic loci between loneliness, severe 

mental disorders, and cardiovascular disease risk factors suggest shared molecular 
mechanisms. Translational Psychiatry 2021; 11(1): 3. 

 
43. Wu Y et al. Multi-trait analysis for genome-wide association study of five psychiatric 

disorders. Transl Psychiatry 2020; 10(1): 209. 

 
44. Li HJ et al. Novel Risk Loci Associated With Genetic Risk for Bipolar Disorder Among Han 

Chinese Individuals: A Genome-Wide Association Study and Meta-analysis. JAMA Psychiatry 
2021; 78(3): 320-330. 

 
45. Muntané G et al. The shared genetic architecture of schizophrenia, bipolar disorder and 

lifespan. Human Genetics 2021; 140(3): 441-455. 

 
46. Kircher M et al. A general framework for estimating the relative pathogenicity of human 

genetic variants. Nat Genet 2014; 46(3): 310-315. 

 
47. Boyle AP et al. Annotation of functional variation in personal genomes using RegulomeDB. 

Genome Res 2012; 22(9): 1790-1797. 

 
48. Roadmap Epigenomics C et al. Integrative analysis of 111 reference human epigenomes. 

Nature 2015; 518(7539): 317-330. 

 
49. Zhu Z et al. Integration of summary data from GWAS and eQTL studies predicts complex trait 

gene targets. Nat Genet 2016; 48(5): 481-487. 

 
50. Schmitt AD et al. A Compendium of Chromatin Contact Maps Reveals Spatially Active Regions 

in the Human Genome. Cell Rep 2016; 17(8): 2042-2059. 

 
51. Ashburner M et al. Gene ontology: tool for the unification of biology. The Gene Ontology 

Consortium. Nat Genet 2000; 25(1): 25-29. 

 
52. Kamburov A, Stelzl U, Lehrach H, Herwig R. The ConsensusPathDB interaction database: 2013 

update. Nucleic Acids Research 2012; 41(D1): D793-D800. 

 
53. Bahrami S et al. Genetic loci shared between major depression and intelligence with mixed 

directions of effect. Nature Human Behaviour 2021. 

 
54. Johnson MB et al. Functional and evolutionary insights into human brain development 

through global transcriptome analysis. Neuron 2009; 62(4): 494-509. 



34 
 

 
55. Colantuoni C et al. Temporal dynamics and genetic control of transcription in the human 

prefrontal cortex. Nature 2011; 478(7370): 519-523. 

 
56. Kang HJ et al. Spatio-temporal transcriptome of the human brain. Nature 2011; 478(7370): 

483-489. 

 
57. Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. 

BMC Bioinformatics 2008; 9: 559. 

 

 

 


