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Supplementary Methods  
 

Covariate selection. We assessed variables related to transmission intensity, malaria intervention coverage, climate 
and population that we hypothesized may be associated with antimalarial drug resistance and for which we were able 
to obtain data at the relevant scale (more information in Table S1). To account for correlated variables in the analysis, 
we calculated pairwise correlations using the Spearman rank cross-correlation coefficients and collinear variables (rs 

>0.50) were excluded based on model fit; if the coefficients of any pair exceeded 0.50, we used the covariate(s) 
producing the lowest deviance information criterion (DIC) in the Bayesian models. More specifically, seasonality was 
collinear with rainfall (r= -0.59) but contributed better fit. City accessibility was collinear with population density (r= 
-0.60), road quality (r= 0.56), and housing quality (r= -0.66), but produced the best model fit alone compared to 
inclusion of any combination of the other three variables. All uncorrelated variables were included in the final 
models.  

Assessment of changes in prevalence over time. We determined the impact of covariates on the change in marker 
selection over time while accounting for estimation uncertainty from our logistic regression modeling. For a selected 
AD, we calculated the difference in prevalence estimates between the two time periods for all collected posterior 
samples, one posterior sample at a time. This process was repeated for all ADs and yielded 10,000 posterior samples 
of the change in prevalence over time in each AD. For a single set of differences across all ADs (i.e., one of the 
posterior samples), we fit a linear regression model with CAR random effects to determine which covariates 
explained variability in the estimated differences while also accounting for spatial correlation in the data. The model 
is given as: 

𝑍!
(#)~N(𝜇! , 𝜎%) and 𝜇! = x!&𝛽 + 𝜓! 

where 𝑍!
(#) is the difference in prevalence estimates from AD k and posterior sample j, and 𝜓! and x! have been 

previously described. We ran this analysis for a random subset of 100 of the posterior samples and estimated the 
regression parameters of interest and report the mean (across all 100 fitted models) posterior mean estimate as well as 
the mean upper and lower 95% credible intervals for all regression parameters.  

 

 

 
 

 

 

 

 

 

 

 
 
 
 
 
 
  



Table S1. Population-level covariates hypothesized to be associated with antimalarial drug resistance. The table 
includes covariate names that are used in the main text, details and sources, as well as the possible directions and 
mechanisms of association with drug resistance, holding all other variables constant. WT=Wild-type; AL=artemether-
lumefantrine; AS–AQ=artesunate-amodiaquine. AD= First-level administrative division.  

Covariate 
name Description, units, source Aggregation 

scale, year 

Hypothesized 
association w/ 
frequency of 
mutant genotypes 

Hypothesized mechanism  
Included 
in spatial 
model 

PfPR2–10 
P. falciparum parasite rate in children 
ages 2–10 years as a measure of 
transmission intensity (proportion) 1,2 

AD (2006, 
2014) Inverse 

Increased parasite diversity 
leads to genetic recombination; 
population immunity may 
decrease drug pressure12 

Yes 

PvPR0–99 
P. vivax parasite rate in individuals ages 
0–99 years (proportion) 1,2 

AD (2006, 
2014) Positive Availability of chloroquine to 

treat P. vivax Yes 

Rainfall Annual precipitation (mm)3,4 
AD (30-year 
average, 1970–
2000)  

Inverse See PfPR2–10 No 

Rainfall 
seasonality 

Percentage of precipitation variability, 
also known as the coefficient of variation, 
calculated as the ratio of the standard 
deviation of the monthly total 
precipitation to the mean monthly total 

precipitation (%)*3,4 

AD (30-year 
average, 1970–
2000) 

Inverse 
Dry season w/o drug pressure 
leads to resurgence of WT 
alleles13,14 

Yes 

ACT coverage 
Proportion of febrile, rapid-diagnostic-test 
(RDT) positive 0–5-year-old children 
treated with ACTs (proportion)1,5 

National (2006, 
2014) 

Inverse (AL); 
Positive (AS-AQ) 

AL selects for WT; AS-AQ 
selects for mutation15 Yes 

ITN coverage Insecticide-treated bed net (ITN) coverage 
(proportion)1,6 

AD (2006, 
2014) 

Inverse (AL); 
Positive (AS-AQ) 

Potentially linked to 
intervention allocation and 
ACT coverage 

Yes 

Population 
density 

Population density adjusted by the United 
Nations World Population Prospects (log-
transformed, persons per square km)7 

AD (2005, 
2015) Positive See PfPR2–10 No 

City 
accessibility 

Travel time to nearest city (log-
transformed, min)1,8 AD (2015) Unknown Indicator of socioeconomic 

status and access to treatment16 Yes 

Housing quality 
Prevalence of improved housing: access to 
adequate water and sanitation, sufficient 
living area, durable construction (%)1,9 

AD (2000, 
2015) Unknown Indicator of socioeconomic 

status and access to treatment16 No 

Road quality Land-based travel speed (min)1,8 AD (2015) Unknown Indicator of socioeconomic 
status and access to treatment16 No 

First-line drug 
policy 

National first-line drug policy for 
confirmed P. falciparum malaria**10,11 National (2010) Inverse (AL); 

Positive (AS-AQ) 
AL selects for WT; AS-AQ 
selects for mutation15 Yes 

* There are multiple proxies to represent seasonality. This particular metric  may not exactly reflect areas receiving Seasonal Malaria Chemoprevention.  
** For the policy in effect for the longest duration during the study period, with an average duration of 13 years. Once implemented, most countries 
(n=38/42) never changed their first-line ACT policy during the study period (see Fig. S2).  

 

 

 

 

 

 



Table S2. Estimated prevalence for each marker and time period, aggregated by first-line therapy. The table shows 
the average fitted/estimated prevalence and standard deviation for all administrative divisions in the respective time period 
for countries using AL, AS-AQ, or both/other as first-line treatment, respectively.  

Marker Time period Countries using AL 
(mean, SD) 

Countries using AS-AQ 
(mean, SD) 

Countries using 
both/other (mean, SD) 

pfcrt 76T 
2004–2009 0.69 (0.21) 0.75 (0.20) 0.66 (0.15) 

2010–2018 0.44 (0.19) 0.53 (0.16) 0.41 (0.14) 

pfmdr1 86Y 
2004–2009  0.62 (0.12) 0.67 (0.12) 0.57 (0.13) 

2010–2018 0.20 (0.13) 0.30 (0.14) 0.22 (0.13) 

pfmdr1 184F 
2004–2009  0.48 (0.15) 0.51 (0.12) 0.59 (0.12) 

2010–2018 0.47 (0.15) 0.46 (0.15) 0.69 (0.10) 

pfmdr1 1246Y 
2004–2009  0.26 (0.25) 0.30 (0.20) 0.10 (0.13) 

2010–2018 0.10 (0.09) 0.05 (0.04) 0.06 (0.07) 

 

  



Figure S1. Observed prevalence of each mutation by first-level administrative division in 2004–2009 (top row) and 
2010–2018 (bottom row), with black dots representing individual survey locations. Colors correspond to the degree of 
prevalence and were calculated as the weighted averages of all point surveys within a respective first-level administrative 
division and time period.  

 

 

  



 
Figure S2. Timeline of the implementation of ACTs as national first-line antimalarial policies for the countries included 
in this analysis and study period. Dashed arrows with yellow stars represent changes to first-line ACT policy. Countries 
are color-coded by first-line ACT for ease of reference: AL (turquoise), AS-AQ (red), or both/other (blue). Information 
extracted from malaria country profiles (WHO): https://www.who.int/malaria/publications/country-profiles/en/. Our study 
categorized countries by first-line policy (AL, AS-AQ, or both/other) based on the first-line regimen used with the longest 
duration and widest coverage in the study period. Therefore, Sierra Leone was classified as AS-AQ, Tanzania as AL, and 
Sudan, Somalia and Mali as both/other.  



Figure S3. Covariates considered for model inclusion. Data (raster or polygon) were aggregated by first-level 
administrative division, when possible, or by country.  

 



 
Figure S4. Posterior frequency estimates and standard deviations for 2004-2009 and 2010-2018 for each marker by first-
level administrative divisions.  

 

 

 
Figure S5. Posterior regression parameter estimates (median and 95% credible interval) for covariates used in spatial 
models estimating the frequency of individual molecular markers and time periods. Continuous variables are scaled for 
ease of comparison. Pol1= AS-AQ, Pol2= Both/other, Reference=AL. 

 

 

  



 

Figure S6. Difference in fitted/estimated prevalence from 2004–2009 to 2010–2018 by first-level administrative division. 
Red=decrease in prevalence, green= increase in prevalence (top row) with boxplots showing the distribution of 
fitted/estimated prevalence for all administrative divisions from 2004–2009 to 2010–2018 for each marker (bottom row).  

  

 

 

 
Figure S7. Spearman rank cross-correlation coefficients for the change in prevalence for each pair of molecular markers 
using posterior prevalence distributions. Using univariate linear regression, every pair exhibited significant (p<0.05) 
associations. Notably, pfmdr1 86Y is significantly positively correlated with pfmdr1 184F, whereas pfmdr1 1246Y is 
positively correlated with pfmdr1 Y184 (p<0.0001). In multivariate regressions, a decrease in pfcrt 76T was associated 
with a decrease in pfmdr1 86Y (p<0.0001), increase in 184F (p<0.0001), and non-significant decrease in 1246Y (p=0.18). 

 



 
Figure S8. Posterior regression parameter estimates (median and 95% credible interval) for covariates used in spatial 
models estimating the change of individual molecular markers from 2004–2009 to 2010–2018. Continuous variables are 
scaled for ease of comparison. Pol1= AS-AQ, Pol2= Both/other, Reference=AL.  

 

 

 

Figure S9. Histograms of the difference in fitted/estimate prevalence for first-level administrative divisions stratified by 
drug regimen. Colors correspond to first-line drug regimen, with red representing AL, green representing AS-AQ, and 
blue representing both/other, with lines displaying respective density curves.  

 

 

 

 
Figure S10. Posterior probability of selecting the region with the highest relative magnitude of change over 10,000 model 
iterations, averaged across all three markers. For AS-AQ, the city/region of Pointe-Noire in Congo is shown in the insets.  
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