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SUPPLEMENTARY METHODS 

 
Protein production and surface plasmon resonance 

TCRs and biotinylated pMHCI molecules were refolded and purified as described previously 

(1). Surface plasmon resonance analysis was performed using a BIAcore 3000 (GE 

Healthcare). Biotinylated pMHCI proteins (200–500 response units) were immobilized to 

streptavidin, which was chemically linked to the surface of a CM5 sensor chip. For 

equilibrium analyses, ten serial dilutions of each TCR were injected over the surface of the 

sensor chip at 25°C. Results were analyzed using BIAevaluation version 3.1 (GE 

Healthcare), Excel (Microsoft), and Origin version 6.1 (OriginLab). Equilibrium binding 

constant (KD) values were calculated using a nonlinear curve fit (y = [P1x] / [P2+x]). 

!

 
 
 
  



Supplementary Table S1. TCR/pMHCI dissociation constants and kinetics for agonists 
of the ILA1 TCR. 
  

MHCI Epitope kon (M−1s−1) koff (s−1) KD (μM) 

HLA-A*0201 ILAKYLHWL (5Y) 1.3 × 103 0.32 242 ± 20 (2) 

HLA-A*0201 ILAKFLHWL (ILA) 4.5 × 103 0.15 34 ± 2 (2) 

HLA-A*0201 ILGKFLHWL (3G) 1.6 × 104 0.05 3.7 ± 0.2 (2) 

HLA-A*0201 ILGKFLHRL (3G8R) 3.0 × 104 0.16 1.0 ± 0.1 (2)* 

 

*Remeasured here as kon = 9.5 x 103 M−1s−1, koff = 0.098 s−1, and KD = 10.3 μM.!

 

 
 
 
 



 
Supplementary Figure S1. CD8 reorders the agonist hierarchy of peptide ligands that 
induce the expression of CD69 via the MEL5 TCR. MEL5 TCR+ CD8+ J.RT3-T3.5 cells 

were activated for 6 h with C1R cells expressing comparable levels of HLA-A2 

D227K/T228A (KO), wildtype HLA-A2 (WT), or HLA-A2 A245V/Kb (VKb) pulsed with various 

concentrations of 3T (blue), ELA (black), or FAT (red). Surface expression of CD69 was 

measured via flow cytometry. (A–C) Experimental replicate 1. (D–F) Experimental replicate 

2. (G–I) Experimental replicate 3. (J–L) Experimental replicate 4. 

!
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Supplementary Figure S2. CD8 reorders the agonist hierarchy of peptide ligands that 
induce the expression of CD69 via the MEL5 TCR. Experimental details as in 

Supplementary Figure S1. Curves were fitted to the same data in Mathematica.!
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Supplementary Figure S3. Enhanced coreceptor interactions reduce the potency of a 
strong agonist recognized via the MEL5 TCR. (A) Box and whisker plots summarizing the 

data shown in Figure 1A for FAT. (B) Box and whisker plots summarizing the data shown in 

Figure 2A for FAT. 
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Supplementary Figure S4. CD8 reorders the agonist hierarchy of peptide ligands that 
induce the production of IFN-g via the MEL5 TCR. Clonal MEL5 CD8+ T cells were 

activated for 4 h with C1R cells expressing comparable levels of HLA-A2 D227K/T228A 

(KO), wildtype HLA-A2 (WT), or HLA-A2 Kb (Kb) pulsed with various concentrations of 3T 

(blue), ELA (black), or FAT (red). Secretion of IFN-g was measured via ELISA. (A–C) 

Experimental replicate 1. (D–F) Experimental replicate 2. (G–I) Experimental replicate 3. (J–

L) Experimental replicate 4. Each data point represents the mean of duplicate 

measurements. Error bars show SD. 
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Supplementary Figure S5. CD8 reorders the agonist hierarchy of peptide ligands that 
induce the production of IFN-g via the MEL5 TCR. Experimental details as in 

Supplementary Figure S4. Curves were fitted to the same data in Mathematica. 
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Supplementary Figure S6. CD8 reorders the agonist hierarchy of peptide ligands that 
induce the production of IFN-g and MIP1-β via the MEL5 TCR. (A, B) Surface plasmon 

resonance curves showing equilibrium binding of HLA-A2 complexed with ILAGIGILTV (A) 

or ELAGIGILTV (B) to the MEL5 TCR. (C–H) Clonal MEL5 CD8+ T cells were activated for 4 

h with C1R cells expressing comparable levels of HLA-A2 D227K/T228A (KO), wildtype 

HLA-A2 (WT), or HLA-A2 Kb (Kb) pulsed with various concentrations of ELA (black) or 1I 

(green). Secretion of IFN-g (C–E) or MIP-1β (F–H) was measured via ELISA. Each data 

point represents the mean of duplicate measurements. Error bars show SD. 
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Supplementary Figure S7. CD8 reorders the agonist hierarchy of peptide ligands that 
induce the production of IFN-g via the ILA1 TCR. Clonal ILA1 CD8+ T cells were activated 

for 4 h with C1R cells expressing comparable levels of HLA-A2 D227K/T228A (KO), wildtype 

HLA-A2 (WT), or HLA-A2 Kb (Kb) pulsed with various concentrations of 5Y (blue), ILA 

(black), 3G (red), or 3G8R (green). Secretion of IFN-g was measured via ELISA. (A–D) Data 

are shown for each peptide. (E–G) Data are shown for each target. Each data point 

represents the mean of duplicate measurements. Error bars show SD. 
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Supplementary Figure S8. CD8 reorders the agonist hierarchy of peptide ligands that 
induce the production of MIP-1β via the ILA1 TCR. Clonal ILA1 CD8+ T cells were 

activated for 4 h with C1R cells expressing comparable levels of HLA-A2 D227K/T228A 

(KO), wildtype HLA-A2 (WT), or HLA-A2 Kb (Kb) pulsed with various concentrations of 5Y 

(blue), ILA (black), 3G (red), or 3G8R (green). Secretion of MIP-1β was measured via 

ELISA. (A–D) Data are shown for each peptide. (E–G) Data are shown for each target. Each 

data point represents the mean of duplicate measurements. Error bars show SD.!  
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SUPPLEMENTARY MATHEMATICAL & STATISTICAL CONSIDERATIONS 

 

Introduction 

The mechanism by which the hierarchy of ligand potency with respect to a given TCR 

clonotype is reordered depends in essence on the propositions that: (i) the dependence of 

functional sensitivity on the TCR/pMHCI dissociation rate is non-monotone (i.e., there is an 

optimum dissociation rate value, such that the clonotype at hand is most responsive to 

ligands exhibiting this value); and (ii) the pMHCI/CD8 interaction results in a diminishment of 

this dissociation rate. If one is prepared to accept (i) and (ii) as empirical facts attested in the 

experimental literature, then the “graphical proof” as given in the main text suffices (Figure 

3). Here, we delve somewhat deeper into the background of these two fundamental 

propositions (3). We should perhaps emphasize from the outset that the focusing 

mechanism depends solely on (i) and (ii), and that any more specific assumptions are made 

only by way of further explication, leaving open the possibility of alternative detailed models 

underlying (i) and (ii) and, by extension, the focusing mechanism. 

 

The CD8 boost 

We begin by restating proposition (i) more formally. Let 𝜆  denote the TCR/pMHCI 

dissociation rate and 𝜆# the optimal value, for which the functional sensitivity 𝑝EC%# attains 

its maximum value, and define 𝑥 = ln{𝜆/𝜆#}. A Taylor expansion about this maximum may 

be written as follows: 

 

(*)  𝑝EC%#(𝑥) = 𝑝EC%#
∘ − 𝑐2𝑥2 + 𝑐4𝑥4 + 𝑐5𝑥5 +⋯, 

 

where 𝑐2 > 0 and the subsequent 𝑐4, 𝑐5, … may be of either sign, and 𝑝EC%#
∘  is the 𝑝EC%# at 

𝑥 = 0 (i.e., the optimum). Retaining only the leading terms to second order1, let us consider 

the change in 𝑝EC%# when 𝑥 is diminished by a certain amount 𝜉, as per proposition (ii). 

Thus, 𝑥 → 𝑥 − 𝜉 with 𝜉 > 0. We find that: 

 

                                                
1The truncations to second order in (*) and (**) are not essential, but working only to second-order, we are able to 

exhibit the main qualitative features of the theory through particularly simple formulae. Inclusion of higher-order 

terms results in lengthier, more cumbersome expressions and requires a numerical approach, which although 

straightforward, entails technical intricacies that we propose to leave aside for the present purposes. 



  Δ𝑝EC%# = 2𝑐2𝜉(𝑥 − 𝜉/2), 

 

which shows that Δ𝑝EC%# is negative when 𝑥 = 0. In other words, a ligand that is optimal 

before CD8 enhancement is applied becomes less optimal, whereas a ligand that is initially 

suboptimal at 𝑥 = 𝜉 becomes optimal (with Δ𝑝EC%# = 𝑐2𝜉2) and a ligand initially at 𝑥 = 𝜉/2 

does not change (Δ𝑝EC%# = 0). More generally, only ligands that are initially suboptimal 

(with 𝑥 > 𝜉/2) experience an enhancement in functional sensitivity. Reordering of the ligand 

sensitivity hierarchy occurs when the differences in 𝑝EC%# change sign as the CD8 effect is 

applied, which requires: 

 

(Con)  0 < 𝑥@ + 𝑥2 < 𝜉/2, 

 

where 𝑥@ and 𝑥2 are the values before enhancement. When both 𝑥@ and 𝑥2 are negative, 

such that the ligands are heteroclitic as defined in reference (4), reordering will never occur, 

and when both are positive, as is typically the case, reordering will only occur if the ligands 

are sufficiently close to optimal initially, with the magnitude of the effect (𝜉) governing the 

susceptible range. If we take the higher-order terms into account, the expressions become 

more involved, but the essential qualitative behavior remains the same. 

 

Uniformity of the CD8 boost 

We have assumed that all ligands are modified by an equal amount 𝜉. However, it is 

possible that different ligands are affected differently, and one obtains hierarchy reordering 

more readily assuming different values for 𝜉. The conservative choice is therefore to focus 

on the case where 𝜉 is the same for all ligands. TCR/pMHCI interactions will often be 

discussed in terms of being more or less strongly dependent on the pMHCI/CD8 interaction, 

which could be taken to indicate differences in 𝜉, but such apparent variations in “CD8 

dependence” will occur even when 𝜉 is the same for all ligands. The reason is that for very 

weak ligands, we may consider the limiting case 𝑥 ≫ 𝜉, in which Δ𝑝EC%# ≈ 2𝑐2𝜉𝑥 (i.e., weak 

ligands receive a boost proportional to 𝑥, which essentially measures how weak they are), 

whereas for strong suboptimal ligands (𝑥 ≈ 𝜉/2) , only a weak (if any) CD8 effect is 

observed, and for near-optimal ligands (𝑥 ≈ 0), we find that Δ𝑝EC%# ≈ −𝑐2𝜉2 (i.e., negative 

but smaller in magnitude compared with weak ligands). 

 

TCR susceptibility to CD8 enhancement 



A related but distinct question is whether 𝜉 can be considered to have a universal value 

across the TCR repertoire. The answer to this question has no direct bearing on the main 

message of the present paper. It is nonetheless interesting to hypothesize that some TCRs 

may have greater 𝜉 values than others, and that this parameter may then be regarded as 

expressing a TCR’s susceptibility to CD8 enhancement. A small 𝜉 means that weak ligands 

receive a less pronounced coreceptor boost and, moreover, the range of ligands that may 

exhibit potency reordering will be more restricted (recall the condition 0 < 𝑥@ + 𝑥2 < 𝜉/2 

derived above). On the other hand, a TCR with a relatively large 𝜉 will be more responsive to 

the “CD8 assist”, and reordering of the agonist hierarchy may occur among a larger set of 

potential ligands. 

 

Focusable ligands vis-à-vis the peptide universe 

Potency reordering happens for a restricted set of ligands that exist in the neighborhood of 

the optimum2. It is also within this restricted set that one may discuss the effect in terms of 

“focusing”, which is the placement of different peptides on the optimum, as a function of the 

CD8 boost. This set is likely to be small relative to the size of the peptide universe. If we 

divide the size of the peptide universe by the size of the TCR repertoire, we arrive at the size 

of the set of peptides that each TCR would have to cover in order for the coverage to be 

complete. Taking 209 for nonapeptides and 106 for TCR repertoire size, the target number is 

found to be approximately half a million, which is of a magnitude comparable to that reported 

previously (5). This may perhaps be a crude way of estimating the cardinality of the set of 

potentially potent ligands associated with each TCR clonotype, and further refinements of 

this argument have been published elsewhere (6–8). These numbers show how appealing to 

intuition can be misleading: “half a million ligands” suggests a promiscuous TCR, whereas 

“one in a million” suggests the opposite. Yet both are true. One-to-one specificity, such that 

each TCR recognizes only a single peptide, would not be possible3, whereas on the other 

hand, a considerable degree of specificity must clearly exist in order for the adaptive 

immune system to target pathogens and to avoid autoimmunity. 

                                                
2This is not entirely correct. Condition (Con) may be satisfied by a pair consisting of a weak agonist and a weak 

heteroclitic peptide, the latter becoming even weaker as the former is boosted by the CD8 shift. However, as we 

argue below, such heteroclitic peptides are exceedingly rare, whereas weak agonists are quite common. Thus, 

whereas one may formally still regard this as “reordering of the potency hierarchy,” the physiological interest of 

such focusing lies mainly with the more select group of near-optimal agonists. 



 

Null ligands dissociate faster 

We consider the statistical distribution of dissociation rates across the peptide universe for a 

fixed clonotype. In particular, we choose a peptide at random, let its dissociation rate be 𝜆̄, 

and let 𝐹(𝑥) denote the probability that ln{𝜆̄/𝜆#} does not exceed 𝑥 (strictly speaking, we 

should write 𝐹E(𝑥) here to indicate that this function depends on TCR clonotype 𝑖 and may 

be different for different TCRs). Let us define: 

 

  𝑥 = ∫HI
JI𝑥𝑑𝐹(𝑥)  and  𝜎2 = ∫HI

JI(𝑥 − 𝑥)2𝑑𝐹(𝑥). 

 

If 𝑥 ≈ 0, we should find that most ligands are close to optimal. However, we must rule out 

this scenario, because each TCR would then recognize virtually every peptide, and we have 

seen that TCRs are not entirely nonspecific (even if promiscuous). If 𝑥 < 0, we should find 

that most peptides dissociate more slowly than optimal (heteroclitic) peptides. This outcome 

would not in principle hamper TCR/pMHCI recognition or specificity, but it would limit the 

number of pMHCI molecules that a given TCR molecule could scan in a given amount of 

time. Thus, we conclude that 𝑥 > 0, which is supported by the empirical evidence. It is well 

known that weak and ultraweak (“null”) ligands dissociate faster than optimal ligands, and 

we surmise that the TCR effectively uses a mechanism akin to kinetic proofreading to 

measure the interaction time. 

 

pEC50 probability distribution 

We have been dealing with “low-probability” events located in the tail of the distribution 𝐹. In 

such a setting, the probability that a peptide chosen at random satisfies ln{𝜆̄/𝜆#} < 𝜉 can be 

estimated using the exponential overbound (a form of the Chebyshev inequality). We take 

the Maclaurin expansion of the cumulant generating function to second order, as is 

appropriate for moderate deviations3: 

                                                
3As with (*) below, taking the second-order approximation in (**) results in simple expressions that convey the 

main qualitative features of the theory. In this case, inclusion of higher-order terms requires the determination, 

for a given TCR, of the dissociation rates for a large number of peptide ligands, such that their statistics can be 

determined to a high degree of accuracy. If this distribution were found to be log-normal (which is in fact to be 

expected on the basis of more general biophysical grounds), the second-order approximation in (**) would be 

exact. 



 

(**)  ln𝔼[exp{𝑡ln{𝜆̄/𝜆#}}] ≈ 𝑥𝑡 + 𝜎2𝑡2/2 . 

 

We then obtain the following exponential overbound4: 

 

(ExpO)  ℙ[ln{𝜆̄/𝜆#} < 𝜉] ≤ exp{−(𝜉 − 𝑥)2/𝜎2}, 

 

which estimates the size of the set of potential “focusable” ligands for a given TCR in terms 

of the parameters 𝜉, 𝑥, and 𝜎2 (the latter two parameters govern the TCR’s degeneracy). As 

regards agonists satisfying 𝑥 > 𝜉/2, these only experience a CD8 boost, without reordering 

of potency. The bulk of a TCR’s weak agonists falls in this category. By the Large Deviations 

principle, we have the estimate5: 

 

(LD)  ℙ[𝑝EC%# ≈ 𝑝EC%#
∘ − 𝜔] ≤ exp W−X𝑥 − Y𝜔/𝑐2Z

2
/𝜎2[, 

 

which expresses the degeneracy of the TCR at hand at functional sensitivity 𝑝EC%#
∘ − 𝜔. 

Incorporating the CD8 effect 𝜉 into this formula, we obtain: 

 

(LDbis)      lnℙ[𝑝EC%# ≈ 𝑝EC%#
∘ − 𝜔; 𝜉] ≤ −X𝑥 − 𝜉 − Y𝜔/𝑐2Z

2
/𝜎2, 

 

where we have used the “lnℙ” notation to emphasize that our primary concern is to estimate 

orders of magnitude. We are particularly interested in the effect of CD8 at a given functional 

sensitivity point 𝜔 (i.e., how much more likely, due to CD8, the TCR is to have an agonist 

with functional sensitivity 𝑝EC%# = 𝑝EC%#
∘ − 𝜔): 

                                                
4The expression on the righthand side should not be confused with the formula for the probability density of a 

Gaussian. However, there is a connection with the normal distribution by way of the truncation to second order 

that was made in eqn (**). There are various excellent texts on Large Deviations theory (9, 10). 
5This expression can be further refined by considering “tilted” distributions, resulting in an improved 

approximation in the neighborhood of the mean of F. However, this region corresponds to ultraweak agonists and 

is therefore of less relevance. The formula also ignores a correction that needs to be made for heteroclitic 

agonists corresponding to lower pEC50 values. However, the Large Deviations principle assures us that 

probability mass is exponentially concentrated near the point of interest, which implies that this correction is 

unimportant unless ⍵ is very close to zero. 



 

  Δ^,_lnℙ ≈ `𝜉2 + 2𝜉XY𝜔/𝑐2 − 𝑥Za /𝜎2. 

 

Further developments 

In summary, some key features of the ligand repertoire of a given TCR can be understood 

on the basis of posits (i) and (ii), along with the general principles of Large Deviations. Our 

group has made attempts to reconstruct, empirically, the probability distribution of the 

functional sensitivities across possible ligands for a defined TCR clonotype, employing an 

importance sampling technique (5), yielding a good agreement with eqn (LD). The ligand 

repertoires pertaining to individual TCRs can be aggregated to yield the systemic T cell 

repertoire. Similarly, we can further develop the theory to describe antigen-presentation 

profiles, which are the repertoires of peptides (both self and foreign) presented on healthy 

and unhealthy body cells and professional antigen-presenting cells in both primary and 

secondary lymphoid tissues, to account for the way the naive repertoire is created and how it 

changes in response to pathogenic challenges. We shall not pursue these further 

developments in more detail here, except to remark that the tools of Large Deviations again 

allow us to gain considerable insights departing from a minimal set of assumptions. 

 

CD8 effect via modulation of the dissociation energy barrier 

We next take up the question of the plausibility of propositions (i) and (ii). We shall begin 

with the latter posit. Consider the Arrhenius equation for the TCR/pMHCI dissociation rate6: 

 

(Arrh)  𝜆 = 𝜆∗exp{−𝑈d/𝑘f𝑇}, 

 

where 𝜆∗ is a prefactor with the same units as 𝜆, 𝑘f is the Boltzmann constant, and 𝑇 is the 

absolute temperature, whereas 𝑈d  is the activation energy for the dissociation step in 

Boltzmann units. If we assume that the pMHCI/CD8 interaction adds a term of fixed 

magnitude to this energy barrier, 𝑈CD8, then the CD8 boost decreases the dissociation rate 

by a constant factor, so that ln{𝜆̄/𝜆#} is diminished by a fixed term, 𝜉 = 𝑈CD8/𝑘f𝑇. It may be 

objected that 𝑈CD8  could take on different values for different ligands, in which case 

hierarchy reordering and focusing become trivially apparent. However, our main message in 

                                                
6An excellent derivation of the Arrhenius equation from the perspective of modern mathematical statistics is given 

in reference (11). 



this work is to explain that these phenomena do not critically depend on such heterogeneous 

CD8 effects, and that they will occur even if all ligands are susceptible to the common shift 𝜉. 

 

TCR triggering rate dependence on off-rate 

Empirical evidence in support of proposition (i) is well known, although the role of 

dissociation rate as the prime governor of functional sensitivity is contested by those who 

perceive an important role for the dissociation constant 𝐾i  (𝐾i = 𝜆/𝛼 , where 𝛼  is the 

association rate, so there are only two independent factors among 𝐾i, 𝛼, and 𝜆; 𝐾i is also 

called the “affinity” constant, but strictly speaking, this is 𝐾k = 𝐾iH@ = 𝛼/𝜆). According to the 

following equation, both have an important role to play: 
 

(Trig)  𝑊 = mnop{Hm/mq}
2

(𝐾i + 𝑅s + 𝑍s) u1 − w1 −
5xyzy

{|JxyJzy
}, 

 

where 𝑊 is the rate at which the TCR is triggered during an interaction between a T cell and 

an antigen-presenting cell, 𝜆x is a rate parameter expressing the rate at which the TCR/CD3 

complex reaches signalosome competence, 𝑅s  is the density of TCR molecules in the 

interaction area between the cells, and 𝑍s is the density of pMHCI molecules carrying the 

ligand of interest in that same area. Eqn (Trig) can be derived from basic mass-action 

kinetics of the TCR and pMHCI molecules 7 . The role of 𝐾i  is as follows. If 𝐾i ≫

𝑚𝑎𝑥{𝑅s, 𝑍s}, then eqn (Trig) reduces to: 

 

(Triga)  𝑊 = 𝛼𝑅s𝑍sexp{−𝜆/𝜆x}, 

 

whereas if 𝐾i ≪ 𝑅s, eqn (Trig) reduces to: 

 

(Trigb)  𝑊 = 𝜆𝑍sexp{−𝜆/𝜆x}, 

 

and finally, if 𝐾i ≪ 𝑍s, eqn (Trig) reduces to: 

 

(Trigc)  𝑊 = 𝜆𝑅sexp{−𝜆/𝜆x}. 

                                                
7A full derivation of eqn (Trig) is given in reference (12). The formula in eqn (Trig) treats all ligands on the 

antigen-presenting cell as true null ligands, except the ligand of interest. For a more complete treatment, which 

allows that some, and possibly many, of the presented peptides may not be null, see (3). 



 
The factor 𝜆exp{−𝜆/𝜆x} is non-monotone in 𝜆 and attains a maximum at 𝜆 = 𝜆x. It is thus 

apparent that, provided we treat 𝑊 as a close correlate of 𝑝EC%#, we have a relationship 

underpinning proposition (i), with 𝜆# = 𝜆x. We thus write 𝑤 = 𝜆exp{−𝜆/𝜆#} and consider the 

following Taylor expansion for ln{𝑤/𝜆#} as a function of 𝑥 = ln{𝜆/𝜆#}, about the point 𝜆 = 𝜆#: 

 

  ln{𝑤/𝜆#} = −1 − ��

2
− ��

4!
− ��

5!
− ��

%!
− ⋯, 

 

and therefore, if we assume8 𝑝EC%# = 𝜅 + 𝛾ln{𝑤/𝜆#}, we obtain: 

 

  𝑝EC%# = 𝜅 − 𝛾 − �
2
𝑥2 − �

4!
𝑥4 − ⋯, 

 

in agreement with eqn (*). Writing 𝑝EC%# = 𝑝EC%#
∘ − 𝜔, we have: 

 

  𝜔 = 𝑝EC%#
∘ `�

�

2
+ ��

�
+ ��

25
+⋯ a, 

 

and this series may be inverted to give the non-heteroclitic value of 𝑥 = ln{𝜆/𝜆#}: 

 

  𝑥 = w
^

�EC��
∘ /2

− ^
4�EC��

∘ + @
�√2

` ^
�EC��

∘ a
4 2⁄

− 2
@4%

` ^
�EC��

∘ a
2
+⋯, 

 

of which only the first term appears in eqn (LD), with 𝑐2 = 𝑝EC%#
∘ /2. It is therefore apparent 

that the coefficients depend solely on 𝑝EC%#
∘ . 

 

pEC50 and TCR triggering 

                                                
8Any scaling factor related to a choice of units (for concentration in this case) will appear as an additive constant 

after taking logarithms. Strictly speaking, transcendental functions ought to have dimensionless arguments only, 

lest such nuisance terms appear (certain authors insist that logarithms of dimension-bearing arguments are not 

valid, and according to this view, for instance, pH would be inadmissible). However, the empirical content of the 

theory only hinges on differences in the pEC50 values, which is equivalent to taking logarithms of dimensionless 

quotients. This situation is similar to that of pH, because the physical chemistry of acids and bases only depends 

on differences, such as pH—pK. 



We have provided a possible mechanistic underpinning for proposition (i) on the basis of 

TCR and pMHCI, further elucidated why data supporting proposition (i) are reported by 

some but not others (depending on receptor densities relative to the affinity of the 

TCR/pMHCI interaction). However, eqn (Trig) expresses the TCR triggering rate, whereas 

our experiments determine functional sensitivity in terms of an 50% response concentration. 

We thus need to make plausible that 𝑝EC%# is a correlate of the TCR triggering rate. We 

assume that a T cell exhibits a response when the intracellular signal transmitted by 

triggered TCRs exceeds a certain threshold: 

 

  𝑆 > Θ(readout), 

 

as there are generally different threshold values for different types of readout (12). Suppose 

that the conjunction of the T cell and the antigen-presenting cell takes place between times 

𝑡@ and 𝑡2, and that eqn (Trigb) applies. We then have: 

 

  𝑆 = ∫��
��𝐾(𝑡, 𝜏)𝑍s(𝜏)𝜆exp{−𝜆/𝜆#}𝑑𝜏, 

 

where 𝐾(⋅,⋅) is the signal-processing kernel of the signaling pathway. We can then allow: 

 

𝑍
̂
s = ∫��

��𝐾(𝑡, 𝜏)𝑍s(𝜏)𝑑𝜏  and  𝑤 = 𝜆exp{−𝜆/𝜆#}, 

 

so that 𝑆 = 𝑍
̂
s𝑤 9. The activation condition now reads 𝑤 > Θ(r-o)/𝑍

̂
s  orΘ(r-o) < 𝑍

̂
s𝑤 . A 

population of T cells incubated with a peptide at concentration 𝐶� will exhibit variability in 

both the threshold value and the number of MHC molecules occupied by the peptide of 

interest. The fraction of responding cells is equal to the following probability10: 

 

  ℙ[ln{Θ(r-o)} − ln{𝑍
̂
s} < ln{𝑤}]. 

                                                
9This formula suggests that if w is smaller by (for instance) a factor two, this can be compensated by increasing 

the MHC density by two-fold. This is the “avidity effect” that underlies the assay in which antigen-presenting cells 

are prepared by incubating them with a series of concentrations of the peptide of interest. “TCR avidity” would be 

the obvious and natural term for w, but this term has no consistent usage in the literature. 
10By the Law of Large Numbers, provided that we have a sufficient number of T cells present in each exposure, 

i.e., the assay well. 



 

We assume that ln{Θ(r-o)} − ln{𝑍
̂
s}  follows a normal distribution, implying that both 

ln{Θ(r-o)}  and ln{𝑍
̂
s}  are log-normally distributed, which is the appropriate standard 

assumption for random variables of this nature. Of particular interest is the point where the 

above probability equals 1/2, which happens when11: 

 

  𝔼[ln{Θ(r-o)} − ln{𝑍
̂
s}] = ln{𝑤}. 

 

Moreover, we have 𝐶� = EC%# at this point, by definition. As occupancy of MHC molecules 

on the antigen-presenting cells depends on the incubation concentration, we again consider 

a Taylor expansion: 

 

  𝔼[𝑍
̂
s] = ∑

ℓ�#

I �ℓ
ℓ!
𝐶�ℓ, 

 

where we observe that 𝑘# = 0 and the first-order term will dominate, provided that 𝐶�  is 

sufficiently small (at higher concentrations, we expect a saturation effect, meaning that the 

MHC occupancy becomes less than would be expected on the basis of the first-order term 

alone). Accordingly, we adopt the approximation 𝔼[𝑍
̂
s] = 𝑘@𝐶�. In addition, we have: 

 

  𝔼[ln𝑍
̂
s] = ln{𝔼[𝑍

̂
s]} −

𝔼[z
̂
y
�]H𝔼[z

̂
y]�

2𝔼[z
̂
y]�

+ higher-order terms, 

 

of which we retain only the first term on the assumption that the coefficient of variation of 𝑍
̂
s 

is small, which would appear to be warranted, because the number of MHC molecules on a 

given antigen-presenting cell is large. Combining the identities we have formulated thus far, 

we find: 

 

  ln{𝑤} = 𝔼[ln{Θ(r-o)} − ln{𝑍
̂
s}] = 𝔼[ln{Θ(r-o)}] − 𝔼[ln{𝑍

̂
s}] = 

  𝔼[ln{Θ(r-o)}] − ln𝔼[{𝑍
̂
s}] = 𝔼[ln{Θ(r-o)}] − ln{𝑘@} − ln{EC%#} = 

  𝔼[ln{Θ(r-o)}] − ln{𝑘@} − (ln10)log@#{EC%#} = 

  𝔼[ln{Θ(r-o)}] − ln{𝑘@} + (ln10)𝑝EC%#, 

 
(using 𝑝 ≡ −log@#), or: 

                                                
11The median coincides with the mean for any symmetric distribution. 



 

  𝑝EC%# =
¡¢{��}J¡¢{m�}H𝔼[¡¢{£(r-o)}]

¡¢@#
+ @

¡¢@#
ln ¤

m�
, 

 

which is the linear relationship 𝑝EC%# = 𝜅 + 𝛾ln{𝑤/𝜆#} we adopted earlier. 

 

Choice of kinetic regime 

We have now completed the chain of reasoning that connects 𝑝EC%# to the TCR/pMHCI 

dissociation rate (𝜆). Admittedly, this chain contains numerous steps and is somewhat 

tenuous at certain points. However, all that was needed for the main message of the present 

paper was to render proposition (i) plausible by exhibiting a relationship qualitatively similar 

to 𝑝EC%# ∝ −ln{𝜆/𝜆#}2. Perhaps the most critical step in the argument is the reduction of the 

general expression (Trig) to the special case (Trigb). If TCR and MHC densities are such that 

(Trigc) applies, the TCR triggering rate would still exhibit the optimum with respect to 𝜆, but 

variation in the peptide concentration would not result in changes in the readout. The fact 

that we do observe this in our assay system allows us to rule out (Trigc). However, there 

may be systems (T cell phenotypes) in which the TCR density is extremely low or the pMHCI 

density is abnormally high (e.g. genetically engineered MHCs), and (Trigc) is the appropriate 

equation. There may also be systems (both TCR and MHC densities are low relative to the 

dissociation constant) where (Triga) applies, and the relationship between 𝑤 and 𝜆 becomes 

monotone (the optimum disappears). The theory therefore accounts for studies that found 

this relationship to display an optimum and for studies in which it was found to be monotone. 

These different scenarios arise as natural special cases out of one and the same kinetics 

model and can in principle be verified by comparing TCR and MHC densities to the 

dissociation constant12. 

 

Readout modeling 

The readout was assumed to be proportional to the fraction of responding cells in the well. 

This fraction is equal to the Gaussian probability: 

 

  ℙ[ln{Θ(r-o)} − ln{𝑍
̂
s} < ln{𝑤}], 

                                                
12The dissociation constant here is the “two-dimensional” parameter, which differs from the “three-dimensional” 

value that is obtained in solution, because the molecules are confined in the z-direction orthogonal to the surface 

of the cell. 



 

which is a function of incubation concentration 𝐶� via 𝔼[𝑍
̂
s] = 𝑘@𝐶�. Thus, the titration curve 

is a sigmoid with midpoint located at the 𝑝EC%#  and a midpoint slope equal 

to (2𝜋(𝕍[ln{Θ(r-o)}] − 𝕍[ln{𝑍
̂
s}]))H@/2  (while these variances 𝕍[ln{Θ(r-o)}]  and 𝕍[ln{𝑍

̂
s}] 

determine the shape of the sigmoid curve, they do not necessarily increase the uncertainty 

in the estimate of 𝑝EC%#, as discussed below). The midpoint slope can be regarded as a 

nuisance parameter in view of our primary aim, which is to estimate the functional sensitivity 

of the given TCR for the ligand at hand. Nonetheless, it is clear from the formula that this 

parameter contains interesting information 13 . The observations will deviate from the 

theoretical predicted value due to at least14 two sources of error. One is the usual error due 

to apparatus, which is routinely assumed to be normal with expectation (bias) zero. The 

other error is binomial variance. If there are 𝑁 T cells in the well and the probability of any 

cell responding is 𝑝, then the number of responding cells has a coefficient of variation equal 

to Y𝑝(1 − 𝑝)/𝑁, which shows that this source of error can be controlled by including a 

sufficient number of T cells in each well. If this is done, a simplified approach can be 

adopted, where the data are fitted on the basis of the least-squares criterion to a logistic 

curve (rather than the Gaussian CDF, which is numerically less convenient to work with): 

 

  𝑦 = 𝑦# + (𝑦max − 𝑦#)/(1 + exp{(𝑝𝐶� − 𝑝EC%#)/𝜗}), 

 

where 𝑦  is the registered readout value, 𝑦#  is a (non-specific) background, 𝑦max  is the 

maximum readout value, and 𝜗 is a midpoint slope parameter (the slope increases with 

decreasing 𝜗). This logistic sigmoid is decreasing in 𝑝𝐶�, because the lowest concentrations 

appear the highest on the 𝑝 ≡ −log@# scale, but we generally opt to report graphically with 

this scale reversed, so that the lowest concentrations are on the left and the sigmoid 

increases. In this simple model, we encounter three nuisance parameters (𝑦#, 𝑦max, and 𝜗) 

for the one parameter of interest (𝑝EC%#), but this problem is mitigated by simultaneous 

least-squares estimation, where a number of curves (which may be assumed to share the 

                                                
13A large value of this parameter points to low numbers of MHCI molecules on the antigen-presenting cells and/or 

high variability in activation thresholds for the T cells (which may itself be due to, e.g., a lack of cell-cycle 

synchronization). 
14Receptor kinetics limitation conditions may be different for different concentrations, which can be tackled by the 

more general approach given in reference (12). 



values of the nuisance parameters) is used as a pooled data set during the numerical 

procedure used to find the least-squares minimum. For instance, practicing simultaneous 

estimation across a panel of 9 data sets (curves), one has 3 + 9 parameters (because each 

curve allows its own midpoint), which implies 12/9 = 4/3 parameters per curve (less than a 

two-parameter straight line). 

 

Statistical considerations and sensitivity 

The 𝑝EC%# values obtained in this manner are taken further to standard inferential statistical 

analysis. It may seem unusual15 to treat a parameter estimate as a data point, but there is no 

fundamental methodological reason why this should not be valid. However, we may study 

how errors propagate. We have already commented on the components of the error on the 

original readout observations 𝑦 . Let us assume that this error equals 𝜎 , relative to a 

standardized logistic curve with 𝑦# = 0, 𝑦max = 1, and midpoint zero. We focus here on the 

uncertainty of the midpoint parameter, because it is the parameter of primary interest and, 

unlike the nuisance parameters, it does not benefit from the uncertainty reduction that is 

obtained through the expedient of simultaneous estimation. Let us first consider simulated 

data sets where we have 𝑁i  data points per curve, whose 𝑝𝐶�  values are arranged 

symmetrically around the midpoint: 
 

  𝑝𝐶� ∈ W−Δ
¬|
2
, −Δ `¬|

2
− 1a ,… ,−Δ,+Δ,… ,+Δ `¬|

2
− 1a ,+Δ¬|

2
[, 

 

where Δ is a spacing parameter (we increase the challenge by not having a data point at the 

midpoint, for reasons that will become clear shortly). We superimpose additive Gaussian 

noise with mean zero and standard deviation 𝜎 (in keeping with least-squares fitting, which 

is formally identical to maximum-likelihood estimation in the case of additive Gaussian 

noise). We then back-estimate the midpoint and repeat this several thousand times for each 

combination of parameter settings to obtain the standard deviation 𝑆mid  of the midpoint 

estimate. It is useful to compare this error to the error 𝜎 that obtains for the individual 

observations. Extensive numerical simulations then reveal that 𝑆mid/𝜎 ≈ 2 over a wide range 

of parameter settings, which implies that the uncertainty in the readout 𝑦 translates quite 

stably into an uncertainty in the 𝑝EC%# estimate. We find that 𝑆mid/𝜎 ≈ 2 over a wide range 

                                                
15This is not unusual. Laboratory instruments output “raw” data, but in reality, this is almost always itself a 

parameter estimate, albeit hidden from view, as it is performed by the software built into the instrument. 



spanned by 𝜎 ∈ {0.001,1} , 𝑁i ∈ {4,10} , and Δ ∈ {2𝜗, 10𝜗} . For 𝑁i = 2 , 𝑆mid 𝜎⁄  may be 

somewhat higher, rising up to 𝑆mid/𝜎 ≈ 2.5. However, a dramatic increase occurs when Δ ≈

𝜗 or lower. For instance, at Δ = 𝜗, we find that 𝑆mid/𝜎 ≈ 3 for 𝑁i ∈ {4,10} and that 𝑆mid/𝜎 ≈

3.5 for 𝑁i = 2 (again these results are identical for all 𝜎 ∈ {0.001,1}), and for even lower 

values of the spacing parameter Δ , the ratio 𝑆mid 𝜎⁄  quickly rises even further. These 

observations can be readily understood heuristically. The data set needs to cover the 

“bends” in the sigmoid curve, and if this condition is not fulfilled, i.e., when observations are 

performed too close to the midpoint (as measured by the midpoint slope parameter 𝜗), there 

is little underlying variation in the prediction, so that this “signal” is easily swamped by the 

noise. A sound objection against this numerical experiment is that, in practice, the data 

points will not be symmetrically arranged to the left and the right of the midpoint. Indeed, if 

this could be arranged in advance, there would be no need to perform the experiment, the 

purpose of which is to find the midpoint. However, the important point here is that the 

estimate 𝑆mid/𝜎 ≈ 2 already stabilizes at 𝑁i = 4, and that additional data points do not in 

fact lead to further improvement (as we have seen, a good choice of the spacing parameter 

Δ is much more critical than the number of data points, 𝑁i). This means that as long as Δ is 

sufficiently large, and we have at least two data points to the left (or to the right) of the 

midpoint, we may trust that the quality of the estimate is not materially affected by the failure 

of the midpoint to lie in the precise middle of the 𝑝𝐶� values that were included in the 

experiment. If this condition is not fulfilled, the estimate is “out of range.” If the EC%# exceeds 

the largest 𝐶� included in the titration series (i.e., the 𝑝EC%# is lower than the lowest 𝑝𝐶� 

tested), an estimate can nevertheless be obtained when simultaneous estimation from “in-

range” agonists furnish the estimates for the nuisance parameters. However, in this case, 

𝑆mid 𝜎⁄  is generally higher than 2, and the conditions needed to control this error become 

rather more stringent. Heuristically, it now becomes critical that the data points available lie 

sufficiently close to the midpoint to define the midpoint slope. In general, technical replicates 

are performed. In the standard treatment-control statistical testing scenario, one estimates 

the variances in the respective groups without necessarily having an insight into how these 

deviances are composed of observational (instrument) error as opposed to underlying true 

variation within the group of replicates. In the present case, the former error s may be 

gleaned from the residuals of the curve fit, and the latter can then be inferred via the formula 

𝜎±J² = Y𝜎±2 + 𝜎²2 for the standard deviation of the sum of two independent random variables 

𝑋 and 𝑌.  

 



Mathematica code to investigate error propagation (pEC50 estimation) 

--------------------------------------------------------------------------------------------------------------------------- 

siggs = {.001, .01, .1}; Nran = 3000; sp = 1; 

 moll = 1/(1 + Exp[x - mid]); 

ListPlot[ 

   Table[Table[{Np,  

      StandardDeviation[ 

        Table[Last[ 

          Last[FindFit[ 

            Transpose[{Table[i - Np/2 - Boole[i <= Np/2], {i, Np}],  

              Table[1/(1 +  

                   Exp[-sp (i - Np/2 - Boole[i <= Np/2])]), {i, Np}] + 

                RandomVariate[NormalDistribution[0, siggs[[s]]],  

                Np]}], moll, {mid}, x]]], Nran]]/siggs[[s]]}, {Np, 2,  

      10, 2}], {s, 1, Length[siggs]}], Joined -> True,  

   PlotRange -> {0, 5}] 

--------------------------------------------------------------------------------------------------------------------------- 
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