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Supporting Methods

A. Differential Geometry of Theoretical Manifolds. Here we briefly discuss how to compute the scalar curvature of, and sample
from, theoretical manifolds given a parameterization.

For a d-dimensional manifold, M , with intrinsic coordinates {x1, ..., xd} and embedding in Rn given by f(x1, ..., xd), the
metric is:

gij = ∂fT

∂xi

∂f

∂xj
[1]

The scalar curvature of M can then be derived analytically in intrinsic coordinates in terms of the metric as

S = gij
(
Γk

ij,k − Γk
ik,j + Γl

ijΓk
kl − Γl

ikΓk
jl

)
[2]

where the Γi
jks are Christoffel symbols given by

Γi
jk = gil

2

(
∂glj

∂xk
+ ∂glk

∂xj
− ∂gjk

∂xl

)
[3]

and Γi
jk,l=

∂Γi
jk

∂xl .
To draw points from M with ai ≤ xi ≤ bi so that the embedded manifold is uniformly sampled in Rn, we use rejection

sampling. For paired random variables x ∼ Uniform(a, b) and y ∼ Uniform(0, max
√

det g), we retain x as a sample point if√
det g

∣∣
x
≤ y.

B. Details of Intrinsic Approach to Curvature Estimation. Here we explain how we used Equations 2-4 in the main text on the
simplest of toy manifolds, the noise-free 2-dimensional hollow unit sphere, S2, to obtain an estimate of the average scalar
curvature. The true scalar curvature is S(p) = 2 ∀p ∈ M . For the remainder of this section, we adopt the convention that
symbols with overbars are estimates of the corresponding unaccented quantities.

B.1. Approach for S2. Our approach mirrors the treatment in (1), in which heat-traces are fit over various intervals [x1, x2] with
x1 ≥ 0, to quadratic polynomials p2(x) = c0 + c1x + c2x2 to estimate the geometric quantities in Equation 2 of the main text.

Here, we constrained the form of p2(x) for fitting by assuming that (i) the manifold is boundary-less (so that c1 = c1 = 0
and the second boundary term for c2 vanishes), (ii) the volume is known (so that c0 = c0 = 4π), and (iii) the scalar curvature
is constant (so that c2 = 2π

3 S), yielding p2(x) = 4π + 2π
3 Sx2. These are strong assumptions that will not hold for an arbitrary

manifold, which already precludes this as a generic procedure. Nonetheless, we proceeded for S2 to see if even with this
privileged information, the scalar curvature could be estimated accurately. We declared an estimate to be accurate on the
interval [x1, x2] if S has error within ±0.5 i.e. S ∈ [1.5, 2.5]. All quadratic fits were performed in MATLAB using the lsqnonlin
function (‘StepTolerance’=1e-3, ‘FunctionTolerance’=1e-6).

First, we evaluated zm(x) using analytical eigenvalues for S2 given by λ(ℓ−1)2+1, ..., λℓ2 = ℓ(ℓ − 1), ℓ > 0, and let Dm be
the collection of all intervals for which fits to p2(x) yielded accurate S. Dm corresponds to intervals where Equation 4 of the
main text is accurate to our desired tolerance when the eigenvalues are known exactly.

Next, we uniformly sampled N = 104 points from S2 (see Figure 1A; Methods Section D.1.1), estimated ∆M using the
random walk Graph Laplacian with Gaussian kernel (see Equations 6-8 in Methods Section B.6), and computed empirical
eigenvalues, λk, from ∆M . We selected N = 104 as it is the same order of magnitude as the sample size of current scRNAseq
experiments, and is sufficient to identify M as S2 by eye (see Figure 1A). We verified if estimates zm(x), obtained by evaluating
Equation 3 of the main text using λk, when fit as described above to p2(x) over intervals in Dm, recapitulated the accurate
S obtained using zm(x). We restricted our attention to Dm for calculations using empirical eigenvalues, since it is only over
intervals in Dm that it is even theoretically possible to compute scalar curvature to the desired accuracy.

Below, we report our findings for different m.

B.2. Infinite Series. We first applied this approach to the ideal case in Equation 3 of the main text, where infinite analytical
eigenvalues are available. We computed z∞(x) (shown as a black line in Figure S1A) and obtained S by fitting p2(x) over
various intervals as described above. Figure S1B shows that D∞ is comprised of intervals with 0 ≤ x1 < x2 ≲ 1.15. For
x2 ≳ 1.15, errors from neglecting higher-order terms o(x3) in Equation 4 of the main text dominate. Since zm(x) converges
from ∞, x2 ≲ 1.15 necessarily holds for any interval in Dm ∀m.

B.3. Truncated Series. We next considered zm(x) for m < N , since in practice, we will only have access to as many eigenvalues
as datapoints (N). We computed z1000(x) using Equation 3 of the main text (shown as a solid blue line in Figure S1A), and
obtained S by fitting p2(x) (see Figure S1C). Intervals in D1000 roughly satisfy 0.25 ≲ x1 < x2 ≲ 1.15. However, we found that
z1000(x) (shown as a dashed blue line in Figure S1A) deviated markedly from z1000(x) in the rough interval [0.1, 0.75], which
has significant overlap with D1000. Consequently, when we fit p2(x) to z1000(x) on D1000, the resulting S was not accurate for
any interval in D1000 (see Figure S1D).

Note that this inaccuracy was not a consequence of not using all N available eigenvalues. While picking m = N would
reduce the lower bound on valid intervals in Dm (since zm(x) converges from ∞), it is exactly for small x1 that S obtained
from z1000(x) is already over-estimated as shown in Figure S1D. Since zm2 (x) > zm1 (x) ∀x, m2 > m1, using a truncated series
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with a larger m would simply exaggerate the difference between zm(x) and zm(x) for small x and cause scalar curvatures
estimated using the latter to be further over-estimated.

Following this line of thought, we reasoned that picking a fewer number of eigenvalues may ameliorate the issue. We selected
m = 49 (instead of a round number like m = 50 so that all eigenvalues of a given multiplicity are included) and repeated this
analysis for the same set of N = 104 points. z49(x) is shown as a solid red line in Figure S1A and the intervals over which
fits to p2(x) yield accurate S, D49, are shown in Figure S1E. While z49(x) (shown as a dashed red line in Figure S1A) has a
much smaller deviation from z49(x) than z1000(x) did from z1000(x), no estimate of S obtained from fits of z49(x) to p2(x) on
D49 were sufficiently accurate once again (see Figure S1F).

B.4. Eigenvalue Convergence. We refrained from reducing m further to improve agreement between zm(x) and zm(x) after noting
that the size of the intervals in Dm shrink with m. Though we may have a better chance of computing accurate S with zm(x)
on Dm for smaller m, recall that in practice we will not have Dm available to us since the analytical eigenvalues will be
unknown. Therefore, we simply shift the problem to one of choosing an interval that will yield an accurate S, from a shrinking
pool of intervals that could even theoretically yield an accurate estimate.

Instead, we compared the estimated λks with their true values, λk, and observed that the former consistently under-estimate
the latter (see Figure S1H). Furthermore, we found that the fractional error grows with k, and is ≈ 62% for k = 37, ..., 49.
Therefore, z49(x) will only be accurate if N is large enough to limit the fractional error.

To determine the required tolerance on the fractional error, we constructed a truncated series analogous to Equation 3 of
the main text, but with eigenvalues interpolated between the analytical eigenvalues and the empirical eigenvalues determined
for N = 10000, according to a parameter f :

z̃m(x; f) = (4π)
d
2 xd

m∑
k=1

e−λ̃k(f)x2

λ̃k(f) = λk + f(λk − λk)

[4]

f signifies that the fractional error of the interpolated eigenvalues is reduced by 1 − f relative to the empirical eigenvalues
determined for N = 10000. We found that f ≤ 0.21 is needed so that z̃49(x; f) (shown as a green line in Figure S1A) fit to
p2(x) yields accurate S on at least half the intervals in D49 (see Figure S1G).

Given that the fractional error in estimating λ37, ..., λ49 by λ37, ..., λ49 is ≈ 62% when N = 10000, how large does N have
to be to reduce this fractional error to 62%× 0.21 ≈ 13%? A convergence rate for the fractional error is given in Theorem 1
of (2). For 2-dimensional manifolds: ∣∣λk − λk

∣∣
λk

= O

(
(log N)

3
8

N
1
4

)
[5]

Assuming that the big-O bound is sharp at N = 104 for k = 37, ..., 49 (i.e. the prefactor is given by 0.62 10000
1
4

log(10000)
3
8
≈ 2.7), we

extrapolated that at least N = 107 datapoints are needed to reduce the fractional error to 13% (see Figure S1H). Equation 5
also applies to empirical eigenvalues of ∆M constructed from weighted kNN and r-neighborhood kernels instead of Gaussian
kernels (see Methods Section B.6). However, the prefactor in Equation 5 is actually worse for these estimators since their
empirical eigenvalues have larger fractional errors at N = 10000 (see Figure S1H), so that even larger N would be required
to attain the desired fractional error. Lastly, note that while we had analytical eigenvalues available with which to ascertain
m = 49 as suitable, the naive approach of simply using all eigenvalues available (m = N), would require sample sizes that are
even larger by several more orders of magnitude.

B.5. Higher-Order Polynomial Fits. To verify that our inability to estimate scalar curvatures accurately was not an artifact of
fitting the heat-traces to quadratic polynomials, we repeated our fitting procedure using cubic polynomials of the form,
p3(x) = 4π + 2π

3 Sx2 + c3x3 (see Figure S1I-N) and quartic polynomials of the form p4(x) = 4π + 2π
3 Sx2 + c3x3 + c4x4 (see

Figure S1O-T), where c3 and c4 are free parameters. In order to improve the estimate S, when determining D1000 and D49,
we additionally discarded intervals for which fits to z1000(x) and z49(x) respectively, yielded non-monotonic polynomials. For
both cubic and quartic polynomial fits, none of the estimates, S, obtained from fitting z1000(x) and z49(x) to intervals in
D1000 and D49 respectively, were accurate. Furthermore, when fitting z̃49(x; 0.21) using p3(x) and p4(x), only 26% and 13%
respectively of the intervals on D49 yielded accurate estimates. This suggests that sample sizes of N > 107 would also be
required if higher-order polynomials are used.

B.6. Estimating the Laplace-Beltrami Operator from Data. For N points, {Xi} ∈ Rn, sampled from M , we estimated ∆M by normal-
izing the weight matrix W (see below) using the random walk normalization (2, 3). ∆M constructed using this normalization
converges to ∆M when samples are drawn uniformly from the embedding of M in Rn, as was done in our analysis.

∆M = 4
ϵ

(IN −D−1W )

D = diag{W 1}
[6]
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IN is the N ×N identity matrix, 1 ∈ RN is a vector of ones and the kernel width, ϵ, is set to match that used in Theorem 1
of (2):

ϵ = (log N)
3
8

N
1
4

[7]

Throughout our analysis, we used W = Wg, the weight matrix with entries given by a Gaussian kernel:

[Wg]i,j = exp
(
−∥Xi −Xj∥2

2

ϵ

)
− δi,j [8]

To check whether other estimators had more benign prefactors for eigenvalue convergence (see Figure S1H), we also considered
the weighted kNN kernel, WkNN , and the r-neighborhood kernel, Wr, with r = ϵ (4):

[WkNN ]i,j = [WG]i,j

[
1kNN(j)(i) OR 1kNN(i)(j)

]
[Wr]i,j = 1BXi

(r)(Xj)− δi,j

[9]

kNN(i) is the set of indices of the k-nearest neighbors of point i in Rn, BXi (r) is the n-dimensional ball of radius r centred
at Xi, and 1A(x) is the indicator function for x ∈ A.

C. Details of Extrinsic Approach to Curvature Estimation.

C.1. Quadratic Regression on Local Neighborhoods of Data. Here we describe the regression model for computing the coefficients
of the Second Fundamental Form, hk

ij , at a particular point p. As described in the main text, after performing PCA on a
neighborhood of Np points around p in Rn, each point in the neighborhood can be described in terms of d tangent coordinates,
ti, and n− d normal coordinates, nk. We defer discussion of how the neighborhood is selected to Methods Section C.2.

The nks are treated as dependent variables that can be modelled as quadratic functions of the tis, which are taken to be
independent variables. See Equation 10 below. Linear terms are excluded since they ought to have zero coefficients in the
tangent basis. Constant terms, Ck, are included to account for affine shifts. Since hk

ij = hk
ji according to Equation 5 of the

main text, in practice we only consider titj and hk
ij for j ≥ i so that t and h in Equation 10 have linearly independent columns,

though we write the full form here for simplicity.

n = th + E

n =

 n
(1)
1 . . . n

(1)
n−d

...
. . .

...
n

(Np)
1 . . . n

(Np)
n−d


t =

1 t
(1)
1 t

(1)
1 . . . t

(1)
1 t

(1)
d t

(1)
2 t

(1)
1 . . . t

(1)
d t

(1)
d

...
...

. . .
...

...
. . .

...
1 t

(Np)
1 t

(Np)
1 . . . t

(Np)
1 t

(Np)
d t

(Np)
2 t

(Np)
1 . . . t

(Np)
d t

(Np)
d



h =

 C1 h1
1,1 . . . h1

1,d h1
2,1 . . . h1

d,d

...
...

. . .
...

...
. . .

...
Cn−d hn−d

1,1 . . . hn−d
1,d hn−d

2,1 . . . hn−d
d,d


T

E =

 ε
(1)
1 . . . ε

(1)
n−d

...
. . .

...
ε

(Np)
1 . . . ε

(Np)
n−d

 =

 ε(1)T

...
ε(Np)T



[10]

Regression yields the following least-squares solution:

ĥ = (tT t)−1tT n

Σε = (n− tĥ)T (n− tĥ)
Np

Σh = Σε ⊗ (tT t)−1

[11]

where ĥ is the matrix of estimates of the Second Fundamental Form, Σε is the estimated covariance structure of the residuals
so that ε(i) ∼ N (0, Σε), and Σh is the covariance matrix for ĥ. ⊗ denotes the Kronecker product. We used the mvregress
function in MATLAB to perform this regression in our code.

When datapoints are sampled exactly from an analytical manifold, Σε measures the contribution of higher-order terms. In
the limit of infinite sampling and infinitesimally small neighborhoods, Σε → 0. When observational noise is present (discussed
in Methods Section D.2.2), Σε also depends on the magnitude of the noise (σ in Equation 21).
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C.2. Selecting Local Neighborhoods for Regression. Here we describe the procedure for selecting a neighborhood around each point
p for computing the Second Fundamental Form. We adopt the simplest approach of selecting the neighborhood to be a ball
of radius r centred at p, Bp(r).

If r(p) is not specified, we set it according to statistical rather than geometric principles, since the geometry of the manifold
may be non-trivial and unknown a priori. Specifically, we set r(p) so that the elements in the covariance matrix, Σh, are
upper-bounded by σ2

h, the square of the specified target uncertainty. The largest elements in Σh are the variance terms on the
main diagonal, corresponding to the squares of the standard errors, σhk

ij
, for the coefficients hk

ij . By inspection of Equation 11:

σ2
hk

ij
= [diag Σε]k

[
diag (tT t)−1]

(ij)
[12]

where [diag Σε]k is the diagonal entry of Σε corresponding to the kth normal direction and
[
diag (tT t)−1]

(ij)
is the diagonal

entry in (tT t)−1 for which the corresponding entry in tT t is ∼
∑

l
(t(l)

i t
(l)
j )2. Increasing r(p) monotonically increases both

Np(r), the number of points in Bp(r), and the average magnitude of elements in t, both of which reduce σhk
ij

.
To avoid sweeping r(p) to find the minimum value such that max σhk

ij
< σh, which is computationally expensive, for each

point we instead model the dependence of Np(r) on r as

Np(r) ∼ rd′
[13]

so that
σ2

hk
ij
∼ 1

rd′+4 [14]

To determine d′, Np(r) is counted at 10 log-spaced distances, ri, and a line is fit to the (log ri, log Np(ri)) pairs for i ∈ {2, ..., 8}.
r1 is set to be the distance from p to the

(
d(d+1)

2 + 1
)
-closest point to p (the minimum number of points needed for regression).

r10 is set to be the distance from p to the furthest point from p. To solve for r, we first guess rg = r1, perform regression on
the set of points in Bp(rg) and assign σ2

g to be the largest diagonal entry in Σh. If
∣∣∣ σg

σh
− 1
∣∣∣ is within a desired tolerance, we

set r = rg, or else we update rg as shown and iterate to convergence.

rg ← rg

(
σg

σh

) 2
d′+4 [15]

For large datasets, we speed up computation by only selecting r in this manner for a subset of Ncalib ≤ N randomly selected
calibration points. All datapoints in the Voronoi cell of each calibration point are then assigned the same r as the calibration
point. Unless otherwise specified Ncalib = N .

C.3. Goodness-of-Fit Test for Quadratic Regression. For a fixed density of points, there is a fundamental trade-off between reducing
uncertainty in the hk

ijs and the validity of approximating local neighborhoods with quadratic fits. To reduce σh, more points
must be included in the fit, but a larger neighborhood may not be well-modelled by only quadratic terms. Conversely, d(d+1)

2 +1
points are sufficient to perform the regression, but there is then large uncertainty in the estimate of hk

ij . Since our approach is
to choose a neighborhood size to achieve a target σh, we include a companion goodness-of-fit (GOF) statistic measuring how
well the neighborhood is fit by a quadratic. Namely, we use Mardia’s test on the residuals from regression (ε(i) in Equation 10),
which yields a p-value for the null hypothesis that the residuals are normally distributed (5).

When the p-values are small, the quadratic regression model is unlikely to be valid. In this case, curvatures computed using
the resulting hk

ij may be suspect regardless of the tightness of the errorbars, and the user may want to consider increasing
σh to reduce the neighborhood size. However, the poor GOF may not be of concern if the length scale of interest is larger
than the fluctuations in the manifold which give rise to the non-Gaussian residuals (see Methods Section C.5). Note that
Mardia’s test is relatively weak since it may yield false negatives for heteroskedastic residuals. This GOF measure is therefore
only provided as a computationally cheap consistency check. Ideally, the density of sampled points is sufficiently high to (i)
permit small σh and (ii) produce GOF p-values that are uniformly distributed (consistent with the null model) and spatially
uncorrelated.

C.4. Standard Error and Bias of Scalar Curvature Estimate. Here we discuss how we compute the standard error, σS , of the estimate
for S and note sources of estimator bias. Since the Riemannian curvature tensor in Equation 6 of the main text is a bilinear
form and the tensor contraction in Equation 7 of the main text is a straightforward sum, σS can be computed using simple
error propagation formulas in terms of the uncertainties from regression. Specifically, the standard error we report is the
first-order approximation to the second moment of a function of random variables:

σS =
√

JT ΣhJ [16]

where J = ∂S

∂hk
ij

∣∣∣
ĥ

.

It is important to note that our estimate for S is biased and not normally distributed. First, the hk
ijs are only normally

distributed when the residuals (ε(i) in Equation 10) themselves are normally distributed. Second, even when the hk
ijs are
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normally distributed, our estimate of S will not be due to its bilinear dependence on hk
ij . Lastly, estimates for S can be biased

in a manifold-dependent and even position-dependent way. For instance, the analytical scalar curvature of S2 embedded in R3

is given by S = 8(h1
11h1

22 − h1
12h1

21), with h1
11 = h1

22 = 1
2 and h1

12 = h1
21 = 0. Numerically however, the symmetric off-diagonal

terms will never be exactly 0 so S will be systematically under-estimated. This is apparent in the left tail of the blue histogram
in Figure 2I. In our experience, adding isotropic noise of small magnitude tends to remove the skew, presumably because then
the residuals more closely match the regression assumptions (see for example Figure S2B, where the left tail disappears for
σ = 0.001). Furthermore, in our examples, we observed that computed scalar curvatures were less biased when the ambient
and/or manifold dimensions were large. We speculate that this is because the increased number of terms (with alternating
signs) in Equations 6 and 7 of the main text leads to cancellation of errors, which is likely why the accuracy of computed
scalar curvatures was higher for S3, S5 and S7 than S2, and the distribution of scalar curvatures less skewed (see Figure 2I).

C.5. Note on Length Scales. Here we make three remarks regarding length scales relevant both for considering curvature theoret-
ically and for applying our algorithm.

First, note that scalar curvature has units of inverse length squared. Therefore, scaling all the coordinates of the points
on a manifold by a factor L, changes the scalar curvature at all points by L−2. Thus, it is always important to contextualize
the scalar curvature in terms of the global length scale associated with the manifold. For example, the scalar curvature of Sd

with radius R is Sd(p) = d(d−1)
R2 ∀p ∈ M (here L = R). In the case of the toy models shown in Figure 2, the global length

scale is L ≈ 1 (see Methods Section D.1). For the image patch dataset, a normalization is applied which places all patches on
S7 (see Methods Section E.2), so that the global scale is again L = 1. For scRNAseq data, we computed scalar curvature on
the datapoints after preprocessing (see Methods Section F.1), without imposing any additional scaling correction to achieve a
standardized global length scale. Since other custom analyses also use these same boilerplate preprocessing steps, computing
scalar curvatures in the context of the global length scale of the preprocessed data is sensible. For all the scRNAseq datasets,
the global length scale happened to be L ≈ 10 (see Methods Section F.6).

Second, since hk
ij is a dimension-ful quantity (which scales as L−1), to keep the ratio of σS to S fixed when all coordinates

are scaled by L, σh needs to be scaled by L−1.
Lastly, we note that our choice of σh sets local length scales that are statistically rather than geometrically informed:

neighborhoods are chosen to upper bound the uncertainty in estimates obtained from regression. This length scale can also
be understood in terms of a bias-variance trade-off. Large length scales reduce variance but may introduce a bias if the
resulting neighborhoods are larger than features on the manifold. This manifests as poor GOFs and can be corrected by finer
sampling. However, for manifolds with features at different length scales (such as a golf ball, which can be treated as dimples
superimposed on S2), neighborhoods chosen by this heuristic can also be much smaller than the feature of interest, so that
fine-scale curvature fluctuations are detected (dimples) while coarser features are neglected (S2). Regardless, we default to
this statistical approach because in general, the length scale of relevant features on a data manifold will not be uniform across
the manifold or known a priori. However, we also provide the ability to manually set position-dependent r(p) in the software
to facilitate ad hoc computation of curvatures at any length scale of interest.

D. Details of Toy Manifold Curvature Computations.

D.1. Analytical Forms. Here we provide analytical forms for the toy manifolds shown in Figures 2 and S2.

D.1.1. Hypersphere. The d-dimensional unit hypersphere, Sd, has intrinsic coordinates θ1 ∈ [0, 2π], θ2, ..., θd ∈
[
−π

2 , π
2

]
and

ambient coordinates in Rd+1 given by:

xi =

{∏d

j=1 cos θj , i = 1
sin θi−1

∏d

j=i
cos θj , 1 < i ≤ d + 1

[17]

Using the relations in Methods Section A, the scalar curvature is given by Sd(p) = d(d−1) ∀p ∈M . To draw samples uniformly
from the embedding of Sd in Rd+1, instead of applying rejection sampling on these intrinsic coordinates as described in Methods
Section A, it is more straightforward to let xi ∼ N (0, 1) and scale the resulting vector (x1, ..., xd+1) to have unit norm.

D.1.2. One-Sheet Hyperboloid. The one-sheet hyperboloid, H2
2 , has intrinsic coordinates θ ∈ [0, 2π], u ∈ R and ambient coordi-

nates in R3 given by:

x = a cos θ
√

u2 + 1

y = b sin θ
√

u2 + 1
z = cu

[18]

For Figure 2E,F, we used a = b = 2 and c = 1. Using the relations in Methods Section A, the scalar curvature is given by
S(z) = − 2

(5z2+1)2 . To avoid edge effects in the z-direction, we constrained u ∈ [−2, 2], and sampled points as described in
Methods Section A until a subset of N = 104 points had u ∈ [−1, 1]. Scalar curvature was computed and visualized for these
N = 104 points.
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D.1.3. Ring Torus. The 2-dimensional ring torus, T 2, with R > r, has intrinsic coordinates θ, ϕ ∈ [0, 2π] and ambient coordi-
nates in R3 given by:

x = (R + r cos θ) cos ϕ

y = (R + r cos θ) sin ϕ

z = r sin θ

[19]

For Figure 2G,H, we used R = 2.5 and r = 0.5. Using the relations in Methods Section A, the scalar curvature is given by
S(θ) = 8 cos(θ)

5+cos(θ) .

D.1.4. Hypercube. The m-dimensional cube of side length r, Dm
r , has intrinsic coordinates z1, ..., zm ∈

[
− r

2 , r
2

]
, and ambient

coordinates in Rn for n ≥ m given by:

xi =
{

zi, 1 ≤ i ≤ m

0, m < i ≤ n
[20]

Using the relations in Methods Section A, the scalar curvature is given by S(p) = 0 ∀p ∈M .

D.2. Practical Issues for Curvature Estimation on Real-World Datasets. For real-world data, small sample size is only one of the
potential confounders for accurately estimating curvature. Here, we report how our algorithm fares when four other real-
world confounders are applied to toy manifolds: non-uniform sampling, observational noise, large ambient dimension (n), and
uncertainty in the manifold dimension (d).

D.2.1. Non-Uniform Sampling. We expect our approach to handle non-uniform sampling of the manifold gracefully: smaller
(larger) neighborhoods will be used on densely (sparsely) sampled portions of the manifold to encapsulate the number of
points needed to achieve σh. To computationally verify the robustness of our tool to non-uniform sampling, we constructed
a toy model to roughly match the (n, d, L) parameters for the scRNAseq datasets explored in the paper, for which non-zero
scalar curvatures seemed to appear at smaller length scales/higher densities. Specifically, we wanted to verify that non-zero
scalar curvatures do not appear artifactually at specific length scales due to sharp changes in the local density of points
sampled from a flat manifold. To this end, we formed a dataset with a sparse periphery and dense core by uniformly sampling
N1 = 104 points from D3

10 to establish a background density equal to 10 points per unit volume, and N2 = 103 points from
D3

1 to create a core density roughly equal to 103 points per unit volume (see Methods Section D.1.4). We embedded these
points in R11 by adding isotropic Gaussian noise with σ = 0.01 to the eight normal directions, for all datapoints.

We computed scalar curvature on this dataset for a fixed σh (see Methods Section D.3) and found no significant deviation
from the true value of zero in either the sparse or dense regions (see Figure S2A). We next computed scalar curvatures at
three fixed length scales corresponding to the 5, 50, and 95%-ile r values obtained using the specified σh (r = 0.54, 0.90 and
1.22 respectively) and again saw no deviation from zero scalar curvature for points in either the sparse or dense region (see
Figure S2A). We repeated this analysis for N2 = 104 and again saw no deviation from zero scalar curvature, regardless of
whether variable neighborhood sizes or fixed length scales (r = 0.37, 0.63 and 1.42 corresponding to the same percentiles)
were used (see Figure S2A).

D.2.2. Observational Noise. Every ambient coordinate can be considered a measured observable with its own observational
noise. Assuming each observable is distorted by independent, isotropic Gaussian noise with variance σ2 (sometimes referred
to as convolutional noise (6)), datapoints X ∈ Rn sampled from an embedded manifold M are modelled by:

X = x +N (0, σI), x ∈M [21]

To study the sensitivity of our algorithm to noise, we uniformly sampled N = 104 datapoints from S2 ∈ R3, added convolu-
tional noise with σ ranging over several orders of magnitude, and estimated scalar curvatures using a fixed σh (see Methods
Section D.3). For small σ, the distribution of scalar curvatures was centred near the true value of 2, but once σ became large
(≈ 10% of S2’s radius), the estimated scalar curvatures approached 0 (see Figure S2B). Noise in the regression context does
not change the expectation value of any estimated parameter. The apparent flattening that is observed therefore indicates
that X (obtained from convoluting M), has a geometry that is not trivially related to M . Certainly for σ ≈ 1, X does not
even preserve the topology of M as S2. From a practical perspective, it suffices to say that small convolutional noise can be
handled by simple quadratic regression, while large convolutional noise obfuscates the original manifold.

These observations are consistent with literature defining a manifold’s reach (7, 8), a noise scale beyond which noisy samples
cannot be uniquely associated to a point on the noise-free manifold. When σ exceeds the manifold’s reach, the relationship
between the empirical density of sampled points and the original manifold is non-trivial even for a relatively forgiving model
of manifold-orthogonal noise. The ridge manifold (6, 9) of an empirical density has also been defined as an alternative to the
unwieldy task of deconvoluting noisy samples to recover a noise-free manifold. This definition avoids the notion of a noise-free
manifold altogether and instead defines manifolds as ridges, contours along which the empirical density of points is maximized.
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D.2.3. Large Ambient Dimension. A high-dimensional dataset may have an ambient space comprised of tens of thousands of
observables, i.e. n is very large. Meanwhile, the underlying manifold dimension, d, may be small. Since convolutional noise
occurs in n dimensions, will a low-dimensional manifold still be discernable?

To explore this, we uniformly sampled N = 104 datapoints from S2 ∈ R3, embedded these points in Rn for a range of
n up to 100, and added convolutional noise of magnitude σ = 0.01, 0.03, and 0.05 in the n-dimensional ambient space. We
computed curvatures for all combinations of n and σ using a fixed σh (see Methods Section D.3). As n or σ increased, the
algorithmically chosen neighborhood sizes, r(p), expanded to include enough datapoints to maintain the desired σh. The
distribution of estimated scalar curvatures (shown in Figure S2C) is centred on the true value of 2 for n < 80 and σ ≤ 0.05.

However, we observed that r was far less sensitive to changes in n than changes in σ. For example, exploding n from 3 to
100 at σ = 0.01 and tripling σ from 0.01 to 0.03 at n = 3 required a comparable increase in r (see Figure S2C). Therefore,
consistent with the results of Methods Section D.2.2, as long as the noise scale σ is small, a large ambient dimension n is not
a confounder. Practically however, to shorten computational overhead and avoid the large-n-and-σ case, it is still helpful to
reduce the ambient dimension by projecting datapoints to an affine subspace containing the manifold (e.g. by PCA). Such a
transformation does not change the intrinsic curvature.

D.2.4. Choice of Manifold Dimension. The last practical consideration is accurate selection of the manifold dimension, d, which
we have so far assumed to be known. There is no consensus on the definition of d for a dataset, so various disciplines
have devised different heuristics to determine d in a data-driven fashion (10). From the regression perspective, any d > 0
corresponds to a well-defined regression problem. The choice of d merely determines how local coordinates are partitioned
into independent (tangent) and dependent (normal) variables. However, in our algorithm we noticed that some choices of d
result in excessively large r(p) for a fixed σh. We explored this further using two toy manifolds and discovered a signature
indicating that the specified manifold dimension may be incorrect.

The manifolds considered were S3 ⊂ R5 convoluted by isotropic Gaussian noise with σ = 0.01 and S2 × S2 ⊂ R6, for
which d∗, the true manifold dimension, is d∗ = 3 and d∗ = 4 respectively. We uniformly sampled N = 104 points from each
manifold and estimated scalar curvatures by holding σh fixed for different d (see Methods Section D.3). For both manifolds,
the average neighborhood size, r, was much larger for d > d∗ and d < d∗, than for d = d∗ (see Figure S2D). In the case of S3,
for d < d∗, the average neighborhood size was even larger than the global length scale, L, of the manifold. Since neighborhood
sizes are chosen to achieve a target σh, manually decreasing r(p) is counter-productive and simply increases the uncertainty
from regression above σh.

The large neighborhood sizes that emerged for both d > d∗ and d < d∗ can be understood in terms of the mis-assignment
of normal vectors to the tangent space, or vice versa. According to Equation 12, σhk

ij
increases with large variation in the

normal direction ([diag Σε]k), or with small variation in the tangent direction (
[
diag (tT t)−1]

(ij)
). When we choose d > d∗,

we mis-attribute a normal direction with small variation [diag Σε]k as an independent variable, whereas variation along the
true tangent space is ≫ [diag Σε]k. r must therefore be increased to compensate for the lack of variation along this direction
mis-classified as tangent. When d < d∗, we have spuriously assigned a tangent direction with large variation to be a normal
direction. Since this spurious normal coordinate cannot be well-approximated as a function of tangent coordinates from which
it is linearly independent, the perceived noise scale ([diag Σε]k) is exaggerated so that a larger neighborhood is needed to
attain σh.

This suggests a crude, operational definition of what constitutes an incorrect choice of d. When σhk
ij

is large relative to
the uncertainty in other coefficients, there is either too little variation along the ith and jth tangent directions, or too much
variation along the kth normal direction. In the former case, the ith or jth tangent direction might be more appropriately
classified as a normal direction (d is too large and should be decreased), while in the latter case, the kth normal direction
might be more appropriately classified as a tangent direction (d is too small and should be increased). When this criterion is
applied point-wise, there may be a different acceptable choice of d for different parts of the manifold. When this criterion is
generalized over the entire manifold, a σh yielding a flat distribution of GOF p-values when the manifold dimension is specified
to be d will also yield a flat distribution for d+1 but not necessarily for d−1: if residuals in n−d dimensions are well-modelled
by a multivariate Gaussian, so too will residuals in n− d− 1 dimensions, but not necessarily residuals in n− d + 1 dimensions
(see Figure S2D). Our observations are consistent with manifolds in literature with multiple possible manifold dimensions (like
the helix manifold in (9)), and which could generally arise from non-isotropic noise or non-uniform sampling.

D.3. Parameters for Curvature Estimation. For each manifold in Figure 2, we chose σh so that the fraction of points with GOF p-
value ≤ α = 0.05 most closely matched the null model of normally distributed residuals consistent with neighborhood sizes well-
approximated by quadratic regression (see Section C.3). σh = (0.017, 0.020, 0.028, 0.055, 0.022, 0.030) for (S2,S3,S5,S7, H2

2 , T 2)
resulted in (7.4, 3.5, 1.4, 2.8, 7.4, 4.0)% of points having GOF p-values ≤ α = 0.05. Theoretically, max |hk

ij | = (0.5, 2, 2.5) for
(Sd, H2

2 , T 2) so our choices for σh result in small fractional errors in all cases.
For Figure S2A, we set σh = (0.02, 0.01) for N2 = (103, 104) respectively which resulted in (1.6, 2.5)% of points having

GOF p-values ≤ α = 0.05. For all other panels in Figure S2, where we were interested in ascertaining the sensitivity to
different confounders, instead of minimizing uncertainty per se, we used a fixed value of σh = 0.05. This choice resulted in
neighborhoods small enough to be well-approximated by quadratic regression, manifesting as a roughly uniform distribution
of GOF p-values in all cases.
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E. Details of Image Patch Dataset and Klein Bottle Manifolds.

E.1. Notation and Preliminaries. First we introduce some notation needed to describe the image patch dataset. We refer readers
to (11, 12) for a more detailed exposition. Let P be the space of all bivariate polynomials p : R×R→ R with p ∈ P , h : P → R9

the vectorization operator given by h(p) = [p(−1, 1), p(−1, 0), p(−1,−1), p(0, 1), p(0, 0), p(0,−1), p(1, 1), p(1, 0), p(1,−1)]T , u :
Rm → Sm−1 the normalization operator given by u(v) = v

∥v∥2
, and c : R9 → R8 the projection operator given by c(y) = ΛAT y,

where A = [e1 . . . e8], Λ = diag{ 1
∥e1∥2

2
, ..., 1

∥e8∥2
2
}, and {ei} are vectorized basis vectors for the 2-dimensional discrete cosine

transform (DCT) applied to 3x3-pixel patches:

e1 = [1, 0,−1, 1, 0,−1, 1, 0,−1]T /
√

6

e2 = [1, 1, 1, 0, 0, 0,−1,−1,−1]T /
√

6

e3 = [1,−2, 1, 1,−2, 1, 1,−2, 1]T /
√

54

e4 = [1, 1, 1,−2,−2,−2, 1, 1, 1]T /
√

54

e5 = [1, 0,−1, 0, 0, 0,−1, 0, 1]T /
√

8

e6 = [1, 0,−1,−2, 0, 2, 1, 0,−1]T /
√

48

e7 = [1,−2, 1, 0, 0, 0,−1, 2,−1]T /
√

48

e8 = [1,−2, 1,−2, 4,−2, 1,−2, 1]T /
√

216

[22]

By inspection, e1 is the basis vector for patches with horizontal stripes and linear gradients, e2 for patches with vertical
stripes and linear gradients, e3 for patches with horizontal stripes and quadratic gradients, e4 for patches with vertical stripes
and quadratic gradients, and e5 for diagonally-oriented patches with quadratic gradients. All the patches produced by the
embedding k0 in Equation 24 below and visualized in Figure 3B can be written as a linear combination of these 5 basis vectors.
Next, note that the components in each ei sum to 0, so that the projection operator, c, additionally serves to remove the
mean. Finally, observe that the vector norm formed under D = AΛ2AT (referred to hereafter as the D-norm following (12))
measures the contrast in a 3x3-pixel patch since

∥v∥D =
√

vT Dv = 1
2

√∑
i

∑
j∼i

(vi − vj)2 [23]

where j ∼ i refers to all vertical and horizontal neighbors, j, of a pixel i in the preimage of v under h. The ei are normalized
so that ∥ei∥D = 1.

E.2. Image Dataset. We used the same van Hateren IML dataset (13) consisting of 4167 greyscale images of size 1532x1020
pixels studied by Carlsson et al. in (11) and followed the same preprocessing steps used there. In short, we applied a log1p
transformation to all pixel values and randomly sampled 5 × 103 (possibly overlapping) 3x3-pixel patches from each image.
We indexed the pixels in each patch using standard Cartesian coordinates with the middle pixel as the origin, so that log-
transformed pixel values are given by p(x, y), x ∈ {−1, 0, 1}, y ∈ {−1, 0, 1}. We then applied h to vectorize each patch p, and
retained the high-contrast patches comprising the top quintile of D-norms for each image, resulting in N ≈ 4.2×106 datapoints.
Next, we normalized these high-contrast vectorized patches using the composition u ◦ c, resulting in a set of datapoints on
S7 ⊂ R8. We determined the density of these datapoints in R8 using the kNN density estimator with k = 100, and retained
the densest decile, which yielded N ≈ 4.2× 105 datapoints. This dense subset of high-contrast normalized patches was found
using topological data analysis in (11) to be a Klein bottle, K2 ⊂ S7, and is studied in Figures 3D,I and S3B.

To generate the augmented image patch dataset used in Figures 3J and S3E,F, we first considered all N ≈ 1.3 × 109

vectorized high-contrast patches in the van Hateren IML dataset using the same procedure described above (each of the 4167
images yields 1530× 1018 patches, of which the top 20% by D-norm are retained per image). These were normalized by u ◦ c
as before to place them on S7 ⊂ R8. We again wanted to retain the densest decile of points, since only these have the topology
of a Klein bottle. Mirroring the approach in (11) where the k used in the kNN estimator was scaled with sample size, k = 102

used for N ≈ 4.2× 106 corresponds to k = 102 × 1.3×109

4.2×106 ≈ 3× 104 for N ≈ 1.3× 109. Computing k ≈ 3× 104 neighbors for
all N ≈ 1.3 × 109 points is prohibitive however. To determine a reasonable smaller value of k, we randomly selected 2 × 104

points from the set of N ≈ 1.3 × 109 on which to compare estimators and found that 90% of points in the densest decile as
computed with k = 3 × 104 also appeared in the densest decile computed using k = 6 × 102. We therefore used the latter
value for density estimation and retained the N ≈ 1.3× 108 datapoints comprising the densest decile.

E.3. Parametric Family of Klein Bottle Embeddings. Let θ, ϕ ∈ [0, 2π]. Bivariate polynomials parameterized by (θ, ϕ), kθ,ϕ ∈ Kθ,ϕ ⊂
P , that satisfy kθ,ϕ = kθ+π,2π−ϕ form a Klein bottle, K2: the (θ, ϕ) ∼ (θ + π, 2π − ϕ) similarity relation results in edges
being glued together in the manner definitional of a Klein bottle’s topology (shown in Figure 3B). The candidate Klein bottle
embedding supplied in (11) to model image patch data satisfies the similarity relation ∀x, y:

k0 ≡ k0
θ,ϕ(x, y) = cos ϕ [x cos θ + y sin θ]2 + sin ϕ [x cos θ + y sin θ] [24]
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Note that any kθ,ϕ ∈ Kθ,ϕ can be decomposed as:

kθ,ϕ = C + κθ + κϕ + κθ,ϕ [25]

where κθ = κθ+π, κϕ = κ2π−ϕ and κθ,ϕ = κθ+π,2π−ϕ. The first three terms can be understood as constant, θ-dependent and
ϕ-dependent phases respectively.

We sought an embedding of the Klein bottle for which the sum of Euclidean distances from each image patch to its closest
point on the embedding is minimized. To accomplish this, we constructed a parametric family of models for each of the four
terms in Equation 25. The first three of these are most conveniently expressed directly in the DCT basis.

(c ◦ h) (C) = NC

8∑
i=1

µiei

(c ◦ h) (κθ) =
8∑

i=1

 Nθ∑
j=2

j even

βi,j cos(jθ) + γi,j sin(jθ)

 ei

(c ◦ h) (κϕ) =
8∑

i=1

[
Nϕ∑
j=1

ζi,j cos(jϕ)

]
ei

[26]

NC is a Boolean variable, and Nθ and Nϕ control the number of terms in the inner sum for (c ◦ h) (κθ) and (c ◦ h) (κϕ)
respectively. The expression for (c ◦ h) (κθ) only includes even coefficients for θ so that the similarity relation (θ) ∼ (θ + π) is
satisfied. The expression for (c ◦ h) (κϕ) only includes cosine terms so that the similarity relation (ϕ) ∼ (2π − ϕ) is satisfied.

For κθ,ϕ, we refrained from again writing a Fourier series-like expansion because we wanted to preserve the interpretation
of θ and ϕ as parameters controlling the orientation and gradient respectively (11). Instead, we devised the following form,
which we motivate further below:

κθ,ϕ(x, y) =
Mϕ∑
l=1

cosl(ϕ)

 s+t≤Mθ∑
0≤s,t≤Mθ
1<s+t even

ηl,s,t(x cos θ)s(y sin θ)t

+
Mϕ∑
l=1

l odd

sinl(ϕ)

 s+t≤Mθ∑
0≤s,t≤Mθ

s+t odd

ϑl,s,t(x cos θ)s(y sin θ)t

 [27]

The expression for (c ◦ h) (κθ,ϕ) is unwieldy but we note the following identities for monomials of the form q(x, y) = xsyt,
which can then be applied term-wise to κθ,ϕ.

(c ◦ h) (q) =



√
6e1, if s = 0 and t odd
−
√

6e2, if t = 0 and s odd√
6e3, if s = 0 and t even√
6e4, if t = 0 and s even
−
√

8e5, if s odd and t odd
2

√
6

3 e1 + 4
√

3
3 e6, if s > 0 even and t odd

− 2
√

6
3 e2 − 4

√
3

3 e7, if t > 0 even and s odd
2

√
6

3 (e3 + e4 + e8) , if s > 0 even and t > 0 even

[28]

Note that the first inner sum in Equation 27 is a linear combination of basis vectors encoding purely quadratic gradients
(e3, e4, e5 and e8), weighted by even trigonometric functions of θ. The prefactors on this inner sum are functions that are even
in ϕ. This inner sum and its prefactor therefore jointly satisfy the similarity relation (θ, ϕ) ∼ (θ + π, 2π−ϕ) by independently
satisfying (θ) ∼ (θ + π) and (ϕ) ∼ (2π − ϕ). Meanwhile, the second inner sum in Equation 27 is a linear combination of basis
vectors containing linear gradients (e1, e2, e6 and e7), weighted by odd trigonometric functions of θ. The prefactors on this
inner sum are functions that are odd in ϕ. This inner sum and its prefactor therefore jointly satisfy the similarity relation
(θ, ϕ) ∼ (θ + π, 2π − ϕ), by independently satisfying (θ) ∼ −(θ + π) and (ϕ) ∼ −(2π − ϕ). Since the trigonometric functions
of θ are coupled to (x, y), θ controls the rotation of stripes in the image patches, just as in k0. Similarly, since the prefactors
on the inner sums are functions of ϕ, ϕ controls the relative contribution of quadratic gradients (e3, e4, e5 and e8 in the first
inner sum) and linear gradients (e1, e2, e6 and e7 in the second inner sum). Lastly, the boundary conditions for θ and ϕ
in this parameterization of κθ,ϕ, yield patches with vertical (horizontal) stripes when θ = 0 (θ = π

2 ), and linear (quadratic)
gradients when ϕ = π

2 , 3π
2 (ϕ = 0, π) just as in k0.

A Klein bottle embedding belonging to this parametric family, kα
θ,ϕ ∈ Kθ,ϕ, can therefore be specified in terms of a vector

F = [NC , Nθ, Nϕ, Mθ, Mϕ] defining its functional form, and a corresponding coefficient vector α = [µi, ..., βi, ..., γi, ..., ζi, ..., ηi,
..., ϑi]. In this parametric family of Klein bottle embeddings, k0 corresponds to F = [0, 0, 0, 2, 1] with α = [η1,2,0, η1,1,1, η1,0,2,
ϑ1,0,1, ϑ1,1,0] = [1, 2, 1, 1, 1]. Note that since scalar curvatures are only computed on the embedding after normalization, α is
only meaningfully defined up to a multiplicative constant.
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E.4. Associating Image Patches to a Klein Bottle Embedding. For a given Klein bottle embedding, kα
θ,ϕ ∈ Kθ,ϕ, we associated each

datapoint vi (already vectorized and normalized by u◦ c◦h) to the closest point on kα
θ,ϕ by minimizing the Euclidean distance

in R8:
(θ̂i, ϕ̂i) = argminθ,ϕ∥(u ◦ c ◦ h)

(
kα

θ,ϕ

)
− vi∥2

2 [29]

We solved this minimization using the lsqnonlin function (‘StepTolerance’=1e-3, ‘FunctionTolerance’=1e-6) in MATLAB,
supplying initial conditions corresponding to analytical values for a point on k0:

θ̂i = arctan e1
T vi

−e2T vi

(
vi∈(u◦c◦h)(k0)

= arctan sin ϕ̂i sin θ̂i

sin ϕ̂i cos θ̂i

)
ϕ̂i = arctan

√
(e1T vi)2 + (e2T vi)2

e3T vi + e4T vi

(
vi∈(u◦c◦h)(k0)

= arctan

√
sin2 ϕ̂i

cos2 ϕ̂i

) [30]

We constrained solutions to θ̂i ∈ [0, π] and ϕ̂i ∈ [0, 2π] according to the (θ, ϕ) similarity relation.

E.5. Optimal Klein Bottle Embedding. Let kα̂
θ,ϕ ∈ Kθ,ϕ be the Klein bottle embedding that minimizes the sum of Euclidean distances

in R8 between each image patch and the closest point on the embedding. To determine kα̂
θ,ϕ given a functional form F , we

initialized the coefficient vector α̂ to have zero entries everywhere except for the values used in k0. We then iterated between
optimizing for (θ̂i, ϕ̂i) according to Equation 29 and for α̂ as shown below using least-squares, until convergence:

α̂ = argminα

∑
i

∥(u ◦ c ◦ h)
(
kα

θ̂i,ϕ̂i

)
− vi∥2

2 [31]

k1 ≡ kα̂
θ,ϕ is the optimized Klein bottle embedding corresponding to F = [1, 10, 10, 20, 10], for which results are shown in

Figures 3H and S3D.

E.6. Noisy Klein Bottle Embeddings. The set of N ≈ 4.2 × 105 image patches was associated to k0 according to the procedure
described in Methods Section E.4, yielding (θ̂i, ϕ̂i) values. Isotropic Gaussian noise of magnitude sσ was added element-wise in
R9 (prior to normalization by u ◦ c) to h(k0

θ̂i,ϕ̂i
), where s = mediani{∥h(k0

θ̂i,ϕ̂i
)∥2} ≈ 2.451. Figures 3F,G and S3A correspond

to noise with σ = 0.007, 0.01 and 0.03.

E.7. Parameters for Curvature Estimation. For all scalar curvature computations on image patch datasets and Klein bottle embed-
dings, we set d = 2 and Ncalib = 104. Unless the neighborhoods were manually specified, we used σh = 0.1, which yielded a
flat distribution of GOF p-values (2.5% of points reported GOF p-values ≤ α = 0.05) for the set of N ≈ 4.2× 105 points on
k0 closest to the image patches (shown in Figure 3E).

F. Details of scRNAseq Datasets. The PBMC dataset provided by 10x Genomics is comprised of N = 10194 PBMCs collected
from a healthy donor (14). The mouse gastrulation dataset consists of N = 116312 cells collected at nine 6-hour intervals from
embryonic day (E)6.5 to E8.5 (15). The mouse brain dataset is a benchmark from 10x Genomics consisting of N = 1306127
cells collected from the cortex, hippocampus and ventricular zone of two embryonic mice sacked at E18 (16). The mouse
dentate gyrus dataset consists of the subset of N = 18213 cells considered in (17) sourced from Dataset C of (18).

F.1. Preprocessing. For the PBMC dataset, we applied standard preprocessing steps using Seurat v3.1.2 (19) with default func-
tion arguments, to extract PC projections and UMAP coordinates ourselves. Specifically, we removed cells where the percent-
age of transcripts corresponding to mitochondrial genes exceeded 15%, or which had fewer than 500 transcripts. This reduced
the number of cells from 10194 to 9385. On this filtered set, we normalized the data (NormalizeData(normalization.method=
‘LogNormalize’, scale.factor=10000)), retained the 2000 most variable genes (FindVariableFeatures(selection.method=‘vst’,
nfeatures=2000)), and z-scored the data (ScaleData). Next, we performed linear dimensionality reduction using PCA down
to 50 dimensions (RunPCA(npcs=50)) and generated UMAP coordinates for visualization (RunUMAP(dims=1:30)). For the
gastrulation (brain) dataset, we did not preprocess the data ourselves but instead directly used the 50 (20) PC projections
and UMAP (t-SNE) visualization coordinates provided with the dataset. Please refer to (15, 16) for additional details. For
the dentate gyrus dataset, we used the standard analysis recipe suggested in the dynamo v0.96.0 (20) software package. In
short, we preprocessed and normalized the data (pp.recipe_monocle(n_top_genes=2000, shared_count=30)) and performed
linear dimensionality reduction to 30 PCs (tl.reduceDimension).

F.2. Cell Type Annotations. For the PBMC dataset, the AddModuleScore(ctrl=5) function was used to compute the per-cell
average expression of marker genes corresponding to seven different cell types (21). To prepare Figure S4A, each cell was
assigned the cell type for which its average marker gene expression was the highest. Cell type annotations for the gastrulation
dataset (see Figure S5A) were sourced from Figure 1C of (15). Cell type annotations for the brain dataset (see Figure S6A)
are predicted labels sourced from (22). Cell type annotations for the dentate gyrus dataset (see Figure S7A) were sourced
from Figure 3A of (17).

F.3. Statistical Tests. Here we describe the statistical tests applied to scalar curvatures computed for the scRNAseq datasets.
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F.3.1. Spatial Precision of Errorbars. Let m be the fraction of datapoints with 95% CIs containing the scalar curvatures reported
by their respective kNNs. To check whether m was significantly larger than chance, we used a permutation test. We randomly
assigned the kNN of each datapoint to be one of the N datapoints in the dataset and computed m. We repeated the procedure
T = 1000 times to generate an empirical distribution of m for the null model of random neighbors. The reported p-value for
each k is the fraction of the T trials for which m was greater than the value computed for data. See Figures S4D, S5D, S6D
and S7D.

F.3.2. Sensitivity to Cell Downsampling. To check the sensitivity of the computed scalar curvatures to the average density of cells,
we discarded f% of cells at random from the ambient space computed using the original set of N datapoints, and recomputed
scalar curvatures using the same ambient dimension, manifold dimension and neighborhood sizes as for the original dataset
(see Methods Section F.6). Let m be the fraction of downsampled datapoints with 95% CIs containing the scalar curvatures
originally reported. Since the CIs grow as f increases, we checked whether m was significantly larger than chance by using
a permutation test. We randomly paired each of the 95% CIs computed after downsampling, to one of the scalar curvatures
reported by the downsampled points for the original dataset, and computed m. We repeated the procedure T = 1000 times
to generate an empirical distribution of m for the null model. The reported p-value for each f is the fraction of the T trials
for which m was greater than the value computed for data. See Figures S4I, S5I, S6I and S7I.

F.3.3. Sensitivity to Transcript Downsampling. To check the sensitivity of the computed scalar curvatures to the capture efficiency
and sequencing depth of the data, we discarded f% of transcripts at random from the single-cell count matrix for the PBMC
dataset, then performed the same preprocessing steps described in Methods Section F.1. We recomputed scalar curvatures
using the same ambient dimension, manifold dimension and neighborhood sizes as for the original dataset (see Methods
Section F.6). Let m be the fraction of datapoints with 95% CIs containing the scalar curvatures originally reported. To
check whether m was significantly larger than chance, we used a permutation test. We randomly paired each of the 95% CIs
computed after downsampling transcripts, to one of the scalar curvatures computed for the original dataset, and computed
m. We repeated the procedure T = 1000 times to generate an empirical distribution of m for the null model. The reported
p-value for each f is the fraction of the T trials for which m was greater than the value computed for data. See Figure S4J.

F.3.4. Pairwise Comparison of Average Scalar Curvatures Across Cell Types. To test whether the differences in average scalar cur-
vature between cell types were statistically significant, we used Welch’s t-test. However, since the scalar curvature for each
point is computed using a neighborhood of nearby points, the scalar curvatures cannot be treated as independent observations.
To avoid false positives arising from an over-estimation of the true degrees of freedom, we conservatively set the degrees of
freedom for each cell type to be the number of cells of that type divided by the median neighborhood population for the
dataset (see Figures S4F, S5F, S6F and S7F). We used this corrected value for the degrees of freedom both when computing
the standard error from the standard deviation for each cell type, and when computing the cumulative density for the resulting
t-statistic. Welch’s t-test requires the degrees of freedom for each sample to be at least 5 (23), so we only computed p-values
for pairs of cell types for which both satisfied this requirement, and performed multiple hypothesis testing on this restricted
set using the Benjamini-Hochberg procedure with FDR=0.05.

F.4. Correlating Scalar Curvature to Gene Expression. Since the scalar curvature is a multi-variate function of the expression levels
of all genes, we fit the scalar curvature to a linear regression model of normalized gene expression data using the fitlm function
in MATLAB, resulting in a fitted coefficient for each gene and a corresponding p-value. For the PBMC dataset, the model was
fit to the z-scores of the 2000 highly variable genes selected during preprocessing (see Methods Section F.1). For the dentate
gyrus dataset, the model was fit to the normalized expression values produced by pp.recipe_monocle (see Methods Section F.1).
Normalized gene expression data was not publicly available for the gastrulation and brain datasets. Multiple hypothesis testing
was performed on the p-values using the Benjamini-Hochberg procedure at FDR=0.05. Though the preprocessing steps select
for highly-variable genes, we noted that some genes only appeared highly-variable due to the presence of a few outliers, so we
disregarded these genes irrespective of their p-values.

F.5. RNA Velocity Analysis. To infer the RNA velocity vector field, we used the standard analysis recipe suggested in the dynamo
package. In short, after preprocessing as described in Methods Section F.1, we inferred the parameters needed for RNA velocity
analysis (tl.dynamics(model=‘stochastic’)), computed cell velocities in the basis of the 30 PCs (tl.cell_velocities) and learned
the vector field (vf.VectorField). Lastly, we computed the speed (vf.speed) and divergence (vf.divergence). We visualized the
flow lines of the vector field in Figure 5F using pl.streamline_plot.

F.6. Parameters for Curvature Estimation. Let the variance explained by the ith PC be given by σ2
i and the cumulative fractional

variance of the first m PCs by cm =
∑m

i=1
σ2

i∑
i

σ2
i

. For each dataset, we selected the ambient dimension as n = argmaxm{cm|cm ≤

0.8}, the manifold dimension as d = argmaxm{cm|cm ≤ 0.64}, and considered the global length scale to be L = 3σd. (n, d, L) =
(8, 3, 18.3), (11, 3, 19.1), (9, 5, 24.9) and (6, 2, 10.2) for the PBMC, gastrulation, brain and dentate gyrus datasets respectively.
For the first three datasets, we computed scalar curvatures for manifold dimensions d− 1, d and d + 1. Since it is not possible
to compute curvature when d−1 = 1, for the dentate gyrus dataset, we computed scalar curvatures for manifold dimensions d,
d+1 and d+2. It was not always possible to select σh for each dataset and manifold dimension, so that the distribution of GOF
p-values was flat, according to our usual heuristic. For consistency, we therefore picked σh so that 1

3 of points had GOF p-values
≤ α = 0.05. For manifold dimension (d−1, d, d+1), σh = (0.031, 0.041, 0.045), (0.036, 0.044, 0.053) and (0.034, 0.050, 0.055) for
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the PBMC, gastrulation and brain datasets respectively. For the dentate gyrus dataset, σh = (0.053, 0.049, 0.061) for manifold
dimension (d, d + 1, d + 2).
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Fig. S1. The scalar curvature of S2 is poorly estimated using the Laplace-Beltrami operator.
(A) The heat-trace with m terms, (zm(x) in Equation 3 of the main text) is shown for m = ∞ (black), m = 1000 (solid blue) and m = 49 (solid red), when evaluated with
analytical eigenvalues for S2. Empirical eigenvalues were obtained by uniformly sampling N = 104 points from S2 (see Figure 1A; Methods Section D.1.1) and estimating
the Laplace-Beltrami (LB) operator using Equations 6-8. The heat-trace evaluated using these empirical eigenvalues, zm, is shown for m = 1000 (dashed blue) and
m = 49 (dashed red). The heat-trace evaluated using eigenvalues obtained by interpolating between the analytical and empirical values (z̃m(x; f) in Equation 4) is shown
for m = 49 and f = 0.21 (solid green). f signifies that the fractional error of the interpolated eigenvalues is reduced by 1 − f relative to the empirical eigenvalues. f = 0
corresponds to the analytical eigenvalues while f = 1 corresponds to the empirical eigenvalues. The white region bounded by [x1, x2] indicates a candidate interval over
which to fit a heat-trace to a quadratic in order to extract an estimate for the scalar curvature (see Equations 2-4 in the main text; Methods Section B.1). On the one hand,
since the knee of zm(x) shifts to the left as m increases (i.e. zm(x) converges from ∞), larger m results in more intervals for which zm(x) well-approximates z∞(x) and
will therefore yield accurate scalar curvature estimates. On the other hand, zm(x) becomes a worse estimator for zm(x) as m increases.
(B) Scalar curvatures estimated by fitting z∞(x) to a quadratic over different intervals [x1, x2] as defined in (A). Scalar curvatures are shown in color for intervals yielding
accurate estimates (S ∈ [1.5, 2.5]). This colored region corresponds to D∞.
(C) As in (B) but with estimates obtained by fitting a quadratic to z1000(x). The colored region corresponds to D1000. By inspection, D1000 ⊂ D∞.
(D) Scalar curvatures estimated by fitting z1000(x) to a quadratic over each interval in D1000. Though D1000 was constructed using only intervals which yielded an accurate
scalar curvature estimate when analytical eigenvalues were used in the heat-trace, no interval in D1000 yields an accurate scalar curvature estimate when the same number
of empirical eigenvalues are used in the heat-trace instead.
(E) As in (B) but with estimates obtained by fitting a quadratic to z49(x). The colored region corresponds to D49. By inspection, D49 ⊂ D1000.
(F) As in (D) but with estimates obtained by fitting z49(x) to a quadratic over each interval in D49. No estimate is accurate just as in (D).
(G) As in (F) but with estimates obtained by fitting z̃49(x; f = 0.21) to a quadratic over each interval in D49. f = 0.21 was chosen so that half the intervals in D49 yield
an accurate scalar curvature estimate.
(H) (Left) The fractional error in the first 49 empirical eigenvalues of the LB estimator from (A) is shown in red. This operator was computed using the Gaussian kernel (Wg in
Equation 8). Eigenvalues 37-49 have a fractional error of 62%. The fractional error of the eigenvalues of LB estimators computed on the same N = 104 points but using the
weighted kNN and r-neighborhood kernels (WkNN and Wr respectively in Equation 9) is also plotted. Positive error indicates under-estimation. (Right) Projected fractional
error for eigenvalues 37-49 of the LB estimator with Gaussian kernel computed using a larger sample size (N ). The projection is based on the convergence rate given in
Theorem 1 of (2), assuming that the big-O bound is sharp at N = 104 for eigenvalues 37-49. The dashed green line corresponds to the 13% fractional error needed for
scalar curvatures to be accurately estimated for half the intervals in D49. This corresponds to f = 0.21 in (G) since 62% × f = 13%. For the LB estimator computed
using the Gaussian kernel, achieving this fractional error requires N ≈ 107. Since LB estimators computed using the other kernels have the same convergence rate but
larger fractional error at N = 104, these estimators would require even larger N to achieve the desired 13% fractional error. See Methods Section B.4.
(I-N) As in (B-G) respectively but using cubic polynomials for fitting. Only 26% of fits to z̃49(x; f = 0.21) yielded accurate scalar curvature estimates on D49. See Methods
Section B.5.
(O-T) As in (B-G) respectively but using quartic polynomials for fitting. Only 13% of fits to z̃49(x; f = 0.21) yielded accurate scalar curvature estimates on D49. See
Methods Section B.5.
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Fig. S2. Sensitivity of algorithm to real-world confounders.
(A) (Left) A dataset with a sparse periphery and a dense core was formed by uniformly sampling N1 = 104 points from the 3-dimensional cube of side-length 10, D3

10,
and N2 = 103 points from the 3-dimensional cube of side-length 1, D3

1 (see Methods Section D.1.4). These points were embedded in R11 and padded with isotropic
Gaussian noise of magnitude σ = 0.01 in the 8 normal directions. Scalar curvatures (S) were computed on this dataset of N1 + N2 points by setting σh and are plotted
against their standard errors (σS ) in the leftmost panel. Curvature computations were also performed at fixed length scales corresponding to the 5, 50 and 95%-ile values for
neighborhood size (left to right) used in the leftmost panel (r = 0.54, 0.90 and 1.22 respectively). Here, points for which the chosen r led to neighborhoods with insufficient
points for regression are not shown. For large length scales, all points in the dense region are able to report curvatures but are crowded into the apex of the plots. The N1
(N2) sparse (dense) points are shown in blue (green). Points enclosed by the red lines have 95% CIs including the true value of zero. The right four panels show analogous
results when N2 = 104. Here the the 5, 50 and 95%-ile values for neighborhood size are r = 0.37, 0.63 and 1.42 respectively. See Methods Section D.2.1.
(B) Distribution of scalar curvatures computed for N = 104 points uniformly sampled from S2 ⊂ R3 and convoluted with isotropic Gaussian noise of magnitude σ in R3.
Noise confounds accurate scalar curvature computation when σ is roughly 10% of the sphere’s radius. The deviation of the estimated scalar curvatures from the true value
of 2 (shown as a dashed red line) for σ ≥ 0.1 reflects the nontrivial geometry of a manifold convoluted by noise. See Methods Section D.2.2.
(C) (Left) N = 104 points were uniformly sampled from S2 and embedded in Rn. Isotropic Gaussian noise of magnitude σ was applied to each of the n ambient dimensions.
Scalar curvatures computed by keeping σh fixed for all n and σ, recapitulated the true value of 2 (shown as dashed red lines) for n < 80 and σ ≤ 0.05. (Right) The
neighborhood size (r) necessary to attain σh is less sensitive to changes in n than changes in σ. See Methods Section D.2.3.
(D) N = 104 points were uniformly sampled from (left) S3 ⊂ R5 convoluted with isotropic Gaussian noise in the ambient space with σ = 0.01 and (right) S2 × S2 ⊂ R6.
To investigate the effects of choosing the manifold dimension, d, differently than the true value, d∗, σh was kept fixed, and scalar curvatures were computed for d = d∗ − 1
(cyan), d = d∗ + 1 (magenta) and d = d∗ (green). The panels show the distribution of (left to right) scalar curvatures (S), standard errors (σS ) and GOF p-values. The
true value of the scalar curvature (at d = d∗) is constant across both manifolds and shown as a dashed red line. The average neighborhood size (r averaged over all points)
is much larger for both d = d∗ − 1 and d = d∗ + 1 than for d = d∗ as shown in the legend. For the same σh, d = d∗ − 1 also leads to a more skewed distribution of
GOF p-values relative to d = d∗, while the distribution for d = d∗ + 1 is still flat. See Methods Section D.2.4.
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Fig. S3. Additional details of the image patch dataset and Klein bottle embeddings (related to Figure 3).
(A) To compute scalar curvatures for Figure 3E, each image patch was associated to the (θ0, ϕ0) coordinates of the closest point on k0. Here we select a handful of these
associated points on k0 (shown in black) and visualize how neighborhoods chosen in R8 to compute scalar curvatures for Figure 3E appear in (θ0, ϕ0) coordinates (shown
in red). When noise of increasing magnitude, σ, is added to the set of closest points on k0 (see Figure 3F; Methods Section E.6), the neighborhood size at each point grows
until σh is attained.
(B) As in (A), but showing neighborhoods used in computing the scalar curvatures in Figure 3D for the image patch dataset. Note the close correspondence in neighborhood
size with σ = 0.03 in (A).
(C) Scalar curvatures computed for the set of closest points (θ0, ϕ0) on k0 as in Figure 3E, but using the same neighborhood sizes determined for the image patch dataset
shown in Figure 3D, some of which are visualized in (B).
(D) As in (A) but showing neighborhoods used in computing the scalar curvatures in Figure 3H for the set of closest points on k1. Neighborhoods are visualized on (θ0, ϕ0)
coordinates instead of (θ1, ϕ1) coordinates for ease of comparison.
(E) As in (B) but showing neighborhoods used in computing the scalar curvatures for the augmented image patch dataset with N ≈ 1.3 × 108 points in Figure 3J.
(F) Scalar curvatures computed for the augmented image patch dataset with N ≈ 1.3 × 108 points as in Figure 3J, but using the same neighborhood sizes determined for
the original image patch dataset with N ≈ 4.2 × 105 shown in Figure 3D and (B). Note the close correspondence with Figure 3D.
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Fig. S4. Additional details of the PBMC scRNAseq dataset (related to Figure 4).
(A) Cell types overlaid onto UMAP coordinates and sorted in decreasing order of abundance in the legend. Cells were annotated as described in Methods Section F.2.
(B) A goodness-of-fit p-value was computed for each point by applying Mardia’s test to the residuals obtained from fitting the neighborhood around the point to a quadratic
function (see Methods Section C.3). These p-values are visualized on UMAP coordinates corresponding to each point (left) and their empirical distribution is shown using a
histogram (right). Small p-values suggest that the residuals are non-normal so that approximating local neighborhoods as quadratic may not be valid.
(C) Pearson correlation between the scalar curvature reported by each point and its kth-nearest neighbor (kNN) for different k (shown in blue). The red bar shows the mean
and standard deviation of the Pearson correlation when neighbors are chosen randomly over 1000 trials (*p < 10−6).
(D) The percentage of points with 95% CIs containing the scalar curvatures reported by their respective kNNs (shown in blue). The red bar shows the mean and standard
deviation of this percentage when neighbors are chosen randomly over 1000 trials (*p < 0.001; see Methods Section F.3.1).
(E) The neighborhood size (r) used for computing scalar curvature at each point, overlaid onto UMAP coordinates (left) and a corresponding histogram of the empirical
distribution (right). The dashed red lines correspond to the 25, 50, and 75%-ile values of r(p) used for computing scalar curvatures at fixed neighborhood sizes for Figure 4C.
See Methods Section C.2.
(F) The number of points in each neighborhood (corresponding to the neighborhood sizes in (E)) overlaid onto UMAP coordinates (left) and a corresponding histogram of the
empirical distribution (middle). The dashed red line corresponds to the median neighborhood size. (Right) The set of neighbors used for computing scalar curvature (purple)
is visualized on UMAP coordinates for a handful of points (black).
(G) Scalar curvatures were computed for manifold dimension d − 1 (left) and d + 1 (right). They are plotted here on UMAP coordinates after smoothing over the same set
of k = 250 neighbors used in Figure 4A. See Methods Section F.6.
(H) The total number of transcripts observed in each cell overlaid onto UMAP coordinates.
(I) (Left) Scalar curvatures were computed after downsampling the number of cells in the ambient space by a factor of 2 and 4, using the same ambient dimension, manifold
dimension and neighborhood sizes determined for the original dataset. They are plotted here on UMAP coordinates after smoothing over the same set of neighbors (which
survive downsampling) used in Figure 4A. (Middle) The percentage of points in the downsampled datasets with a 95% CI containing the originally reported scalar curvature
(blue), and likewise for a negative control obtained by randomly pairing 95% CIs and originally reported scalar curvatures for points in the downsampled dataset (red).
Errorbars for the negative control are the standard deviation of this percentage over 1000 trials with different random pairings (*p < 0.001). (Right) Scatter plot of the
(unsmoothed) scalar curvatures computed using the full dataset shown in Figure 4B, against the (unsmoothed) scalar curvatures computed after downsampling the number
of cells in the ambient space by a factor of 2 and 4. Pearson correlations are reported in the text boxes. See Methods Section F.3.2.
(J) (Left) Scalar curvatures were computed after downsampling the number of transcripts by a factor of 2 and 4, using the same ambient dimension, manifold dimension
and neighborhood sizes determined for the original dataset. They are plotted here on UMAP coordinates after smoothing over the same set of k = 250 neighbors used in
Figure 4A. (Middle) The percentage of points in the downsampled datasets with a 95% CI containing the originally reported scalar curvature (blue), and likewise for a negative
control obtained by randomly pairing 95% CIs and originally reported scalar curvatures for points in the downsampled dataset (red). Errorbars for the negative control are
the standard deviation of this percentage over 1000 trials with different random pairings (*p < 0.001). (Right) Scatter plot of the (unsmoothed) scalar curvatures computed
using the full dataset shown in Figure 4B, against the (unsmoothed) scalar curvatures computed after downsampling the number of transcripts by a factor of 2 and 4. Pearson
correlations are reported in the text boxes. See Methods Section F.3.3.
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Fig. S5. Additional details of the gastrulation scRNAseq dataset (related to Figure 4). Panels as in Figure S4.
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Fig. S6. Additional details of the brain scRNAseq dataset (related to Figure 4). Panels as in Figure S4 but with t-SNE instead of UMAP plots.
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Fig. S7. Additional details of the dentate gyrus scRNAseq dataset (related to Figure 5D-E). Panels as in Figure S4.
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Fig. S8. Pairwise comparisons of average scalar curvature across cell types (related to Figure 5A-C).
(A) The absolute difference in average scalar curvature between cell types in the PBMC dataset, corresponding to the boxplot in Figure 5A. Entries marked with a red dot are
statistically significant at FDR=0.05 (see Methods Section F.3.4).
(B) As in (A) but for the gastrulation dataset.
(C) As in (A) but for the brain dataset.
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