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S1 Optimization methods for behavioral predictions for hu-
man path planning

As noted, we use numerical trajectory optimization techniques [1, 2] to determine the energy
optimal solutions in Figures 4-6 of the main manuscript, for tasks that require determining the
paths as well as speeds during walking. Here, we provide further technical details.

Optimal path between two points with end-point body orientations
This section corresponds to Figures 4-6 of the main manuscript, in which the goal is go from A
to B, with constraints on the initial and final body orientation and, in some cases, velocities. To
perform the trajectory optimization, we use the following multiple shooting approach [1]. We
consider two kinds of models: non-holonomic and holonomic [3]. In the following, we use the
terms ‘velocity direction’ and ‘tangent to the path’ interchangeably as they are identical.

Non-holonomic: always facing the movement direction

We parameterize the trajectory of the body continuously with Npath grid points, equally spaced
in time. Each grid point has the following unknowns representing body state: (xb, yb, θb, vb, ωb).

1



Here, xb and yb describe the body trajectory’s top view (projection onto the horizontal plane),
vb =

√
ẋ2
b + ẏ2

b is the linear speed tangential to the trajectory, θb is both the body orientation
and the velocity’s angle with the x axis (so that ẋb = vb cos θb and ẏb = vb sin θb due to the
non-holonomic constraint), and ωb = θ̇b. The total time Tpath is also an unknown.

Holonomic: not always facing the movement direction

We parameterize the trajectory of the body continuously with Npath grid points, equally spaced
in time. Each grid point has the following unknowns representing body state:
(xb, yb, θb, vxb, vyb, ωb). Here, xb and yb describe the body trajectory’s top view (projection onto
the horizontal plane), vxb = ẋb and vyb = ẏb are the horizontal velocity components, θb is the
body angular orientation but need not be aligned with the velocity direction (path tangent). The
body angular velocity is ωb = θ̇b. The total time Tpath is also an unknown.

Multiple shooting and constraints

The following applies to both holonomic and non-holonomic settings, except that for the non-
holonomic setting, we have vxb = vb cos θb and vyb = vb sin θb and for the holonomic setting,
vxb and vyb are optimization unknowns. Starting from the ith grid point (xi, yi, θi) with i <
Npath, we integrate the following equations ẋ = vxb, ẏ = vyb, and θ̇ = ω, with v and ω
considered (piecewise) linear, for each time duration Tpath/(Npath − 1). Then, we enforce
the continuity constraints at the grid points by equating the end state of the integration to the
state at the next grid point. We have constraints on the initial values of the body position and
body orientation for all comparisons in Figures 4-6. In addition, for predicting the task in
Mombaur et al, we constrain the initial body velocity to zero. For predicting Dias et al, we
constrain the initial velocity while entering the corridor to energy-optimal straight line walking
speed vopt =

√
α0/α1, but leaving this initial velocity as an unknown to be determined by the

optimization does not change the results. For predicting Arachavaleta et al, we leave the initial
velocity as an unknown to be determined by the optimization, but constraining it to straight
line optimal speed as above does not change the results. Body accelerations are limited to
maximum values observed during walking [4]. For predicting Dias et al and Arachavaleta et
al, we constrain the body trajectory (which corresponds to body center) to be at least a certain
distance from the corridor corner or doors, respectively. This clearance value was chosen to be
0.35 based on typical human body dimensions [5]. We minimize the cost function subject to
these constraints using nonlinear programming (fmincon in MATLAB).

Metabolic cost function

To compute the energy cost of the walk, we first compute the integral of the steady state
metabolic rate over the path, using the appropriate metabolic rate expression for non-holonomic
(Ė = α′0 + α′1v

2
b + α′2ω

2) and holonomic (Ė = α′0 + α′1v
2
f + α′2ω

2 + αsv
2
s ). Here, vf and vs

are components of the velocity along and perpendicular to the direction that the body faces. For
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the Arachavaleta et al predictions, we add the cost of an additional 2 meters beyond point B to
compute the total energy cost. To add an additional cost for changing speeds, we first compute
the kinetic energy in the horizontal plane. Then, we evaluate the cost of the kinetic energy
fluctuations as b1 times total positive work (kinetic energy increases) and b2 times total negative
work (kinetic energy decreases), where b1 = 4 and b2 = 0.85, corresponding to reciprocals of
typical muscle efficiencies, with a multiplicative factor λ = 0.67 as determined by Seethapathi
and Srinivasan [6].

Turning in an angled corridor

This section provides some additional information on the angled-corridors task from Dias et al.
We consider angled corridors with turn angle β. The length of the corridors on either side of
the intersection point is 5 m. The width of the corridors are 1.5 m. The person starts from one
end of one corridor and needs to get to the end of the other corridor, having made the turn. The
person starts and ends at the middle of the corridor, 0.75 m from the wall. All these constraints
are based on the experiments from Dias et al [7], with which we compare our results. As noted
earlier, we add wall clearance as an inequality constraint ensuring that the subject does not
contact the wall or go too close to the wall.

Sensitivity bands: Computing walking velocities or trajectories within 1%, 2% or 5% of
the energy optimal strategy

In this article, for every calculation of optimal walking, we also compute and plot walking tra-
jectories or velocities that are within 1%, 2%, and/or 5% of the optimum. Here, we briefly
describe how these bands are computed using 2% as a placeholder percentage. These computa-
tions usually involve solving additional optimization or search problems.

For walking in circles or turning in place (Figures 2 and 3 of the main manuscript), it is a
univariate problem of just finding the optimal linear or angular velocity and then finding the
appropriate 2% band around it. To compute the 2% band, we first compute the optimal linear or
angular velocity and then perform two one-dimensional searches — one above and one below
the optimal velocity — to determine the two velocities that have 1.02 times the optimal energy
cost. These two velocities determine the 2% band. We found the bands for other percentages
analogously.

For the 2% bands for the Arachavaleta et al trajectories (Supplementary Figure S4), for
each optimization calculation, we performed at least two additional optimization calculations.
These were trajectory optimization problems with all the constraints of the original trajectory
optimization problems. In addition, we add a constraint that the energy cost should be 1.02 times
the optimal value. Finally, instead of minimizing the energy cost function (as the energy cost
value is already constrained), we determine trajectories that have the “least x values”, “greatest
x values”, etc. – that is, minimize

∑Npath

i=1 x2
i , maximize

∑Npath

i=1 x2
i , maximize

∑Npath

i=1 y2
i , etc.

These produce trajectories that have the lowest x values (most leftward path on average), largest
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x values (most rightward path on average), etc., subject to being 1.02 times the cost. To avoid
local minima, when we minimize

∑Npath

i=1 x2
i , we also constrain the xi to be entirely to the left of

the optimal path (lower in values than that of the optimal path). It is important to note that the
trajectories thus obtained need not contain all trajectories within 2% of the cost – nor is it true
that every trajectory within this band has a cost within 2% of the optimum. Nevertheless, the
bands formed by these computed paths will contain most well-behaved paths within 2% of the
optimum; the bands also give us a lower bound on how far paths the paths can be while being
within 2% of the optimum energy cost. Thus, the bands give a sense of how flat the energy
landscape is near the optimum. Such substantial flatness of the energy landscape – resulting in
substantially different trajectories being close in energy costs – may also accommodate time-
reversal asymmetry to and from goals [8].

For Mombar et al and Dias et al comparisons, again we generate bands by solving new
trajectory optimization problems as above. While we could have solved the problem described
in the previous paragraph, we solved different optimization problems based on the comparisons
being made. For Dias et al, because the comparisons were for turning velocity, we simply
obtained trajectories that minimizes or maximized

∑
v2
i over the path, subject to the energy cost

being 1.02 times the optimal cost. For Mombaur et al, we computed trajectories that minimized
or maximized the time duration of the task for simplicity while being 1.02 times the optimal
cost. For Mombaur et al, an alternative would have been to minimize or maximize maximize∑
x2
i or

∑
y2
i or

∑
θ2
i to obtain individual bands for the three state variables being plotted.

In all the holonomic walking calculations, we allow the body orientation to be at most 90
degrees relative to the velocity direction, so that walking backward is ruled out. But backward
walking can be allowed easily by having a different coefficient α1 when |θ−β| > π/2 based on
backward walking metabolic cost (known to be higher than forward walking costs and would
therefore not be selected except in rare cases).

Walking in circles

In the main manuscript, to make behavioral predictions about walking in circles, we assumed the
non-holonomic form of the metabolic cost function: Ė = α′0 + α′1v

2
b + α′2ω

2, with vb = Rb ω.
However, allowing holonomic walking, namely using Ė = α′0 + α′1v

2
f + α′2ω

2 + αsv
2
s , will

result in non-holonomy being selected as optimal, that is, with the sideways velocity vs = 0 or
β = θ. Thus, the assumption of non-holonomy is internally self-consistent in this case of steady
walking in circles.

S2 Centripetal model: feet movement vs body movement
Consider the body center of mass (mass m) moving in a horizontal circle with tangential speed
vb and radius Rb. Then, the legs need to not only support the body weight mg, but also the
centripetal force mv2

b/Rb, where g is acceleration due to gravity. Thus, the effective leg force is
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oriented at an angle γ = tan−1(v2
b/Rbg) to the vertical. That is, the leg should be slanted inward.

This standard simple model has been described [9]. This means that the foot travels in a slightly
bigger circle than the body. The foot travel radius is then given by R = Rb + ` sin γ, where ` is
the leg length. Further, if the average velocity of the effective foot is v, we have v/R = vb/Rb

as the body and the feet go around their circles in the same time duration (ω = ωb). Thus, we
have the following three equations:

v

R
=

vb
Rb

, γ = tan−1 v2
b

gRb

, and Rb = R− ` sin γ. (1)

Given v,R, g, `, we can compute the corresponding vb, Rb and γ from these three equations.
This calculation assumes that the two feet may travel along the same and that the (massless) leg
always supports the body.

Our walking-in-circles metabolic experiments constrained the paths that the feet travel on
rather than the paths that the body travels in. The original metabolic rate model was in terms
of the foot travel variables v and R. We converted these to the corresponding body travel
variables vb and Rb and determined the best fit coefficients for Ė = α′0 + α′1v

2
b + α′2ω

2
b . We

obtain the coefficient values to be α′0 = 2.32 W/kg, α′1 = 1.28 W/kg/(ms−1)2, and α′2 = 1.02
W/kg/(rad.s−1)2. These coefficients were chosen to ensure that the optimal speeds for straight
line walking and turning in place are the same as when computed with the foot-based cost
landscape (α0/α1 = α′0/α

′
1 and α0/α2 = α′0/α

′
2). This best fit model explained approximately

the same fraction of the metabolic cost data variance as the original metabolic model (about
87.5%), and so has about the same explanatory power as the foot-variables based metabolic
cost model.

S3 Biomechanical reasons for the cost of turning
Why does walking with turning cost more energy than walking in a straight line? To be clear,
none of our behavioral predictions and explanations of diverse behavioral data rely on mech-
anistically understanding the sources of the turning cost. Nevertheless, in this paragraph, we
briefly consider a few mechanisms.

First, we consider the simplified cost due to centripetal forces described above. From el-
ementary mechanics, we know that while walking in a circle, the body not only experiences
gravity, but also centripetal acceleration. This centripetal acceleration is given by an = v2

b/Rb,
where vb is the average body speed and Rb is the radius of the circle described by the body [9].
So, the legs need to provide the centripetal forces in addition to supporting body weight. Given
that gravity is vertical and the centripetal acceleration is horizontal, as a first approximation,
walking in circles might be viewed as walking under a slightly higher gravity equal to the total
acceleration magnitude, namely

√
g2 + a2

n. However, for a speed of 1.6 m/s, radius R = 1

m, and g = 9.81 ms−2, the acceleration magnitude
√
g2 + a2

n is greater than gravity g only by
about 1.3%. This increase in the ‘effective gravity’ and the corresponding leg force increase is
too small to plausible affect the cost by nearly 50%.
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Second, from scaling arguments and small angle approximations [1], it can be shown that
similarly low incremental cost for turning is obtained if we consider a simplified point-mass
model walking like a 3D inverted pendulum and using a metabolic cost proportional to leg
mechanical work and/or leg force. This is because both the mechanical work and the leg force
scale approximately with this effective gravity for these simple biped models [1].

As a third simple cost mechanism, we consider that the body is not a point-mass but consists
of rigid body segments. The body, as a whole, not only moves in a circle, but also rotates by
360 degrees about the vertical axis. The average angular velocity ω of the body, treated as a
single rigid body, is equal to the revolution rate ω = v/R of going around the circle. However,
this body angular velocity fluctuates substantially within a stride between ωmin and ωmax. We
computed these body angular velocity fluctuations by using marker-based motion capture for
six subjects as they walked in circles of different radii and lap durations (Figure S8). Assuming
that these body angular velocity fluctuations require additional mechanical work, we derive an
additional energy cost of about 0.1ω2 in W/kg, if ω is in rad/s. This estimate is obtained by
assuming a body moment of inertia Iz = 2 kgm2 and massm = 70 kg. When ωmax > ωmin > 0,
both the positive and negative work per cycle equal Iz(ω2

max − ω2
min)/2; when ωmax > 0 and

ωmin < 0, both the positive and negative work per cycle equal Iz(ω2
max + ω2

min)/2. Then, the
metabolic cost per stride is estimated as b1 = 4 times positive work and b2 = 0.85 times negative
work, where again, b1 and b2 are reciprocals of muscle efficiencies. Then, the metabolic cost
per time is estimated by dividing by the stride period, also estimated from the motion capture
data.

Thus, the costs predicted from simple models is still an order of magnitude smaller than the
0.96ω2 obtained in experiment (equation 1 of the main manuscript). Thus, we conclude that an
explanation of the additional metabolic cost may require a more detailed model of the human
body, for instance, one that better models the body kinematics, the musculature and the muscle
metabolic rate, which is well beyond the scope of this article. We reiterate that none of this has
any effect on our behavioral predictions and their agreement with data.

S4 Why smoothness-only objectives predict infinitesimal
movement speeds and how speeds scale with distance

We noted in the main manuscript that pure smoothness-related objectives [10, 11] such as re-
lated to acceleration and its first or second derivatives (termed ‘jerk’ or ‘snap’) predict infinites-
imal velocities in the absence of additional cost terms. Here, we provide mathematical intuition
for why such objectives predict infinitesimal speeds, well-known in the reaching literature [12].
For instance, consider the acceleration based cost:

Ja =

∫ T

0

v̇2 dt
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or a jerk-based cost

Jj =

∫ T

0

v̈2 dt

for a task that requires you to go from A to B in a straight line, separated by distance D.
Consider an optimal solution for the position x1(t) for some given fixed time duration T1, so
that x1(0) = 0 and x1(T ) = D. We now show that the cost can be lower for a longer time
duration T2 (that is, T2 > T1). To show this, consider a new motion x2(t) = x1(tT2/T1), so that
x2(0) = 0 and x2(T2) = D. This new motion x2(t) is a slowed down (time-stretched) version
of x1(t). So we can write both motions in terms of a single function g(p) with 0 ≤ p ≤ 1, so
that:

x1(t) = g(p) with p = t/T1

and
x2(t) = g(p) with p = t/T2.

Given that ẍ1 = (d2g/dp2) · (1/T1)
2 and x2(t) is analogous, we can write the respective accel-

eration costs as:

Ja1 =

∫ T1

0

ẍ1(t)
2dt =

∫ 1

0

(
d2g

dp2

)2
1

T 4
1

T1dp =

∫ 1

0

(
d2g

dp2

)2
1

T 3
1

dp

and

Ja2 =

∫ 1

0

(
d2g

dp2

)2
1

T 3
2

dp.

Thus, Ja2 < Ja1 if T2 > T1, so that driving duration T to zero is optimal, so infinitesimal speeds
are best. Similarly, the jerk cost Jj will be given by

Jj =

∫ 1

0

(
d3g

dp3

)2
1

T 5
dp,

make the inverse dependence on duration only starker, so again infinitesimal speeds are op-
timal. Further, this general result of infinitesimal speeds being optimal does not rely on the
exponent being 2 on the cost integrand; it works for any exponent greater than 1 for both jerk
and acceleration costs.

Sometimes, this non-ecological speed prediction is avoided by having a cost for time, equiv-
alent to having an additive constant inside the integrand, for instance in [3], as:∫ T

0

(c0 + c1v̇
2)dt or

∫ T

0

(c0 + c1v̈
2)dt.

Because of the c0, the integral has an additional term c0T , because of which, infinitesimal
speed and infinite duration becomes non-optimal and finite duration becomes optimal. However,
this fix introduces new issues as it makes the optimal speed quite dependent on the distance
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traveled (unless the functional form of the cost is carefully contrived), much more than seen in
experiment. For simplicity, define g(p) = D · h(p) in the above reasoning, so that the same
overall trajectory h(p) is scaled in both space and time to obtain any particular distance and
time. Then, the total acceleration cost will be:

c0T +
D2

T 3
c3

where c3 is the integral
∫
h′′(p)2dp. Minimizing this quantity with respect to T makes the time

duration scale with
√
D, so that speed v = D/T ∼ D/

√
D ∼

√
D. Locomotor speeds do

not scale like this with distance [6]. As a consequence, we predict that the cost expression
obtained in [3] will predict larger and larger walking velocities for larger and larger distances
(well beyond human capability). It can be verified that using jerk cost version produces an even
worse dependence of speed on distance (v ∼ D0.66̄). However, minimizing a velocity dependent
cost (as we have used) ∫

(c0 + c1v
γ)dt

for walking a given distance D ensures that the optimal duration T is proportional to D, so that
the optimal velocity v is independent of distance D, as expected.

We have made these arguments in the context of straight line motion, but having analo-
gous terms for angular motion, for instance, ω and its derivatives results analogous qualitative
conclusions regarding turning.

Of course, as noted in the main manuscript, the real objective function may contain acceler-
ation or jerk-related cost terms (perhaps as a proxy for force rate costs) in addition to a velocity
dependent costs that we have used. Our critique of these smoothness costs is primarily in their
use to the exclusion of metabolic-like costs.
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Model Bayes Information Criterion R-squared value

Default: α0 + α1v
2 + α2ω

2 48.20 88.05
. . .+ α3v 52.86 88.06
. . .+ α4|ω| 50.84 88.28
. . .+ α5v|ω| 52.50 88.10

. . .+ α3v + α4|ω| 55.33 88.30
. . .+ α3v + α5v|ω| 52.09 88.64
. . .+ α4|ω|+ α5v|ω| 57.13 88.10

. . .+ α3v + α4|ω|+ α5v|ω| 55.78 88.75

Table S1: The default model, namely, α0 +α1v
2 +α2ω

2, has the lowest Bayesian Information Criterion
(BIC). Picking the model with the lowest BIC allows us to pick a model does not overfit the data, while
penalizing model complexity (ie., promoting parsimony). BIC is equivalent to cross-validation proce-
dures asymptotically for linear models [13]. Moreover, we see using a general quadratic relation with
six coefficients increases the fraction of variance explained (R-squared value) by less than 0.7%. Recall
that we use the absolute value |ω| here because we did not distinguish between left and right turns in our
experiments or analyses, and assume the metabolic rate to be an even function in ω.
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rection (orange arrow). b, c, d) The body position (x, y) and body orientation θ as a function of time. The
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Figure S4: Prediction vs behavior: Predicting path planning via a holonomic model. This figure is
identical to the corresponding figure in the main manuscript, except for what the initial and final body
orientation conditions for the optimization. In the main manuscript, for targets 4 and 7, we used the
initial and final body orientation conditions equal to what the subjects started and ended at on average.
Here instead, we use the initial and final body orientation conditions equal to that prescribed by the
experimenter. Of course, the results of the optimization are very similar to that in the main manuscript
except for these small differences – and still predict the observed experimental data well.

14



-2 0 2 4
x

0

2

4

6

8

y

-2 0 2 4
x

-2 0 2 4
x

-2 0 2 4
x

-2 0 2 4
x

Set of trajectories within a certain percent of the optimal cost (in the x direction)

Figure S5: Path planning via two doorways. These figures complement the comparison figures for
data from Arachavaleta et al in the main manuscript, except now, we show light blue bands around the
optimal trajectories. These light blue bands indicate sets of trajectories that are within 2% of the optimal
energy costs, in the sense described in the body of this Appendix. We note that the human trajectories
are within these bands.
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Figure S6: Body movement heading follows body orientation more closely for longer paths. a) We
show how closely movement direction β follows body orientation θ for the optimal holonomic paths for
the five different trials in Figure 6 of the main manuscript (tasks from Arachavaleta et al, as above). b)
Mean and standard deviation of the difference between the two orientations decreases with the distance
between the initial point and final point. In this plot, the x-axis denotes trial number, with the shortest
trial labeled trial 1 and the longest trial labeled trial 5.
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Figure S7: Stepping sideways vs turning and walking forward. a) Consider a task in which a human
needs to go from A to B, starting and ending facing perpendicular to the line AB. b) Two strategies:
sideways walking versus turning and walking forward. c) Metabolic comparison of the two strategies
shows a transition in behavior at a critical distance. Indeed, target 4 of the Mombaur et al data is close
to this task with D = 0.4 and subjects essentially step sideways without much of turning rightward,
consistent with the prediction.
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Figure S8: Trunk angular velocity fluctuations. While walking in circles, the trunk angular velocity
fluctuates about the mean angular velocity ω. Here, the maximum and minimum of such fluctuations are
plotted against the mean for 4 radii and at least 4 speeds for all subjects. We see that the fluctuations
retain a roughly constant range, slightly increasing with ω.
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