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Tables 

Table S1. Endemicity screen options for the number of counties to include within our Valley fever incidence model (county sample 

size), resulting in the total number of observations across selected counties and 16 sample years (2000-2015). 

 Preferred endemicity screen No screen Alternate screen #1 Alternate screen #2 

Precipitation -0.012*** -0.008*** -0.016 -0.013 

Temperature 3.56*** 2.296*** 4.063*** 3.971*** 

Constant -36.017** -16.547** -41.724** -40.013** 

R-squared 0.173 0.154 0.169 0.159 

County sample size 109 152 109 78 

Total observations 1,744 2,432 1,211 1,248 

** denotes statistical significance at the 95th percentile 

*** denotes statistical significance at the 99th percentile 

Note: We considered several different endemicity screen options, where the endemicity threshold is defined as mean annual 

temperature above 10.7°C and total annual precipitation below 600 mm: our preferred approach which selects counties that meet 

endemicity screen in any year between 2000 and 2015, no screen (rejected because the relationship between incidence and climate is 

not supported in places that do not meet endemicity levels, suggesting that incidence is more likely the result of travel to endemic 

counties), alternate screen #1 which selects observations that meet the endemicity screen in a given year (rejected because it results in 

an unbalanced panel at the county level), and alternate screen #2 which selects counties that have mean annual temperature and 

precipitation levels averaged from 2000-2015 that meet endemicity thresholds (rejected because averaging across sixteen years likely 

minimizing important variation, including counties that only meet endemicity levels in more recent years). All models include year 

fixed effects and clustered standard errors. 
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Table S2. Summary of alternative Valley fever incidence (VFI) model specifications  

 
Preferred model 

specification 

No year fixed 

effects 

No clustering 

standard errors 
With lags added With only lags 

Log(VFI) as 

outcome 

variable 

Precipitation -0.012*** -0.011*** -0.012*** -0.007***  -0.001* 

Lagged 

precipitation 
   -0.008*** -0.013***  

Temperature 3.562*** 3.449*** 3.562*** 0.591  0.493*** 

Lagged 

temperature 
   3.127*** 3.734***  

Constant -36.017** -34.047** -36.017*** -37.747** -38.536** -7.654*** 

R-squared 0.1726 0.137 0.173 0.179 0.177 0.250 

Total 

observations 
1,744 1,744 1,744 1,635 1,635 1,744 

* denotes statistical significance at the 90th percentile 

** denotes statistical significance at the 95th percentile 

*** denotes statistical significance at the 99th percentile 

Note: Coefficients and R-squared values cannot be compared across linear and semi-log models. All models include year fixed effects, 

clustered standard errors, and endemicity screen consistent with our preferred approach unless otherwise mentioned.  

  



 

4 

 

Table S3. Number of endemic counties and states (in parenthesis) in the US predicted for the RCP4.5 climate scenario for each Earth 

system model for years 2030, 2050, 2070, and 2090.  

PRISM Reference (2000-2015) 217 (12) 

  
CanESM2 CCSM4 GFDL-CM3 GISS-E2-R HadGEM2-ES MIROC5 Multimodel mean 

2030 308 (17) 293 (16) 290 (16) 239 (15) 286 (16) 351 (16) 295 (16.0) 

2050 333 (18) 325 (16) 334 (18) 274 (15) 357 (18) 385 (17) 335 (17.9) 

2070 352 (18) 377 (16) 310 (18) 273 (16) 366 (19) 444 (19) 354 (17.7) 

2090 332 (18) 405 (19) 382 (18) 282 (16) 414 (20) 413 (19) 371 (18.3) 
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Table S4. Number of millions of people living in endemic counties in the US based on the ICLUSv2 future population estimates and 

2010 constant population (in parenthesis) projected for the RCP4.5 climate scenario for each Earth system model for years 2030, 

2050, 2070, and 2090. 

PRISM Reference (2000-2015) 48.8 

 CanESM2 CCSM4 GFDL-CM3 GISS-E2-R HadGEM2-ES MIROC5 Multi-model mean 

2030 59.6 (47.5)  65.3 (52.2) 64.9 (51.9) 61.8 (49.4) 66.9 (53.4) 66.1 (52.8) 64.1 (51.2) 

2050 77.8 (53.5) 78.1 (53.2) 81.0 (55.8)  75.6 (51.5) 79.3 (54.4) 77.4 (52.9) 78.2 (53.6) 

2070 78.0 (47.7) 87.8 (53.2) 89.6 (55.3) 82.3 (50.1) 92.1 (56.8) 93.3 (57.0) 87.2 (53.3) 

2090 89.1 (50.8) 93.2 (53.4) 100.8 (57.6)  84.0 (47.1) 99.7 (57.2) 101.6 (58.1) 94.8 (54.0) 
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Table S5. The total number of Valley fever cases in the US based on the ICLUSv2 future population estimates and 2010 constant 

population (in parenthesis) projected for the RCP4.5 climate scenario for each Earth system model for years 2030, 2050, 2070, and 

2090. 

PRISM Reference (2000-2015) 9,621 

 CanESM2 CCSM4 GFDL-CM3 GISS-E2-R HadGEM2-ES MIROC5 Multi-model mean  

2030 14,547 

(11,522) 

13,807 

(10,924) 

14,930  

(11,816) 

12,694 

(10,046) 

14,641 

(11,594) 

14,160 

(11,201) 

14,130  

(11,184) 

2050 19,316 

(13,021) 

18,317 

(12,308) 

19,982 

(13,459) 

16,726 

(11,263) 

19,161 

(12,887) 

18,502 

(12,450) 

18,667  

(12,565) 

2070 21,142 

(12,551) 

20,526 

(12,224) 

23,699 

(14,179) 

18,350 

(10,951) 

23,667 

(14,158) 

22,832 

(13,610) 

21,703  

(12,945) 

2090 24,507 

(13,576) 

23,023 

(12,728) 

28,046  

(15,482) 

19,452 

(10,687) 

26,717 

(14,824) 

25,646 

(14,186) 

24,565  

(13,580) 
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Table S6. Total annual cost of Valley fever in the US based on the ICLUSv2 future population estimates and 2010 constant 

population (in parenthesis) predicted for the RCP4.5 climate scenario for each Earth system model for years 2030, 2050, 2070, and 

2090. 

PRISM Reference (2000-2015) $3.86 

 CanESM2 CCSM4 GFDL-CM3 GISS-E2-R HadGEM2-ES MIROC5 Multi-model mean  

2030  $6.62 

($5.24) 

$6.28 

($4.97) 

$6.79 

($5.38) 

$5.78 

($4.57) 

$6.66 

($5.27) 

$6.44 

($5.10) 

$6.43 

($5.09) 

2050  $9.80 

($6.61) 

$9.29 

($6.24) 

$10.14 

($6.83) 

$8.48 

($5.71) 

$9.72 

($6.54) 

$9.39 

($6.32) 

$9.47 

($6.37) 

2070  $11.92 

($7.07) 

$11.57 

($6.89) 

$13.36 

($7.99) 

$10.34 

($6.17) 

$13.34 

($7.98) 

$12.87 

($7.67) 

$12.23 

($7.30) 

2090 $15.20 

($8.42) 

$14.28 

($7.89) 

$17.39 

($9.60) 

$12.06 

($6.63) 

$16.57 

($9.19) 

$15.90 

($8.80) 

$15.23 

($8.42) 



 

8 

 

Table S7. Average economic costs by outcome, overall, and cost per case with premature 

mortality valuation (VSL) and wage rates held constant at base values (2015$ millions) – for 

comparison with Table 5 in main text 

Outcome Future scenario 2030 2050 2070 2090 
      

Hospitalization RCP4.5 $61.8 $81.7 $95.0 $107.5 
 RCP8.5 $64.5 $87.8 $107.9 $130.6 
 

     

ER to discharge RCP4.5 $3.2 $4.2 $4.9 $5.5 
 RCP8.5 $3.3 $4.5 $5.5 $6.7 
 

     

ER to hospital RCP4.5 $83.2 $110.0 $127.9 $144.7 
 RCP8.5 $86.9 $118.2 $145.3 $175.8 
 

     

Physician's visit RCP4.5 $3.0 $4.0 $4.6 $5.2 
 RCP8.5 $3.1 $4.3 $5.2 $6.3 
 

     

Premature Mortality RCP4.5 $5,516.0 $7,287.3 $8,472.2 $9,589.6 
 RCP8.5 $5,755.1 $7,833.5 $9,626.7 $11,651.0 
 

 

    

      

Total cost RCP4.5 $5,667.2 $7,487.1 $8,704.5 $9,852.6 

 RCP8.5 $5,912.9 $8,048.3 $9,890.7 $11,970.5 

      

Total cost per case RCP4.5 $0.40 $0.40 $0.40 $0.40 

 RCP8.5 $0.40 $0.40 $0.40 $0.40 
 

     

Note: Average across the six Earth system models with population growth scenario (ICLUSv2). 

Each outcome includes both direct and indirect (i.e., productivity losses) costs.  
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Figure S1. The number of Earth system models from the CIRA framework (n = 6) in agreement 

that each county may be endemic to Valley fever for the RCP4.5 climate scenario in years (a) 

2030, (b) 2050, (c) 2070, and (d) 2090, defined by meeting both the mean annual temperature 

and mean annual precipitation thresholds following Gorris et al. (2019). The northward 

expansion of endemicity is limited compared to the RCP8.5 climate scenario. 
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Figure S2. We used an OLS regression model to estimate future disease incidence for the 

counties projected to be endemic. We averaged the incidence projections between the six Earth 

system models and applied the incidence value to counties in which at least four of the six 

models agree will be endemic in that time period. Incidence for the RCP4.5 climate scenario for 

years (a) 2030, (b) 2050, (c) 2070, and (d) 2090 is highest in the extreme southwestern US.  
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Figure S3. We used an OLS regression model to estimate future Valley fever incidence for the 

counties projected to be endemic using CanESM2 climate projections, shown for both the 

RCP4.5 climate scenario (a-d) and the RCP8.5 scenario (e-h) for years (a,e) 2030, (b,f) 2050, 

(c,g) 2070, and (d,h) 2090. 
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Figure S4. We used an OLS regression model to estimate future Valley fever incidence for the 

counties projected to be endemic using CCSM4 climate projections, shown for both the RCP4.5 

climate scenario (a-d) and the RCP8.5 scenario (e-h) for years (a,e) 2030, (b,f) 2050, (c,g) 2070, 

and (d,h) 2090. 
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Figure S5. We used an OLS regression model to estimate future Valley fever incidence for the 

counties projected to be endemic using GFDL-CM3 climate projections, shown for both the 

RCP4.5 climate scenario (a-d) and the RCP8.5 scenario (e-h) for years (a,e) 2030, (b,f) 2050, 

(c,g) 2070, and (d,h) 2090. 
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Figure S6. We used an OLS regression model to estimate future Valley fever incidence for the 

counties projected to be endemic using GISS-E2-R climate projections, shown for both the 

RCP4.5 climate scenario (a-d) and the RCP8.5 scenario (e-h) for years (a,e) 2030, (b,f) 2050, 

(c,g) 2070, and (d,h) 2090. 
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Figure S7. We used an OLS regression model to estimate future Valley fever incidence for the 

counties projected to be endemic using HadGEM2-ES climate projections, shown for both the 

RCP4.5 climate scenario (a-d) and the RCP8.5 scenario (e-h) for years (a,e) 2030, (b,f) 2050, 

(c,g) 2070, and (d,h) 2090. 
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Figure S8. We used an OLS regression model to estimate future Valley fever incidence for the 

counties projected to be endemic using MIROC5 climate projections, shown for both the RCP4.5 

climate scenario (a-d) and the RCP8.5 scenario (e-h) for years (a,e) 2030, (b,f) 2050, (c,g) 2070, 

and (d,h) 2090.  
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Supplemental Information on Valley Fever Incidence from HCUP and CDC Wonder  

Data Sources 

We collected historical incidence data for coccidioidomycosis for three medical outcomes: 

emergency room visits, inpatient hospitalizations, and mortality. For emergency room visits and 

hospitalizations, we queried the Healthcare Cost and Utilization Project (HCUPnet) dataset. The 

CDC WONDER database provides detailed information on mortality. 

Using HCUP, we collected hospitalization and emergency room data for coccidioidomycosis at 

the national and state level. We collected time series data between 1993 and 2015 using 

International Classification of Diseases, Ninth Revision codes (ICD-9). Within ICD-9, 

coccidioidomycosis is defined under code 114.  Nationally, we collected time series data on 

emergency room (ER) visits from 2006 to 2014. These data include information on the total 

number of ER visits, the number of patients subsequently admitted to the hospital, and the 

number of patients discharged without hospitalization. Regarding emergency room visits, 

Arizona is the only state with unsuppressed data.  

Exhibit 1. Annual ER Visits for Coccidioidomycosis 
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Exhibit 2. Annual Hospitalization rates from ER 

 

Exhibit 3. Breakdown of the Total Number of ER Visits 

 

Between 2006 and 2014, ER visits due to coccidioidomycosis ranged between 1,994 and 4,548. 

In Exhibit 1, there is no clear trend in the data between these years; however, ER visits peaked 

between 2010 and 2012 suggesting a higher incidence of the disease in those years. Exhibits 2 

and 3 suggest that most patients in an ER setting for coccidioidomycosis treatment are 

subsequently hospitalized. Between 2006 and 2014, the percentage of patients hospitalized after 

an initial ER visit ranged between 82% and 90%.  

We also collected data for inpatient hospitalizations from 1993 and 2015. These data include 

information on the number of discharges, length of stay, hospital charges, and in-hospital deaths. 

We also estimated total admissions and total days in the hospital using these data.  
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Exhibit 4. Hospitalization incidence (Deaths vs Discharge)1 

Exhibit 5. Hospital Charges (Nominal)  

 

Exhibit 6. Length of Hospital Stay 

 

 
1 No data was available after 2012 for mortality because the it was suppressed due to confidentiality restraints. 
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Exhibit 4 presents a stacked bar graph of total hospital admissions and whether these visits led to 

a discharge or a death. Unsurprisingly, hospital discharges far outweigh hospital deaths for 

coccidioidomycosis. Between 2005 and 2014, the number of hospital admissions range from 

1,960 to 3,045. Like trends within ER data, we observe slight peaks in 2006 and in 2011 and 

2012, suggesting that these time periods saw higher prevalence of coccidioidomycosis.   

Exhibits 5 and 6 illustrate hospital charges (nominal) and length of stay, respectfully. Hospital 

charges increased overtime, from $22,847 in 1993 to $95,401 in 2014. Between 1993 and 2014 

the average length of stay was about 9 days.    

Along with charges, we also collected cost data for coccidioidomycosis. A complete time series 

for cost data was only available between 2006 and 2016. Exhibit 7 illustrates costs for inpatient 

treatment. For this period, cost remain relatively consistent.  

Exhibit 7. Hospital Costs (nominal) 

 

State-level 

To evaluate whether coccidioidomycosis hospitalizations were geographically clustered, we 

evaluated state-level data for Arizona, California, Nevada, New Mexico, and Utah. Between 

1997 and 2014, California and Arizona have a complete timeseries. In contrast, for Nevada, New 

Mexico, and Utah, the timeseries data is incomplete, with the data either suppressed or missing. 

We presented this data using three key variables: number of discharges, length of stay, and 

charges. Exhibit 8 shows the breakdown of discharges between states. Across all five states, 

discharges peak in 2006 and between 2009 and 2012. The majority of these discharges are in 

California and Arizona. 
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Exhibit 8. Hospital Discharges by State 

 

Summary Statistics- Mortality 

We collected two datasets pertaining to mortality. The first (Underlying Cause of Death, UCD) 

includes deaths primarily caused by coccidioidomycosis. The second dataset (Multiple Cause of 

Death, MCD) summarizes all deaths that involve coccidioidomycosis. To query these datasets, 

we utilized the International Classification of Diseases, Tenth Revision codes (ICD-10). Within 

ICD-10, coccidioidomycosis is defined under code B-38.   

Exhibit 9 compares these datasets. Deaths are segregated between the primary and secondary 

cause of death. Primary cause of death includes all deaths primarily caused by 

coccidioidomycosis. We used UCD data to represent primary cause of death. Secondary cause of 

death represents deaths that involve coccidioidomycosis, but where coccidioidomycosis is not 

necessarily the primary cause of death. To find secondary cause of death, we subtracted deaths 

found in the MCD dataset by deaths in the UCD dataset.  
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Exhibit 9 Coccidioidomycosis Deaths (Primary versus secondary cause of death) 

 

In Exhibit 10, we again present primary and secondary cause of death, but segregate secondary 

cause of death by its comorbidity. We relabeled primary cause of death as coccidioidomycosis. 

Common comorbidities of coccidioidomycosis are malignant neoplasms, chronic lower 

respiratory diseases, HIV, diabetes, and heart disease. All other comorbidities were grouped 

together and listed as “Total Other”.  
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Exhibit 10. Comorbidity2   

 

For cases in which the primary cause of death is coccidioidomycosis, we stratified incidence by 

state. As displayed in Exhibit 11, most deaths occur in California and Arizona. Additionally, 

Exhibit 12 presents coccidioidomycosis-related deaths by age group. The majority of deaths 

occur in the oldest age brackets, between 45 and 84 years old.   

Exhibit 11. Mortality by State 

 

 
2 To find Coccidioidomycosis, we used a broader ICD-10 code for Mycosis. As a result, three non-
Coccidioidomycosis deaths are included in the Coccidioidomycosis category.  

0

50

100

150

200

250

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

D
ea

th
s

Year

Coccidioidomycosis Malignant neoplasms

Chronic lower respiratory diseases Human immunodeficiency virus [HIV] disease

Diabetes mellitus Ischaemic heart diseases

Total Other

0

20

40

60

80

100

120

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

D
ea

th
s

Year

Other States Arizona California



 

24 

 

Exhibit 12. Underlying Deaths by age 
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