## SUPPLEMENTAL MATERIAL ON:

## Mechanical Characterization of Thrombi Retrieved with Endovascular Thrombectomy in Acute Ischemic Stroke

Nikki Boodt<sup>1,2,3</sup>, MD; Philip R. W. Snouckaert van Schauburg<sup>1,4</sup>, MSc; Hajo M. Hund<sup>5</sup>, MD; Behrooz

Fereidoonnezhad<sup>6</sup>, MSc, PhD; J. Patrick McGarry<sup>6</sup>, MSc, PhD; Ali C. Akyildiz, MSc, PhD<sup>4,7</sup>; Adriaan C.

G. M. van Es<sup>1,8</sup>, MD, PhD; Simon F. De Meyer<sup>9</sup>, MSc, PhD; Diederik W.J. Dippel<sup>2</sup>, MD, PhD; Hester F.

Lingsma<sup>3</sup>, MSc, PhD; Heleen M. M. van Beusekom<sup>10</sup>, MSc, PhD; Aad van der Lugt<sup>2</sup>, MD, PhD and

Frank J. H. Gijsen<sup>4,7</sup>, MSc, PhD

<sup>1</sup>Erasmus MC, University Medical Center Rotterdam, Department of Radiology and Nuclear Medicine, Rotterdam, the Netherlands

<sup>2</sup>Erasmus MC, University Medical Center Rotterdam, Department of Neurology, Rotterdam, the Netherlands

<sup>3</sup>Erasmus MC, University Medical Center Rotterdam, Department of Public Health, Rotterdam, the Netherlands

<sup>4</sup>Delft University of Technology, Department of Biomedical Engineering, Delft, the Netherlands

<sup>5</sup>Haaglanden Medical Center, Department of Radiology, The Hague, the Netherlands

<sup>6</sup>School of Engineering, National University of Ireland Galway, Galway, Ireland

<sup>7</sup>Erasmus MC, University Medical Center Rotterdam, Department of Biomedical Engineering, Rotterdam, the Netherlands

<sup>8</sup>Leiden University Medical Center, Department of Radiology, Leiden, the Netherlands

<sup>9</sup>KU Leuven Campus Kulak Kortrijk, Laboratory for Thrombosis Research, Kortrijk, Belgium

<sup>10</sup>Erasmus MC, University Medical Center Rotterdam, Department of Cardiology, Rotterdam, the Netherlands

## **Supplemental Methods: The Unconfined Compression Experiment**

The unconfined compression experiments were performed with the use of a custom-built force tester, consisting of an aluminium compression plate, attached to a 2,5N load cell (LSB200 Jr. Miniature S-beam load cell, Futek), which was vertically driven by a linear actuator (EACM4-E15-ZAMK, Oriental motor). The actuator was a stepper motor with a resolution of 0.01 mm, stroke length of 150 mm, and a maximal vertical thrust force of 200 N. The heated basin was controlled by a self-regulating temperature system.

**Table I.** Overview of retrieved and tested thrombi per patient. M1 and M2 indicate middle cerebral artery; ICA-T, internal carotid artery terminus and BA, basilar artery. \* indicates the thrombus was too small for mechanical characterization; \*\* indicates the thrombus was too soft for mechanical characterization.

| Patient | Occlusion Location | Pass                  | Retrieved Thrombi          | Tested Thrombi           |
|---------|--------------------|-----------------------|----------------------------|--------------------------|
| 1       | M2                 | 1                     | A*, B                      | В                        |
| 2       | M1                 | 1                     | Α                          | Α                        |
| 3       | M1                 | 1                     | A*, B*                     | -                        |
| 4       | ICA-T              | 1<br>2<br>3<br>4      | -<br>A, B*, C<br>-<br>A, B | -<br>A, C<br>-<br>A, B   |
| 5       | M1                 | 1<br>2<br>3<br>4      | A, B<br>A*<br>A*<br>A      | A, B<br>-<br>-<br>A      |
| 6       | M1                 | 1                     | A*, B                      | В                        |
| 7       | M1                 | 1<br>2                | -<br>A*, B, C              | -<br>B, C                |
| 8       | M1                 | 1<br>2                | A, B<br>A                  | A, B<br>A                |
| 9       | M1                 | 1<br>2<br>3<br>4<br>5 | A, B<br>-<br>A<br>-<br>A   | A, B<br>-<br>A<br>-<br>A |
| 10      | ICA-T              | 1<br>2                | -<br>A, B                  | -<br>A, B                |
| 11      | M1                 | 1                     | A, B                       | A, B                     |
| 12      | BA                 | 1                     | A, B, C, D                 | A, B, C, D               |
| 13      | M1                 | 1                     | A, B                       | A, B                     |
| 14      | M2                 | 1                     | A, B                       | A, B                     |
| 15      | M1                 | 1                     | A                          | A                        |
| 16      | ВА                 | 1<br>2                | -<br>  A*                  | -                        |
| 17      | M2                 | 1                     | Α                          | Α                        |
| 18      | M2                 | 1<br>2                | A**<br>A                   | -<br>A                   |
| 19      | M2                 | 1                     | A, B                       | A, B                     |
| 20      | ICA-T              | 1                     | A, B, C, D                 | A, B, C, D               |
| 21      | M1                 | 1                     | A*, B                      | В                        |

**Figure I:** Flow diagram of patient and thrombus selection.



Figure II: Distribution of histological components of all included thrombi on H&E (A) and CD61 immunostaining (B).



**Figure III:** Thrombus composition, stratified by pass number. Thrombi from later passes had higher fibrin/platelet content and lower erythrocyte content (not statistically significant).

