SUPPLEMENTAL MATERIAL ON: ## Mechanical Characterization of Thrombi Retrieved with Endovascular Thrombectomy in Acute Ischemic Stroke Nikki Boodt^{1,2,3}, MD; Philip R. W. Snouckaert van Schauburg^{1,4}, MSc; Hajo M. Hund⁵, MD; Behrooz Fereidoonnezhad⁶, MSc, PhD; J. Patrick McGarry⁶, MSc, PhD; Ali C. Akyildiz, MSc, PhD^{4,7}; Adriaan C. G. M. van Es^{1,8}, MD, PhD; Simon F. De Meyer⁹, MSc, PhD; Diederik W.J. Dippel², MD, PhD; Hester F. Lingsma³, MSc, PhD; Heleen M. M. van Beusekom¹⁰, MSc, PhD; Aad van der Lugt², MD, PhD and Frank J. H. Gijsen^{4,7}, MSc, PhD ¹Erasmus MC, University Medical Center Rotterdam, Department of Radiology and Nuclear Medicine, Rotterdam, the Netherlands ²Erasmus MC, University Medical Center Rotterdam, Department of Neurology, Rotterdam, the Netherlands ³Erasmus MC, University Medical Center Rotterdam, Department of Public Health, Rotterdam, the Netherlands ⁴Delft University of Technology, Department of Biomedical Engineering, Delft, the Netherlands ⁵Haaglanden Medical Center, Department of Radiology, The Hague, the Netherlands ⁶School of Engineering, National University of Ireland Galway, Galway, Ireland ⁷Erasmus MC, University Medical Center Rotterdam, Department of Biomedical Engineering, Rotterdam, the Netherlands ⁸Leiden University Medical Center, Department of Radiology, Leiden, the Netherlands ⁹KU Leuven Campus Kulak Kortrijk, Laboratory for Thrombosis Research, Kortrijk, Belgium ¹⁰Erasmus MC, University Medical Center Rotterdam, Department of Cardiology, Rotterdam, the Netherlands ## **Supplemental Methods: The Unconfined Compression Experiment** The unconfined compression experiments were performed with the use of a custom-built force tester, consisting of an aluminium compression plate, attached to a 2,5N load cell (LSB200 Jr. Miniature S-beam load cell, Futek), which was vertically driven by a linear actuator (EACM4-E15-ZAMK, Oriental motor). The actuator was a stepper motor with a resolution of 0.01 mm, stroke length of 150 mm, and a maximal vertical thrust force of 200 N. The heated basin was controlled by a self-regulating temperature system. **Table I.** Overview of retrieved and tested thrombi per patient. M1 and M2 indicate middle cerebral artery; ICA-T, internal carotid artery terminus and BA, basilar artery. * indicates the thrombus was too small for mechanical characterization; ** indicates the thrombus was too soft for mechanical characterization. | Patient | Occlusion Location | Pass | Retrieved Thrombi | Tested Thrombi | |---------|--------------------|-----------------------|----------------------------|--------------------------| | 1 | M2 | 1 | A*, B | В | | 2 | M1 | 1 | Α | Α | | 3 | M1 | 1 | A*, B* | - | | 4 | ICA-T | 1
2
3
4 | -
A, B*, C
-
A, B | -
A, C
-
A, B | | 5 | M1 | 1
2
3
4 | A, B
A*
A*
A | A, B
-
-
A | | 6 | M1 | 1 | A*, B | В | | 7 | M1 | 1
2 | -
A*, B, C | -
B, C | | 8 | M1 | 1
2 | A, B
A | A, B
A | | 9 | M1 | 1
2
3
4
5 | A, B
-
A
-
A | A, B
-
A
-
A | | 10 | ICA-T | 1
2 | -
A, B | -
A, B | | 11 | M1 | 1 | A, B | A, B | | 12 | BA | 1 | A, B, C, D | A, B, C, D | | 13 | M1 | 1 | A, B | A, B | | 14 | M2 | 1 | A, B | A, B | | 15 | M1 | 1 | A | A | | 16 | ВА | 1
2 | -
 A* | - | | 17 | M2 | 1 | Α | Α | | 18 | M2 | 1
2 | A**
A | -
A | | 19 | M2 | 1 | A, B | A, B | | 20 | ICA-T | 1 | A, B, C, D | A, B, C, D | | 21 | M1 | 1 | A*, B | В | **Figure I:** Flow diagram of patient and thrombus selection. Figure II: Distribution of histological components of all included thrombi on H&E (A) and CD61 immunostaining (B). **Figure III:** Thrombus composition, stratified by pass number. Thrombi from later passes had higher fibrin/platelet content and lower erythrocyte content (not statistically significant).