

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

BMJ Open

Variation in COVID-19 Characteristics, Treatment, and Outcomes in Michigan

1	RM1 Onen	
Journal:	BMJ Open	
Manuscript ID	bmjopen-2020-044921	
Article Type:	Driginal research	
Date Submitted by the Author:	21-Sep-2020	
Complete List of Authors:	Chopra, Vineet; University of Michigan Michigan Medicine, General Internal Medicine Flanders, Scott A.; University of Michigan, Vaughn, Valerie ; University of Michigan, Petty, Lindsay; University of Michigan Medical School, Division of Infectious Diseases Gandhi, Tejal; University of Michigan Michigan Medicine McSparron, Jakob; University of Michigan Health System Malani, Anurag; St Joseph Mercy Health System O'Malley, Megan; University of Michigan Medicine Kim, Tae; University of Michigan Medicine McLaughlin, Elizabeth; University of Michigan Medicine Prescott, Hallie; University of Michigan Michigan Medicine, Internal Medicine	
Keywords:	COVID-19, Quality in health care < HEALTH SERVICES ADMINISTRATION & MANAGEMENT, Protocols & guidelines < HEALTH SERVICES ADMINISTRATION & MANAGEMENT	

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Variation in COVID-19 Characteristics, Treatment, and Outcomes in Michigan

Vineet Chopra MD, MSc (a,b) Scott A. Flanders MD (a,b) Valerie M. Vaughn MD, MSc (a,b) Lindsay A. Petty MD (c,b) Tejal Gandhi, MD (c,b) Jakob I. McSparron MD (b,d) Anurag N. Malani MD (e,b) Megan O'Malley, PhD (a,b) Tae Kim, MHSA (f,g) Elizabeth McLaughlin MS, RN (a,b) Hallie C. Prescott MD, MSc (d,b)

From: (a) The Division of Hospital Medicine, Department of Medicine, University of Michigan Health System, Ann Arbor, MI, USA; (b) The Michigan Hospital Medicine Safety Collaborative, Ann Arbor, MI, USA; (c) Division of Infectious Diseases, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI, USA; (d) Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Michigan Health System, Ann Arbor, Michigan, USA; (e) e) Division of Infectious Diseases, Department of Internal Medicine, St. Joseph Mercy Health System, Ann Arbor, MI, USA; (f) Michigan Arthroplasty Registry Collaborative Quality Initiative and (g) Department of Orthopaedic Surgery, University of Michigan Health System, Ann

1	
2	
3	
4	
5	
6	
6 7 8	
o 9	
10	
11	
12	
13	
14	
12 13 14 15 16 17 18	
16	
17	
18	
19 20	
20	
21	
23	
22 23 24 25	
25	
26	
27	
28	
29	
30	
31 32	
33	
34	
35	
36	
37	
38	
39	
40	
41 42	
42 43	
45 44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54 55	
55 56	
50 57	
58	

60

Arbor, MI, USA.

Abstract Word Count: 256

Word Count: 3005

Conflicts of Interest: No relevant conflicts disclosed by coauthors.

Primary Funding Source: Blue Cross Blue Shield of Michigan (BCBSM) and Blue

Care Network as part of the BCBSM Value Partnerships program.

Address for Correspondence:

Vineet Chopra MD, MSc

2800 Plymouth Road, Building 16, #432 W

Ann Arbor, MI 48109

vineetc@umich.edu

Phone - (734) 615-8341

Fax - (734) 936-8944

Keywords:

Covid-19; Quality in Health care; Protocols and Guidelines

Additional Contributions & Acknowledgements:

The authors thank Qisu (Sue) Zhang, MPH, Tawny Czilok, RN, MHI, Liz Vasher, RN, Jessica Southwell, RN, MSN, Danny Nielsen, MS, and Jennifer Horowitz, MA for help with data analytics and project management.

We also thank all the BCBSM Collaborative Quality Initiatives (CQI's) that partnered together on data collection and offered project management/analytics support. Lastly, we are grateful to all of the hospitals who volunteered to be part of MiCOVID-19 including: Beaumont-Dearborn, Beaumont-Grosse Pointe, Beaumont- Farmington Hills, Beaumont- Royal Oak, Beaumont- Taylor, Beaumont- Trenton, Beaumont- Troy, Beaumont- Wayne, Bronson Battle Creek, Bronson Methodist, Detroit Medical Center-Detroit Receiving, Detroit Medical Center-Harper Hutzel, Detroit Medical Center-Detroit-Huron Valley Sinai, Henry Ford, Henry Ford Allegiance, Henry Ford Macomb, Henry Ford West Bloomfield, Henry Ford West Wyandotte, Holland Hospital, Hurley Medical Center, Lakeland Hospital, McLaren Flint, McLaren Greater Lansing, McLaren Port Huron, Mercy Health Muskegon, Mercy Health St. Mary's, Metro Health, Michigan Medicine, MidMichigan Alpena, MidMichigan Gratiot, MidMichigan Midland, Munson Medical Center, Oaklawn Hospital, Sinai Grace, Sparrow, St. Joseph Mercy Ann Arbor, St. Joseph Mercy Chelsea, St. Joseph Mercy Livingston, St. Joseph Mercy Oakland, St. Mary Mercy Livonia.

ABSTRACT

OBJECTIVE

To describe patient characteristics, symptoms, patterns of care and outcomes for COVID-19 patients across Michigan.

DESIGN

Multi-center retrospective cohort study.

SETTING AND PARTICIPANTS

Patients discharged (March 16 to May 11, 2020) with suspected or confirmed COVID-19 infection from 32 Michigan hospitals were identified. Trained abstractors collected demographic information on all patients, and detailed clinical data on a subset of COVID-19 positive patients.

MEASUREMENTS

Patient characteristics, treatment, and outcomes including cardiopulmonary resuscitation, mortality, and venous thromboembolism within and across hospitals.

RESULTS

Among 1,024 cases with detailed data, median age was 63 years, median BMI 30.6, and 51.4% were black. Cough, fever, and shortness of breath were the top symptoms. 37.2% reported a known COVID-19 contact, 7.0% were healthcare workers, and 16.1% presented from congregated living facilities.

BMJ Open

During hospitalization, 232 (22.7%) patients were treated in an ICU, 558 (54.9%) in a "cohorted" unit, 161 (15.7%) received mechanical ventilation, and 90 (8.8%) received high-flow nasal cannula. ICU patients more often received hydroxychloroguine (66% vs. 46%), corticosteroids (34% vs 18%), and antibiotic therapy (92% vs 71%) than general ward patients (p<0.05 for all). Overall, 219 (21.4%) patients died, with inhospital mortality ranging from 7.9% to 45.7% across hospitals. 73% received at least one COVID-19-specific treatment, ranging from 32% to 96% across sites.

LIMITATIONS

Rationales for management decisions could not be determined; findings may be biased by patients who remain hospitalized; implications of variability of clinical care on outcomes is unknown. CJ.C

CONCLUSIONS

During the Michigan outbreak of COVID-19, patient characteristics, treatment, and outcomes varied widely within and across hospitals.

Article Summary

Strengths and Limitations of this Study

- Ours is the first multi-hospital study to examine clinical aspects related to COVID-19 in Michigan. Through a rigorous data collection structure including a welldefined sampling strategy and trained data abstractors, we provide novel and detailed insights into clinical care during the pandemic.
- We were able to examine variation across sites finding substantial differences in clinical care and outcomes across hospitals. To our knowledge, this is the first study to examine differences in these important care processes, treatment approaches and outcomes across sites.
- We report a high rate of use of non-evidence-based therapies for treating COVID-19. This finding has significant safety, economic and policy implications for the most critically ill subsets in the hospital.
- Given the observational nature of the study, rationales for treatment or management decisions cannot be determined. Our study depends on available documentation, so symptoms, comorbidities, or treatments not documented in the medical record may be omitted.
- Because our sampling frame included patients that were discharged or deceased, our findings may be biased as patients who remain hospitalized may not be included in our cohort (potentially explaining lower duration of mechanical ventilation and hospital stay). However, COVID-19 hospitalizations in Southeastern Michigan have been declining since mid-April—limiting the degree of bias from exclusion of patients still in the hospital.

INTRODUCTION

Since detection in Wuhan, China,^{1 2} over 4.5 million cases of COVID-19, caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) have been reported.³ The United States (US) leads the world in the total number of cases, with over 1.5 million cases and 92,000 deaths reported as of May 20, 2020.⁴ Within the US, Michigan remains one of the hardest hit states, with over 52,000 cases and 5,000 deaths as of May 20, 2020.⁵

Michigan has a long history of collaborative quality improvement work that spans several disciplines including cardiovascular medicine, emergency medicine and hospital medicine, among others.⁶ These consortia collect detailed clinical variables from hospitals to populate a central registry, allowing benchmarking and comparisons of care and outcomes. As the COVID-19 pandemic unfolded in Southeast Michigan, several consortia came together to focus data collection on patients hospitalized with COVID-19. We describe clinical and epidemiologic findings from Michigan hospitals made possible through these efforts.

METHODS

A retrospective cohort design was used. Data were collected from medical records of patients discharged between March 16, 2020 and May 11, 2020 from one of 32 Michigan hospitals who participate in collaborative quality initiatives sponsored by Blue Cross Blue Shield of Michigan and Blue Care Network. Trained abstractors at each hospital identified adult patients ≥18 years of age that underwent testing for COVID-19 via reverse-transcriptase polymerase chain reaction, including both positive cases and

BMJ Open

persons under investigation (PUI) who eventually had a negative test. Demographic data (age, gender, race, ethnicity, payor) and in-hospital mortality were collected for all confirmed and PUI cases. A sample of COVID-19 positive cases from each hospital was selected for detailed abstraction. Positive cases were sorted by day of admission (e.g., Mon-Sun) and, for each day, a pseudo-random number (minute of hospital discharge) was used to select patients for detailed abstraction. Patients who were pregnant, transitioned to hospice within 3 hours of hospital admission, or discharged against medical advice were excluded. All data were entered into a registry (Mi-COVID19) using a structured data collection template.

Patient characteristics including comorbidities, home medications, presenting symptoms and risk factors for COVID-19 (e.g., exposure to sick contacts, healthcare worker) were collected. Clinical data during hospitalization including location of care (ward vs. intensive care unit [ICU], a "cohorted" COVID-19 only unit), vital signs, body mass index (BMI), laboratory and radiology findings and therapeutics were abstracted. Organ supports such as mechanical ventilation and other respiratory support, vasopressor use, renal replacement therapy (continuous renal replacement therapy [CRRT] and intermittent hemodialysis [iHD]) were also collected.

The primary outcomes of interest included hospital mortality, receipt of cardiopulmonary resuscitation (CPR), and occurrence of deep vein thrombosis (DVT) or pulmonary embolism (PE) (based on positive imaging findings or initiation of empiric therapy for presumed thrombosis). In addition, we performed pre-specified exploratory analyses in hospitals with at least 25 detailed abstractions (n=14 hospitals) to examine variation in patient characteristics, management and outcomes. Specifically, we

BMJ Open

> assessed variation in use of COVID-19 specific treatments (defined as hydroxychloroquine, combination hydroxychloroquine plus azithromycin, Vitamin C [oral or intravenous], IL-6 inhibitors or remdesivir), antibiotic therapy, use of organ support (e.g., use of vasopressors, mechanical ventilation and CPR), occurrence of venous thrombosis and in-hospital mortality.

> Descriptive statistics (e.g., mean, median, proportion) with measures of dispersion (e.g., standard error, inter-quartile range [IQR]) were used to summarize data. Data that were not documented in medical records (e.g., values of certain laboratory tests) were reported as missing. Pairwise comparisons were made using t-tests for continuous data and chi-square tests for categorical data, respectively. Differences across hospitals were tested using the Kruskal–Wallis test for continuous variables and Pearson chi-square test for categorical variables. All statistical tests were two-sided with p<0.05 considered statistically significant. The study was reviewed by the Institutional Review Board and deemed "not regulated". It was not appropriate or possible to involve patients or the public in the design, or conduct, or reporting, or dissemination plans of our research.

RESULTS

DEMOGRAPHIC DATA

Demographic-only data from 1,593 COVID-19 positive and 1,259 PUI discharges from 32 Michigan hospitals were collected. PUIs had a median age of 64.4 years, 52.6% were male and 32.0% Black. COVID-19 positive patients had similar age and gender as PUIs (63.9 years, and 52.1% male, respectively), but were more commonly

BMJ Open

Black (57.1% vs. 32.0%, p<0.01). In the demographic-only cohort, 398 (25.0%) COVID-19 positive patients died during hospitalization.

Detailed data were abstracted on 1,024 (64.3%) randomly-selected COVID-19 positive patients. The most prevalent comorbidities were hypertension (65.4%), diabetes (36.8%), cardiovascular disease (26.0%) and chronic kidney disease (23.3%); 14.9% of patients had no comorbidities. Though 12.8% of patients had a diagnosis of asthma and 11.2% had a diagnosis of chronic obstructive pulmonary disease, pre-hospital use of inhaled steroids, long-acting beta-agonists and long-acting antimuscarinic agents was low at 4.2%, 2.9%, and 0.5%, respectively. Current smoking or vaping was uncommon, but 27.3% were former smokers, and 35.8% reported former vaping. 115 (11.3%) patients were on immunosuppressive medications prior to hospitalization, including 62 (6.1%) who were on oral steroids. Essential workers comprised 12.8% of the cohort, including healthcare workers (7.0%) and service workers (5.8%, e.g., postal, food service, transportation). Prior to admission, 16.1% of patients resided in congregated living facilities, including nursing homes and homeless shelters (**Table 1**).

CLINICAL PRESENTATION AND INITIAL EVALUATION

In the detailed abstraction cohort (n=1,024), median duration of symptoms prior to hospitalization was 6 days (IQR 3-9). The most common presenting symptoms were cough (73.3%), fever (71.8%), and shortness of breath (72.2%); only 8% of patients did not report one of these 3 complaints **(Table 1)**. Gastrointestinal symptoms including nausea, vomiting and diarrhea occurred in 39.4% of patients. Over a third of patients

BMJ Open

(37.2%) reported sick contacts at the time of admission, and 23.8% reported contact with a patient known to have COVID-19. The location of diagnostic testing for COVID-19 varied: 67.5% of patients were tested in hospital laboratories, 23.2% in commercial laboratories, and 8.0% in the state laboratory. Patients were most commonly admitted to a general medical/surgical ward (59.5%), but 15.7% were admitted to intermediate care, 13.5% were admitted directly to ICU, and 11.3% were admitted to an observation unit **(Figure 1)**. A total of 419 (40.9%) of patients were admitted to a "cohorted" (COVID-19 only) unit. At admission, 6.3% of patients had do not resuscitate/do not intubate orders, which increased to 13.8% by discharge.

Common laboratory testing on admission included white blood cell count (93.7%), absolute lymphocyte count (75.8%), troponin (57.4%), lactate (57.2%), CRP (44.9%) and procalcitonin (42.4%) (missingness by laboratory test are reported in the e-Appendix). Among those with available laboratory data, patients who received ICU treatment had higher levels of inflammatory markers at admission including d-dimer (2.88mg/L vs. 1.65mg/L), ferritin (872ng/mL vs. 559ng/mL), CRP (24.3mg/dL vs. 13.8mg/dL) and LDH (476U/L vs. 346U/L) (Table 2). Chest imaging (X-ray or CT) was performed in 528 (51.6%) patients within 1 day of admission and was more common in ICU than general care patients (59.9% vs 49.1%, p=0.004). ICU patients were more likely to have radiographic abnormalities on presentation. Viral respiratory panels, blood cultures and sputum cultures were collected in 722 (51.0%) patients, but were positive in only 48 (4.7%) patients; 9.5% of ICU patients vs. 3.3% of general care patients had a viral or bacterial pathogen identified (p<0.001).

CRITICAL CARE TREATMENT

Overall, 232 patients (22.7%) were treated in an ICU, including 138 (13.5%) who were admitted directly to an ICU, and 94 (9.2%) who were transferred to ICU a median of 2 days following admission. Median length of ICU stay was 6 days (IQR 3-9), which was similar in survivors vs. non-survivors (5 vs 6 days, p=0.790). Among 1,024 patients with detailed abstraction, the maximum respiratory support received was invasive mechanical ventilation in 161 patients (15.7%), non-invasive positive pressure ventilation in 15 (1.5%), heated high-flow nasal cannula in 60 (5.9%), oxygen mask (>40% Fi02 or >6L/min) in 88 (8.6%), and nasal cannula oxygen (1-6L/min) in 441 (43.1%) (**Table 3**). 259 (25.3%) patients received no respiratory support or oxygen therapy during hospitalization. Among 78 patients initiated on HHFNC, 13 (16.7%) progressed to invasive mechanical ventilation. Among 25 patients initiated on NIPPV, 10 (40.0%) progressed to invasive mechanical ventilation. An additional 12 patients and 2 patients, respectively, used HHFNC and NIPPV after extubation.

Upon initiation of mechanical ventilation, patients were predominantly treated with a volume control mode (75%), with high FIO_2 (\geq 80% in 49.1% of ventilated patients), and modest tidal volumes (median tidal volume 7.0 ml/kg predicted body weight, [IQR 6.2-8.0]). The median duration of mechanical ventilation was 6 days (IQR 3-8 days). Prone positioning was documented in 18 patients, pulmonary vasodilators in 2 patients, and extra corporeal membrane oxygenation in 2 patients. CPR was administered to 41 patients (4.0%), with only one patient surviving to hospital discharge.

Vasopressors were used in 141 patients (13.8%), dialysis in 53 (5.2%), and corticosteroids in 222 (21.7%) patients. 771 (75.3%) patients received broad-spectrum

antibiotics, with use being more common in the ICU than general wards (91.8% vs 70.5%, p<0.001).

COVID-19 SPECIFIC THERAPIES

A total of 747 (72.9%) patients were treated with therapies targeting COVID-19, or the body's response to COVID-19, most commonly hydroxychloroquine (51%), hydroxychloroquine plus azithromycin (36%), and Vitamin C (10%). Treatment with IL-6 inhibitors and remdesivir was infrequent (27 and 17 patients, respectively). Use of COVID-19 treatments was more common in ICU than general care patients (88% vs. 69%, p<0.001). No patients in our sample received convalescent plasma. The proportion of patients treated with COVID-19 specific therapies decreased over time from 78.1% of patients admitted during March 8 to March 31 to 65.0% of patients admitted during April 1 to May 11 (p<0.001). Only 21 (2.0%) patients were enrolled into a clinical trial **(Table 2)**.

CLINICAL OUTCOMES

The in-hospital mortality rate for the full cohort of COVID-19 positive patients (demographic plus detailed abstractions) was 25.0%. Mortality varied by decade of age, ranging from 4.5% among patients aged 30-39 to 37.5% in patients aged 70-79 years (**Figure 2**). Among 219 decedents with detailed abstraction, 134 (61.5%) died following ICU treatment and 114 (52.1%) died after receiving mechanical ventilation. 40 of 219 decedents (18.3%) received cardiopulmonary resuscitation, and 91 (41.6%) were transitioned to comfort care prior to death. The most common causes of death were

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

refractory hypoxemia (29.4%), cardiac arrhythmia (15.9%) and refractory shock (10.7%). Venous thromboembolism occurred in 32 (3.1%) of patients, of which 9 experienced proximal lower-extremity DVT, 21 experienced PE, and 2 experienced both DVT and PE.

Among the 805 patients that survived to hospital discharge, 86% were discharged home and 8% were discharged to a skilled nursing facility or rehabilitation center. Only 1 patient (0.1%) was discharged to the Detroit field hospital **(Table 3)**.

VARIATION ACROSS HOSPITALS

Among 14 hospitals with at least 25 detailed abstractions, substantial variation in demographics, illness severity, care processes, treatments, and outcomes of COVID-19 positive patients were observed **(Table 4).** The proportion of patients over 65 years of age ranged from 30.2% to 65.5%, while the proportion of Black patients ranged from 0% to 94.6%. Similarly, the proportion of patients admitted directly to an ICU ranged from 0% to 43.8%, while the proportion of patients who were transferred to an ICU after admission ranged from 0% to 24.1%. Treatment in "cohorted" units ranged from 0% to 100%. Mechanical ventilation on admission ranged from 0% to 14.8% across hospitals. Critical illness on presentation (defined as admission to an ICU with receipt of vasopressors or mechanical ventilation on admission) varied from 0% to 7.7%.

72.9% of patients received at least one COVID-19 specific therapy (e.g., hydroxychloroquine, hydroxychloroquine plus azithromycin, interleukin-6 inhibitor, antiviral therapy), but use varied from 32% to 96.3% across sites. Similarly, 65% of

patients received concurrent antibiotics and COVID-19 specific treatment during hospitalization, with frequency varying from 50% to 100% in ICU patients vs. 17% to 95% in general care patients.

Mortality across hospitals varied from 7.9% to 45.7% of patients, and rates of CPR before death ranged from 0% to 66.7%. Finally, rates of VTE also varied, occurring in 0 to 11% of patients across hospitals.

DISCUSSION

While reports of COVID-19 patients from New York, Washington, and California exist,⁷⁻⁹ this is the first multi-center study to examine epidemiology, treatment and outcomes of COVID-19 hospitalizations in Michigan. Also, in contrast to prior multi-hospital US cohorts, the Mi-COVID19 registry includes a large sample of patients treated at a diverse set of 32 academic and community hospitals.

The demographics of our cohort differ from other cohorts. First, patients with confirmed COVID-19 in Michigan are disproportionally Black (over half of our cohort). This is in contrast to 32% of PUIs—indicating that the predominance of black patients with COVID-19 is not a reflection of local demographics, but rather disproportionate impact of COVID-19 on black patients. Second, in contrast to prior studies,^{17 10} our cohort was nearly 50:50 male:female, rather than male dominant. The reasons for this difference are unclear.

Consistent with prior reports, the main presenting symptoms were cough, dyspnea and fever. Similar to other studies,¹¹ a substantial proportion of patients had multiple comorbidities; but notably, 15% of our cohort had no known medical

BMJ Open

problems.¹² We found that a substantial proportion of patients reported contact with a known COVID-19 positive patient prior to developing symptoms. These findings mirror those of a study from Shenzen, China, where contacts of those with disease experienced a significantly higher rate of infection than the general public.¹³ Additionally, patients underwent COVID-19 testing through a number of venues including hospital, commercial and state-run laboratories, illustrating the myriad ways in which diagnosis was obtained early in the outbreak when testing was limited.¹⁴ Although only 14% of the sample was admitted directly to an ICU, an additional 9% were transferred to an ICU later in hospitalization. Hospital mortality in cases with detailed abstractions was 21%, but increased with age, consistent with prior studies.¹⁵

A key finding of our study is that a majority of patients hospitalized for COVID-19 were treated with therapies intended to mitigate SARS-CoV-2 viral replication or the body's immune response. More than half of patients were treated with hydroxychloroquine, and an additional 6% were treated with antivirals or immune modulating agents. Experts have increasingly questioned the use of unproven COVID-19 therapies outside of a clinical trial,¹⁶ and have argued that supportive care and trial enrollment are the best options until data regarding efficacy of therapies acrrues.^{17 18} Accumulating observational and trial data now suggest no benefit from hydroxychloroquine,¹⁹⁻²¹ and concerns regarding harm from empiric use remain.²² Unfortunately, only 2% of our sample was enrolled in clinical trials. The high rate of experimental COVID-19 therapies outside empiric studies represents a lost opportunity for learning. It is also emblematic of the strong desire—particularly early in the pandemic—to use therapies with a theoretical potential to target the virus even though

BMJ Open

improved survival from critical illness is largely attributed to improvements in supportive care.²³ Notably, we still do not have targeted therapies for sepsis or acute respiratory distress syndrome, which are the major mechanisms by which patients die from COVID-19 infection.

Another strength of our study is the variation in clinical presentation and outcomes we observed across a heterogeneous sample of hospitals. Use of COVID-19 specific treatments, corticosteroids, and antibiotics varied markedly across hospitals. While we are unable to ascertain reasons for such variation, we anecdotally observed that practice evolved across hospitals over time. For example, at some Michigan hospitals, routine use of hydroxychloroquine was common in the first few weeks of the pandemic but curbed as trial data became available. In contrast, use of hydroxychloroquine continues to be encouraged at other hospitals even today.²⁴ While it is unclear if these practice changes influenced outcomes, future studies exploring the rationale and impact of these changes on patients will be valuable.

Our study has limitations. First, given the observational nature of the study, rationales for treatment or management decisions cannot be determined. Second, because our sampling frame included patients that were discharged or deceased, our findings may be biased as patients who remain hospitalized may not be included in our cohort (potentially explaining lower duration of mechanical ventilation and hospital stay). However, COVID-19 hospitalizations in Southeastern Michigan have been declining since mid-April—limiting the degree of bias from exclusion of patients still in the hospital. Third, while variation in care was observed, the implications of such variability on clinical outcomes is unknown. Nevertheless, given that therapeutic modalities are

Page 19 of 38

BMJ Open

scarce and not without risks, reducing variation may improve patient safety and resource use. Fourth, our study depends on available documentation, so symptoms, comorbidities, or treatments not documented in the medical record may be omitted. For example, it is possible that the low use of prone positioning observed in our cohort may be due to incomplete documentation of this practice. Finally, we did not collect patient identifiers, so inter-hospital transfers could be reported as two separate hospitalizations. However, we did collect admission and discharge locations, and only 6% of the cohort was transferred from another hospital.

Our study also has strengths. Ours is the first multi-hospital study to examine clinical aspects related to COVID-19 in Michigan. Through a rigorous data collection structure including a well-defined sampling strategy and trained data abstractors, we provide novel and detailed insights into clinical care during the pandemic. Second, we were able to examine variation across sites finding substantial differences in clinical care and outcomes across hospitals. To our knowledge, this is the first study to examine differences in these important care processes, treatment approaches and outcomes across sites. Third, we report a high rate of use of non-evidence-based therapies for treating COVID-19. This finding has significant safety, economic and policy implications for the most critically ill subsets in the hospital. Finally, data collection for this effort remains ongoing, including longitudinal monitoring of patients after discharge. These data will help shed new light on the post hospital sequelae of COVID-19.

Michigan remains one of the regions most affected by COVID-19. This multicenter study provides granular clinical data regarding patients, care practices and clinical outcomes in the state. The wide variation in observed practices and outcomes

suggests caution when interpreting findings from single center studies. Our study also demonstrates the value of hospital collaboratives to help inform best practices.

BIBLIOGRAPHY

1

2	
3	
4	
5 6	
7	
8	
9	
10	
11	
12	
13 1/1	
15	
16	
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	
18	
19	
20	
21 22	
23	
22 23 24 25	
25	
26	
27	
28 29	
30	
31	
31 32 33	
33	
34	
35	
36 37	
38	
39	
40	
41	
42 43	
43 44	
45	
46	
47	
48	
49 50	
50 51	
51	
53	
54	
55	
56	
57	
58 59	
59 60	
50	

1. Guan WJ, Ni ZY, Hu Y, et al. Clinical Characteristics of Coronavirus Disease 2019 ir
China. N Engl J Med 2020 doi: 10.1056/NEJMoa2002032 [published Online Fire
2020/02/29]
2. Zhu N, Zhang D, Wang W, et al. A Novel Coronavirus from Patients with Pneumonia
in China, 2019. <i>N Engl J Med</i> 2020;382(8):727-33. doi:
10.1056/NEJMoa2001017 [published Online First: 2020/01/25]
3. COVID-19 Dashboard by the Center for Systems Science and Engineering (CSSE)
Johns Hopkins University. Available online at: https://coronavirusjhuedu/maphtn
Accessed April 20, 2020
4. Centers for Disease Control Cases of Coronavirus Disease (COVID-19) in the US.
Available online at: https://www.cdc.gov/coronavirus/2019-ncov/cases-
updates/cases-in-us.html. Accessed April 20, 2020.
5. Michigan.gov. Coronavirus Resources - Confirmed cases by Jurisdiction. Available
online at: https://www.michigan.gov/coronavirus/0,9753,7-406-98163-520743
,00.html. Accessed April 20, 2020.
6. Blue Cross Blue Shield Collaborative Quality Initiatives. Available online at:
https://www.bcbsm.com/providers/value-partnerships/collaborative-quality-
initiatives.html. Accessed April 20, 2020.
7. Goyal P, Choi JJ, Pinheiro LC, et al. Clinical Characteristics of Covid-19 in New Yor
City. N Engl J Med 2020 doi: 10.1056/NEJMc2010419 [published Online First:
2020/04/18]

8. Bhatraju PK, Ghassemieh BJ, Nichols M, et al. Covid-19 in Critically III Patients in the Seattle Region - Case Series. N Engl J Med 2020 doi: 10.1056/NEJMoa2004500 [published Online First: 2020/04/01] 9. Myers LC, Parodi SM, Escobar GJ, et al. Characteristics of Hospitalized Adults With COVID-19 in an Integrated Health Care System in California. JAMA 2020 doi: 10.1001/jama.2020.7202 [published Online First: 2020/04/25] 10. Grasselli G, Zangrillo A, Zanella A, et al. Baseline Characteristics and Outcomes of 1591 Patients Infected With SARS-CoV-2 Admitted to ICUs of the Lombardy Region, Italy. JAMA 2020 doi: 10.1001/jama.2020.5394 [published Online First: 2020/04/07] 11. Xie J, Tong Z, Guan X, et al. Clinical Characteristics of Patients Who Died of Coronavirus Disease 2019 in China. JAMA Netw Open 2020;3(4):e205619. doi: 10.1001/jamanetworkopen.2020.5619 [published Online First: 2020/04/11] 12. Gold JAW, Wong KK, Szablewski CM, et al. Characteristics and Clinical Outcomes of Adult Patients Hospitalized with COVID-19 - Georgia, March 2020. MMWR Morb Mortal Wkly Rep 2020;69(18):545-50. doi: 10.15585/mmwr.mm6918e1

[published Online First: 2020/05/08]

- 13. Bi Q, Wu Y, Mei S, et al. Epidemiology and transmission of COVID-19 in 391 cases and 1286 of their close contacts in Shenzhen, China: a retrospective cohort study. Lancet Infect Dis 2020 doi: 10.1016/S1473-3099(20)30287-5 [published Online First: 2020/05/01]
- 14. Sharfstein JM, Becker SJ, Mello MM. Diagnostic Testing for the Novel Coronavirus. JAMA 2020 doi: 10.1001/jama.2020.3864 [published Online First: 2020/03/10]

2	
3	15. Richardson S, Hirsch JS, Narasimhan M, et al. Presenting Characteristics,
5	Comorbidities, and Outcomes Among 5700 Patients Hospitalized With COVID-19
6 7	
8 9	in the New York City Area. JAMA 2020 doi: 10.1001/jama.2020.6775 [published
10	Online First: 2020/04/23]
11 12	
13	16. Bhimraj A, Morgan RL, Shumaker AH, et al. Infectious Diseases Society of America
14 15 16	Guidelines on the Treatment and Management of Patients with COVID-19. Clin
17 18	Infect Dis 2020 doi: 10.1093/cid/ciaa478 [published Online First: 2020/04/28]
19 20	17. Rice TW, Janz DR. In Defense of Evidence-Based Medicine for the Treatment of
21 22	COVID-19 ARDS. Ann Am Thorac Soc 2020 doi: 10.1513/AnnalsATS.202004-
23 24	325IP [published Online First: 2020/04/23]
25	
26 27	18. Waterer GW, Rello J, Wunderink RG. SARS-CoV-2: First Do No Harm. Am J Respir
28 29	Crit Care Med 2020 doi: 10.1164/rccm.202004-1153ED [published Online First:
30 31	2020/04/21]
32 33	19. Tang W, Cao Z, Han M, et al. Hydroxychloroquine in patients with mainly mild to
34	13. Tang W, Odo Z, Han W, et al. Hydroxyenioroquine in patients with mainly mild to
35 36	moderate coronavirus disease 2019: open label, randomised controlled trial. BMJ
37 38	2020;369:m1849. doi: 10.1136/bmj.m1849 [published Online First: 2020/05/16]
39 40	20. Mahevas M, Tran VT, Roumier M, et al. Clinical efficacy of hydroxychloroquine in
41 42	notionto with covid 10 province who require our reprint the relation of
43	patients with covid-19 pneumonia who require oxygen: observational
44 45	comparative study using routine care data. BMJ 2020;369:m1844. doi:
46 47 48	10.1136/bmj.m1844 [published Online First: 2020/05/16]
48 49 50	21. Rosenberg ES, Dufort EM, Udo T, et al. Association of Treatment With
51 52 53 54 55	Hydroxychloroquine or Azithromycin With In-Hospital Mortality in Patients With
56	

COVID-19 in New York State. JAMA 2020 doi: 10.1001/jama.2020.8630
[published Online First: 2020/05/12]
22. Bessiere F, Roccia H, Deliniere A, et al. Assessment of QT Intervals in a Case
Series of Patients With Coronavirus Disease 2019 (COVID-19) Infection Treated

With Hydroxychloroquine Alone or in Combination With Azithromycin in an Intensive Care Unit. *JAMA Cardiol* 2020 doi: 10.1001/jamacardio.2020.1787 [published Online First: 2020/05/02]

23. Angus DC. Optimizing the Trade-off Between Learning and Doing in a Pandemic. JAMA 2020 doi: 10.1001/jama.2020.4984 [published Online First: 2020/04/01]

24. Wells K. Hospitals Vary Treatment for Coronavirus Patients. *National Public Radio* 2020;Available online at: <u>https://www.npr.org/2020/05/18/857727140/hospitals-</u> <u>vary-treatment-for-coronavirus-patients</u>. Accessed May 19, 2020.

L.C.Z.O.J.L

Table 1. Demographic and Clinical Characteristics of COVID-19 Positive Patients
(n=1,024)

Residence prior to hospitalization - no. (%)	
Home	824 (80.5%)
Congregated living facility ¹	165 (16.1%)
Sub-acute rehabilitation facility	9 (0.9%)
Unknown	18 (1.8%)
Admission location - no. (%)	
Emergency department	951 (92.9%)
Transfer from Another Hospital	60 (5.9%)
Direct admission	7 (0.7%)
Median age (IQR) - yr 🔜	63.3 (50.9-74.4)
Male Sex - no. (%)	533 (52.1%)
Race - no. (%)	
Black	526 (51.4%)
White	390 (38.1%)
Unknown	45 (4.4%)
Asian	30 (2.9%)
Other	26 (2.5%)
Native	4 (0.4%)
Islander	3 (0.3%)
Ethnicity - no. (%)	
Non-Hispanic	873 (85.3%)
Hispanic	30 (2.9%)
Unknown	117 (11.4%)
Insurance – no. (%)	
Medicare	497 (48.5%)
Commercial	251 (24.5%)
Medicaid	128 (12.5%)
Self-pay	29 (2.8%)
Other ²	117 (11.4%)
BMI - median (IQR)	30.6 (25.9-37.1)
Smoking history - no. (%)	
Never	615 (60.2%)
Former	279 (27.3%)
Current	61 (6.0%)
Unknown	65 (6.4%)
Vaping history - no. (%)	
Never	645 (63.2%)
Former	366 (35.8%)
Current	6 (0.6%)
Unknown	3 (0.3%)
Coexisting disorder - no. (%)	
Hypertension	670 (65.4%)
Diabetes	377 (36.8%)
Cardiovascular Disease	266 (26.0%)
Moderate/ Severe Kidney Disease	239 (23.3%)
Asthma	132 (12.9%)
CHF/Cardiomyopathy	131 (12.8%)
Dementia	123 (12.0%)
Chronic Obstructive Pulmonary Disease	115 (11.2%)
Cerebrovascular disease/ paraplegia	97 (9.5%)

1
2
3
4 5
6
7
8
9 10
11
12
13 14
15
16
17 18
19
20
21 22
22
24
25 26
20 27
28
29
30 31
32
33
34 35
36
37
38 39
40
41
42 43
44
45
46 47
48
49
50 51
52
53
54 55
55 56
57
58
59

Cancer ³	77 (7.5%)
Peripheral Vascular Disorders	41 (4.0%)
Chronic Pulmonary Disease (non-asthma/COPD)	35 (3.4%)
Rheumatoid Arthritis	29 (2.8%)
Peptic Ulcer Disease	10 (1.0%)
HIV/AIDS	7 (0.7%)
Organ transplant	8 (0.8%)
Inflammatory Bowel Disease	8 (0.8%)
No reported comorbidities	152 (14.9%)
Home Medications	
ACE Inhibitors	180 (17.6%)
Steroids/immunosuppressive therapy	115 (11.3%)
ARBs	136 (13.3%)
NSAIDs	182 (17.8%)
Statins	378 (37.0%)
Beta Blockers	298 (29.2%)
Anticoagulants	149 (14.6%)
Oral Steroids ⁴	62 (6.1%)
Inhaled steroids	43 (4.2%)
Inhaled long-acting beta-agonist	30 (2.9%)
Inhaled long-acting anti-cholinergic	5 (0.5%)
Home oxygen therapy	36 (3.5%)
Duration of symptoms before admission, days - median (IQR)	6 (3-9)
Respiratory symptoms - no. (%)	0 (3-3)
Cough (New or Worsening)	751 (73.3%)
Fever - no. (%)	735 (71.8%)
Fever (99.0 - 100.4 [F])	151 (14.7%)
Fever (>100.4 [F])	390 (38.1%)
Subjective fever	194 (18.9%)
Dyspnea / shortness of breath	739 (72.2%)
Nausea/vomiting or diarrhea	403 (39.4%)
Fatigue	361 (35.3%)
Myalgias	264 (25.8%)
Weakness	253 (24.7%)
Sputum production	146 (14.3%)
Altered Mental Status	144 (14.1%)
Non-pleuritic chest pain	100 (9.8%)
Generalized malaise	91 (8.9%)
Rhinorrhea	75 (7.3%)
Pleuritic chest pain	75 (7.3%)
No reported symptoms	14 (1.4%)
Sick contacts - no. (%)	381 (37.2%)
Known COVID-19 positive	244 (23.8%)
Unknown COVID-19 status	236 (23.0%)
Healthcare worker - no. (%)	72 (7.0%)
	59 (5.8%)
Service worker - no. (%) ⁵	59 (5.0%)
Initial location of admission - no. (%)	608 (50 50/)
General Medical/Surgical ward	608 (59.5%)
ICU Step down with	138 (13.5%)
Step-down unit	160 (15.7%)
Observation unit	115 (11.3%)
Missing/Unknown	3 (0.3%)
Admitted to COVID-19 specific (i.e., cohorted) unit	419 (40.9%)

Advanced Directives on admission	
DNR/DNI	64 (6.3%)
No CPR (intubation OK)	19 (1.9%)
No intubation (CPR OK)	3 (0.3%)
Abbreviations: COVID-19, coronavirus disease 2019; SE=sta range	andard error; IQR, inter-quartile
¹ Includes assisted living, group home, skilled nursing facility correctional facilities, community living and inpatient psychia	tric facilities.
² Includes other payers, Michigan, out-of-state and governm	
³ Includes leukemia, lymphoma, hematologic cancer and any	
⁴ Includes oral prednisone, prednisolone, hydrocortisone and	d dexamethasone.

⁵ Service workers include food service, transportation, postal/delivery and other related fields.

for oper teries only

General Ward

р

	Ever ICU (n = 232)
Vital signs on day of hospital admission	,
no. (%)	
Fever (>100.4 [F])	95 (40.9%)
Hypoxia / new or escalated O2 requirement	142 (61.2%)
Supplemental oxygen use	96 (41.4%)
Respiratory rate > 20	139 (59.9%)
Heart rate > 100 per minute	99 (42.7%)
Systolic blood pressure < 100 mmHg	27 (11.6%)
Day 1 laboratory measures, median (IQR)	
Hemoglobin	13.2 (11.4-14.7
White blood cell count, K/uL	7.3 (5.5-9.7)
Absolute lymphocyte count, K/uL	0.80 (0.60-1.20
Platelet count, K/uL	197 (149-256)
ALT, IU/L	32.0 (20.0-60.0
Lactate, mmol/L	1.6 (1.2-2.5)
Troponin pg/mL	9 (0-38)
Brain Natriuretic Peptide (BNP), pg/mL	79 (34-236)

atients by ICU-status

	(n = 232)	(n = 792)	ρ
ital signs on day of hospital admission,			
o. (%)			0.0070
Fever (>100.4 [F])	95 (40.9%)	295 (37.2%)	0.3073
Hypoxia / new or escalated O2 requirement	142 (61.2%)	257 (32.4%)	<.0001
Supplemental oxygen use	96 (41.4%)	145 (18.3%)	<.0001
Respiratory rate > 20	139 (59.9%)	306 (38.6%)	<.0001
Heart rate > 100 per minute	99 (42.7%)	321 (40.5%)	0.5596
Systolic blood pressure < 100 mmHg	27 (11.6%)	45 (5.7%)	0.0018
ay 1 laboratory measures, median QR)			
Hemoglobin	13.2 (11.4-14.7)	13.2 (12.0-14.6)	0.4573
White blood cell count, K/uL	7.3 (5.5-9.7)	6.5 (4.8-8.4)	<.0001
Absolute lymphocyte count, K/uL	0.80 (0.60-1.20)	1.00 (0.70-1.30)	0.3440
Platelet count, K/uL	197 (149-256)	204 (159-268)	0.4875
ALT, IU/L	32.0 (20.0-60.0)	27.0 (18.0-41.0)	0.2228
Lactate, mmol/L	1.6 (1.2-2.5)	1.4 (1.0-1.8)	0.0010
Troponin pg/mL	9 (0-38)	0 (0-12)	0.5872
Brain Natriuretic Peptide (BNP), pg/mL	79 (34-236)	49 (18-157)	0.0088
Procalcitonin, ng/mL	0.30 (0.17-0.94)	0.12 (0.06-0.29)	0.5054
D-dimer, mg/L	2.88 (1.19-35.00)	1.65 (0.59-368.00)	0.8240
Ferritin, ng/mL	872 (379-1531)	559 (237-1019)	0.1074
CRP, mg/dL	24.3 (12.0-107.1)	13.8 (5.8-66.2)	0.0031
LDH, IU/L	476 (337-668)	346 (254-455)	<.0001
Creatinine, mg/dL	1.3 (1.0-2.0)	1.1 (0.8-1.5)	0.5736
Total Bilirubin, mg/dL	0.6 (0.4-0.9)	0.5 (0.4-0.8)	0.7147
Respiratory viral panel positive for non- COVID-19 respiratory virus	2 (0.9%)	7 (0.9%)	0.9443
Positive blood culture within 1 day of admission	7 (3.0%)	9 (1.1%)	0.0422
Positive respiratory culture within 1 day of admission	4 (1.7%)	4 (0.5%)	0.0636
Any Chest imaging ¹	139 (59.9%)	389 (49.1%)	0.0038
Chest X-ray	118 (50.9%)	322 (40.7%)	0.0058
Chest Computed Tomography	34 (14.7%)	106 (13.4%)	0.6201
Imaging findings - no. (%)			
Pneumonia	61 (26.3%)	100 (12.6%)	<.0001
Non-specified opacities/air-space disease	84 (36.2%)	161 (20.3%)	<.0001
Pleural effusion	32 (13.8%)	37 (4.7%)	<.0001
Normal/no abnormalities	5 (2.2%)	30 (3.8%)	0.2287
Pulmonary Edema	25 (10.8%)	29 (3.7%)	<.0001
CT with Ground Glass Infiltrates	14 (6.0%)	58 (7.3%)	0.4995

1 2	
3 4	
5 6 7	
7 8 9	
10 11	
12 13	
14 15 16	
16 17 18	
19 20	
21 22	
23 24 25	
25 26 27	
28 29	
30 31	
32 33 34	
35	
37 38	
39 40 41	
42 43	
44 45	
46 47 48	
49 50	
51 52	
53 54	
55 56 57	
57	

60

Respiratory support on day of admission - no. (%)			
Invasive mechanical ventilation	46 (19.8%)	2 (0.3%)	<.0001
Non-invasive positive pressure	5 (2.2%)	2 (0.3%)	0.0020
HHFNC	5 (2.2%)	5 (2.2%)	0.1905
Oxygen mask (>40%fio2)	17 (7.3%)	20 (2.6%)	0.0006
Nasal cannula oxygen, 1-6L	76 (32.8%)	261 (33.0%)	0.9555
No supplemental oxygen	83 (8.1%)	502 (49.0%)	<.0001
Treatments during hospitalization - no (%)	•		
Covid-19 Specific treatment(s)			
Hydroxychloroquine	154 (66.4%)	364 (46.0%)	<.0001
Hydroxychloroquine + Azithromycin	112 (48.3%)	260 (32.8%)	<.0001
Vitamin C (PO or IV)	35 (15.1%)	68 (8.6%)	0.0038
Remdesivir	7 (3.0%)	10 (1.3%)	0.0658
IL-6 receptor inhibitor	27 (11.6%)	. (.%)	<.0001
Corticosteroids ²	79 (34.1%)	143 (18.1%)	<.0001
Antibiotics	213 (91.8%)	558 (70.5%)	<.0001
Azithromycin	149 (64.2%)	415 (52.4%)	0.0014
Ceftriaxone	124 (53.4%)	345 (43.6%)	0.0079
Cefepime	90 (38.8%)	79 (10.0%)	<.0001
Doxycycline	37 (15.9%)	111 (14.0%)	0.4615
Vancomycin	115 (49.6%)	106 (13.4%)	<.0001
Linezolid	12 (5.2%)	8 (1.0%)	<.0001
Anti-pseudomonals ³	123 (53.0%)	115 (14.5%)	<.0001
Antivirals ^₄	1 (0.4%)	13 (1.6%)	0.1626
Enrolled in clinical trial	10 (4.3%)	12 (1.5%)	0.0098

error.

¹ Includes chest imaging results 7 days before hospital encounter ² Hydrocortisone, Methylprednisolone, prednisolone or prednisone

³ Cefepime, gentamicin, imipenem, meropenem, piperacillin-tazobactam, ceftazadime, aztreonam or tobramycin

⁴ Non-remdesivir antivirals including Oseltamivir, Lopinavir/Ritonavir, Ribavirin, others

	All patients (n =1,024)	Discharged Alive n = 805	Died in Hospital n = 219
Treated in an ICU	232 (22.7%)	101 (12.5%)	131 (59.8%
Respiratory support ever received, no.(%)*			•
Invasive mechanical ventilation	161 (15.7%)	47 (5.8%)	114 (52.1%
Non-invasive positive pressure ventilation	27 (2.6%)	10 (1.2%)	17 (7.8%)
HHFNC	90 (8.8%)	57 (7.1%)	33 (15.1%)
Oxygen mask (>40%FIO ₂)	159 (15.5%)	76 (9.4%)	83 (37.9%)
Maximum respiratory support received, no. (%)**			
Invasive mechanical ventilation	161 (15.7%)	47 (5.8%)	114 (52.1%
Non-invasive positive pressure	15 (1.5%)	6 (0.7%)	9 (4.1%)
HHFNC	60 (5.9%)	40 (5.0%)	20 (9.1%)
Oxygen mask (>40%FIO ₂)	88 (8.6%)	48 (6.0%)	40 (18.3%)
Nasal canula oxygen, 1-6L/min	441 (43.1%)	415 (51.6%)	26 (11.9%)
No respiratory support	259 (25.3%)	249 (30.9%)	10 (4.6%)
Max FIO ₂ received, no.(%)		• •	
91-100%	126 (12.3%)	34 (4.2%)	92 (42%)
81-90%	30 (2.9%)	13 (1.6%)	17 (7.8%)
71-80%	86 (8.4%)	42 (5.2%)	44 (20.1%)
61-70%	16 (1.6%)	9 (1.1%)	7 (3.2%)
51-60%	26 (2.5%)	14 (1.7%)	12 (5.5%)
41-50%	24 (2.3%)	20 (2.5%)	4 (1.8%)
31-40%	170 (16.6%)	144 (17.9%)	26 (11.9%)
21-30%	287 (28%)	280 (34.8%)	7 (3.2%)
Non-respiratory organ support received, no. (%)		• •	
Vasopressor	141 (13.8%)	35 (4.3%)	106 (48.4%
Any dialysis***	53 (5.2%)	17 (2.1%)	36 (16.4%)
CRRT only	17 (1.7%)	1 (0.1%)	16 (7.3%)
iHD only	28 (2.7%)	15 (1.9%)	13 (5.9%)
CPR	41 (4.0%)	1 (0.1%)	40 (18.3%)

Table 3. Organ support for COVID-19 Positive Patients by Discharge Status (n=1,024)

Abbreviations: SE=standard error; ECMO=extra-corporeal membrane oxygenation; HHFNC=heated high flow nasal cannula; Fi02=fraction of inspired oxygen; L= liters/min; ICU=intensive care unit; PE=pulmonary embolism; DVT=deep vein thrombosis; CPR=cardiopulmonary resuscitation; CRRT=continuous renal replacement therapy; iHD=intermittent hemodialysis;

* Represents any use of respiratory support. Numbers are greater than 100% as one patient may have received multiple treatments.

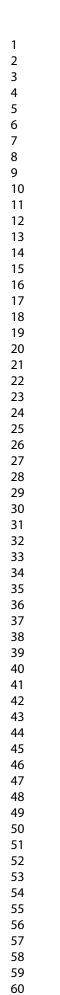
** Represents the highest level of respiratory support a patient received during hospitalization.

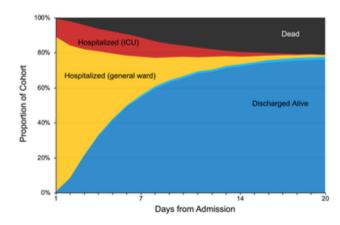
*** Includes Intermittent Hemodialysis (iHD), dialysis and ultrafiltration

Table 4. Variation in Clinical Care and Outcomes in COVID-19 Positive Patients Across Hospitals

			Range	across Ho	spitals			
	Min	10 th Pctl	25th Pctl	Median	75th Pctl	90th Pctl	Max	p ¹
Patient characteristics								
Age >65, %	30.2	35.3	39.6	51.3	56.8	64.4	65.5	<.000
Black, %	0.0	17.7	29.7	46.2	76.4	93.7	94.6	<.000
Male, %	39.2	45.6	47.1	53.0	56.8	72.4	73.8	0.07
Charlson comorbidity index, median	0.0	1.0	1.0	1.0	1.0	2.0	2.0	0.01
BMI, median	24.3	28.4	29.5	31.1	33.3	36.5	36.9	0.09
Age, median in years	39.0	46.5	60.8	62.4	66.4	73.5	76.0	<.000
Admission information, %								
Hospital-to-hospital transfer	0.0	0.0	0.0	0.00	2.8	10.7	20.9	<.000
Admitted directly to ICU	0.0	0.0	2.9	6.15	14.8	20.5	43.8	<.000
Transferred from floor to ICU	0.0	0.0	0.0	8.4	17.6	18.8	24.1	0.09
Admitted to a Cohorted unit	0.0	2.1	18.6	67.9	85.71	96.3	97.1	<.000
Severe illness on presentation ²	0.0	0.00	0.00	0.0	3.7	7.1	7.7	0.09
Vasopressor use on day 1	0.0	0.00	0.00	2.1	6.4	10.3	14.8	0.04
Mechanical ventilation on day 1	0.0	0.00	0.00	2.51	8.6	11.1	12.8	0.03
Treatment, %					0.0			
Treated in a Cohorted Unit	0.0	0.00	6.3	57.1	90.9	100.0	100.0	<.000
Treated in an ICU	4.2	5.4	14.0	19.1	31.0	38.5	62.5	<.000
COVID-19 Specific treatment	32.4	57.1	69.2	76.4	81.4	90.2	96.3	<.000
Concurrent antibiotic and COVID-19 specific treatment(s)	24.3	42.9	59.4	69.8	76.7	84.3	96.3	<.000
Hydroxychloroquine	13.5	31.4	42.3	59.7	65.5	81.5	82.4	<.000
Mechanical ventilation	2.1	2.7	6.4	10.9	31.0	38.5	40.6	<.000
Vasopressors	2.2	2.9	7.0	12.1	25.0	32.1	32.5	<.000
CPR before death	0.0	0.0	8.3	14.3	33.3	40.0	66.7	0.010
Outcomes, %								
Days of mechanical ventilation, median ³	1.0	1.0	1.0	5.0	8.0	8.0	9.0	0.01
Length of stay, median	2.0	3.0	3.0	4.5	6.0	8.0	8.5	<.000
ICU length of stay, median ⁴	1.0	2.0	3.5	5.0	6.5	7.5	9.5	0.01
DVT	0.0	0.0	0.0	0.0	2.1	3.5	7.1	0.05
VTE	0.0	0.0	0.0	2.9	5.2	6.3	10.7	0.20
PE	0.0	0.0	0.0	1.8	3.9	6.3	7.1	0.72
Discharge status, %		-			-	-		
Death	7.9	8.3	14.6	21.3	31.0	41.4	45.7	<.000
Transferred to another hospital	0.0	0.0	0.0	0.0	1.6	2.7	5.1	0.07

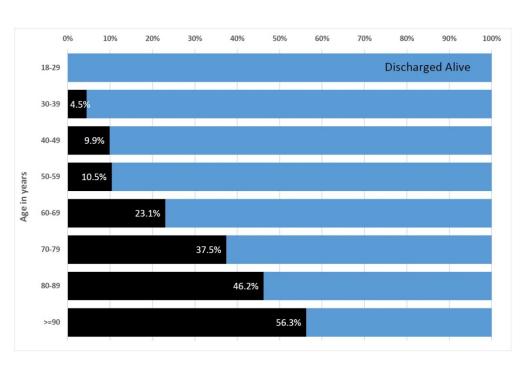
For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml


Discharged home		122	102	62 1	67.5	72.0	<u>80 0</u>	92 F	
	s hospitals were tes	42.3 sted using tl	48.2 he Kruskal	62.1 –Wallis te	67.5 est for conti	72.9 nuous va	80.0 riables and	82.5 d Pearsor	< 1 C
square test for cate ² Defined as admiss	gorical variables.								
vasopressors.	-		iization an	u liealine		mechai			
³ For patients ever of ⁴ For patients ever of		tilation							
 ⁴ For patients ever i * Variables marked 		sent variatio	on from the	e demogra	phic cohoi	t			
Abbreviations: BMI= thrombosis; VTE=ve	=body mass index;	ICU=intens	ive care ur	nit; CPR=	cardiopulm		suscitation	; DVT=de	e
				2	-				
	or peer review only -							31	


Figure Legend 1

Legend. Figure depicts the proportion of the N=1024 patient cohort who are hospitalized on general care/ward (yellow), hospitalized in ICU (red), discharged alive (blue), transferred to a new hospital (light blue) and deceased over time to day 20 of hospital admission.

Figure Legend 2


Legend. Graph depicts the proportion of the demographic cohort (n-1593) who died in hospital by decade of age. Black shading indicates death whereas blue shading indicates discharge alive. to beet terien only

Caption : Caption : Figure 1. Proportion of COVID-19 Positive Patients in hospital, ICU, dead, and discharged over time (n=1,024)Legend. Figure depicts the proportion of the N=1024 patient cohort who are hospitalized on general care/ward (yellow), hospitalized in ICU (red), discharged alive (blue), transferred to a new hospital (light blue) and deceased over time to day 20 of hospital admission.

27x17mm (300 x 300 DPI)

Caption : Caption : Figure 2. Mortality rate for COVID-19 positive patients by decade of age (demographic data cohort, n=1,593) Legend. Graph depicts the proportion of the demographic cohort (n-1593) who died in hospital by decade of age. Black shading indicates death whereas blue shading indicates discharge alive.

116x75mm (300 x 300 DPI)

1	
2	
3 ⊿	
4 5	
3 4 5 6 7	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37	
27	
28	
29	
30	
27	
22	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51 52	
52	
53 54	
54 55	
55 56	
56 57	
57 58	
58	

60

1

Appendix: Availability of Laboratory Tests

Variable	N	% missing
Hemoglobin (Hgb)	959	6.3%
WBC *	959	6.3%
Absolute Lymphocyte Count *	776	24.2%
Platelet	957	6.5%
ALT *	803	21.6%
Lactate	586	42.8%
Troponin	588	42.6%
Brain Natriuretic Peptide (BNP)	282	72.5%
Procalcitonin	434	57.6%
D-dimer	333	67.5%
Ferritin *	419	59.1%
CRP *	460	55.1%
Lactic Acid Dehydrogenase (LDH)	392	61.7%
pH* (imputed)	326	68.2%
Creatinine *	956	6.6%
Total Bilirubin	777	24.1%

BMJ Open

STROBE (Strengthening The Reporting of OBservational Studies in Epidemiology) Checklist

A checklist of items that should be included in reports of observational studies. You must report the page number in your manuscript where you consider each of the items listed in this checklist. If you have not included this information, either revise your manuscript accordingly before submitting or note N/A.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

Section and Item	ltem No.	Recommendation	Reported on Page No.
Title and Abstract	1	(<i>a</i>) Indicate the study's design with a commonly used term in the title or the abstract	
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found	
ntroduction		R	
Background/Rationale	2	Explain the scientific background and rationale for the investigation being reported	
Objectives	3	State specific objectives, including any prespecified hypotheses	
Vethods			
Study Design	4	Present key elements of study design early in the paper	
Setting 5 Describe the setting, locations, and relevant dates, including periods of			
recruitment, exposure, follow-up, and data collection			
Participants 6 (a) Cohort study—Give the eligibility criteria, and the sources and methods of			
		selection of participants. Describe methods of follow-up	
		<i>Case-control study</i> —Give the eligibility criteria, and the sources and methods of	
		case ascertainment and control selection. Give the rationale for the choice of cases and controls	
		<i>Cross-sectional study</i> —Give the eligibility criteria, and the sources and methods of selection of participants	
		(b) Cohort study—For matched studies, give matching criteria and number of exposed and unexposed	
		<i>Case-control study</i> —For matched studies, give matching criteria and the number of controls per case	
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	

	No.	Recommendation	Page No
Data Sources/	8*	For each variable of interest, give sources of data and details of methods of	
Measurement		assessment (measurement). Describe comparability of assessment methods if	
		there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	
Study Size	10	Explain how the study size was arrived at	
Quantitative Variables	11	Explain how quantitative variables were handled in the analyses. If applicable,	
		describe which groupings were chosen and why	
Statistical Mathada	12	(a) Describe all statistical methods, including those used to control for	
Statistical Methods	12		
		confounding	
		(b) Describe any methods used to examine subgroups and interactions	
		(c) Explain how missing data were addressed	
		(d) Cohort study—If applicable, explain how loss to follow-up was addressed	
		<i>Case-control study</i> —If applicable, explain how matching of cases and controls was	
		addressed	
		<i>Cross-sectional study</i> —If applicable, describe analytical methods taking account of	
		sampling strategy	
		(e) Describe any sensitivity analyses	
Results	1		1
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially	
		eligible, examined for eligibility, confirmed eligible, included in the study,	
		completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	
		(c) Consider use of a flow diagram	
Descriptive Data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and	
·		information on exposures and potential confounders	
		(b) Indicate number of participants with missing data for each variable of interest	
(c) Cohort study—Summarise follow-up time (eg, average and total amount)			
Outcome Data	15*	Cohort study—Report numbers of outcome events or summary measures over	
		time	
		Case-control study—Report numbers in each exposure category, or summary	
		measures of exposure	
		Cross-sectional study—Report numbers of outcome events or summary measures	

16	(<i>a</i>) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders	
	and their precision (eg. 95% confidence interval). Make clear which confounders	
	· · · · · · · · · · · · · · · · · · ·	
	were adjusted for and why they were included	
	(b) Report category boundaries when continuous variables were categorized	
	(c) If relevant, consider translating estimates of relative risk into absolute risk for a	
	meaningful time period	
17	Report other analyses done—eg analyses of subgroups and interactions, and	
	sensitivity analyses	
18	Summarise key results with reference to study objectives	
ations 19 Discuss limitations of the study, taking into account sources of potential bias or		
imprecision. Discuss both direction and magnitude of any potential bias		
20	Give a cautious overall interpretation of results considering objectives, limitations,	
	multiplicity of analyses, results from similar studies, and other relevant evidence	
21	Discuss the generalisability (external validity) of the study results	
Other Information		
22	Give the source of funding and the role of the funders for the present study and, if	
	applicable, for the original study on which the present article is based	
		ed groups
al studie	25.	
2	18 19 20 21 22 itely for	 (c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period 17 Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses 18 Summarise key results with reference to study objectives 19 Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias 20 Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence 21 Discuss the generalisability (external validity) of the study results

Once you have completed this checklist, please save a copy and upload it as part of your submission. DO NOT include this checklist as part of the main manuscript document. It must be uploaded as a separate file.

BMJ Open

BMJ Open

Variation in COVID-19 Characteristics, Treatment, and Outcomes in Michigan: An Observational Study in 32 Hospitals

<u> </u>	244.0
Journal:	BMJ Open
Manuscript ID	bmjopen-2020-044921.R1
Article Type:	Original research
Date Submitted by the Author:	21-Jan-2021
Complete List of Authors:	Chopra, Vineet; University of Michigan Michigan Medicine, General Internal Medicine Flanders, Scott A.; University of Michigan, Vaughn, Valerie ; University of Michigan, Petty, Lindsay; University of Michigan Medical School, Division of Infectious Diseases Gandhi, Tejal; University of Michigan Michigan Medicine McSparron, Jakob; University of Michigan Health System Malani, Anurag; St Joseph Mercy Health System O'Malley, Megan; University of Michigan Medicine Kim, Tae; University of Michigan Michigan Medicine McLaughlin, Elizabeth; University of Michigan Michigan Medicine Prescott, Hallie; University of Michigan Michigan Medicine, Internal Medicine
Primary Subject Heading :	Infectious diseases
Secondary Subject Heading:	Epidemiology, Infectious diseases, Intensive care
Keywords:	COVID-19, Quality in health care < HEALTH SERVICES ADMINISTRATION & MANAGEMENT, Protocols & guidelines < HEALTH SERVICES ADMINISTRATION & MANAGEMENT

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Variation in COVID-19 Characteristics, Treatment, and Outcomes in Michigan: An

Observational Study in 32 Hospitals

Vineet Chopra MD, MSc (a,b)

Scott A. Flanders MD (a,b)

Valerie M. Vaughn MD, MSc (a,b)

Lindsay A. Petty MD (c,b)

Tejal Gandhi, MD (c,b)

Jakob I. McSparron MD (b,d)

Anurag N. Malani MD (e,b)

Megan O'Malley, PhD (a,b)

Tae Kim, MHSA (f,g)

Elizabeth McLaughlin MS, RN (a,b)

Hallie C. Prescott MD, MSc (d,b)

From: (a) The Division of Hospital Medicine, Department of Medicine, University of Michigan Health System, Ann Arbor, MI, USA; (b) The Michigan Hospital Medicine Safety Collaborative, Ann Arbor, MI, USA; (c) Division of Infectious Diseases, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI, USA; (d) Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Michigan Health System, Ann Arbor, Michigan, USA; (e) e) Division of Infectious Diseases, Department of Internal Medicine, St. Joseph Mercy Health System,

Ann Arbor, MI, USA; (f) Michigan Arthroplasty Registry Collaborative Quality Initiative and (g) Department of Orthopaedic Surgery, University of Michigan Health System, Ann Arbor, MI, USA.

Abstract Word Count: 299

Word Count: 3109

Conflicts of Interest: No relevant conflicts disclosed by coauthors.

Primary Funding Source: Blue Cross Blue Shield of Michigan (BCBSM) and Blue Care Network as part of the BCBSM Value Partnerships program.

Address for Correspondence:

Vineet Chopra MD, MSc

W 2800 Plymouth Road, Building 16, #432 W

Ann Arbor, MI 48109

vineetc@umich.edu

Phone - (734) 615-8341

Fax - (734) 936-8944

Keywords:

Covid-19; Quality in Health care; Protocols and Guidelines

Additional Contributions & Acknowledgements:

The authors thank Qisu (Sue) Zhang, MPH, Tawny Czilok, RN, MHI, Liz Vasher, RN, Jessica Southwell, RN, MSN, Danny Nielsen, MS, and Jennifer Horowitz, MA for help with data analytics and project management.

We also thank all the BCBSM Collaborative Quality Initiatives (CQI's) that partnered together on data collection and offered project management/analytics support. Lastly, we are grateful to all of the hospitals who volunteered to be part of MiCOVID-19 including: Beaumont-Dearborn, Beaumont-Grosse Pointe, Beaumont- Farmington Hills, Beaumont- Royal Oak, Beaumont- Taylor, Beaumont- Trenton, Beaumont- Troy, Beaumont- Wayne, Bronson Battle Creek, Bronson Methodist, Detroit Medical Center-Detroit Receiving, Detroit Medical Center-Harper Hutzel, Detroit Medical Center-Detroit-Huron Valley Sinai, Henry Ford, Henry Ford Allegiance, Henry Ford Macomb, Henry Ford West Bloomfield, Henry Ford West Wyandotte, Holland Hospital, Hurley Medical Center, Lakeland Hospital, McLaren Flint, McLaren Greater Lansing, McLaren Port Huron, Mercy Health Muskegon, Mercy Health St. Mary's, Metro Health, Michigan Medicine, MidMichigan Alpena, MidMichigan Gratiot, MidMichigan Midland, Munson Medical Center, Oaklawn Hospital, Sinai Grace, Sparrow, St. Joseph Mercy Ann Arbor, St. Joseph Mercy Chelsea, St. Joseph Mercy Livingston, St. Joseph Mercy Oakland, St. Mary Mercy Livonia.

OBJECTIVES

To describe patient characteristics, symptoms, patterns of care and outcomes for patients hospitalized with COVID-19 in Michigan.

Design

Multi-center retrospective cohort study.

SETTING

32 acute care hospitals in the state of Michigan.

PARTICIPANTS

Patients discharged (March 16 to May 11, 2020) with suspected or confirmed COVID-19 were identified. Trained abstractors collected demographic information on all patients, and detailed clinical data on a subset of COVID-19 positive patients.

PRIMARY OUTCOME MEASUREMENTS

Patient characteristics, treatment, and outcomes including cardiopulmonary resuscitation, mortality, and venous thromboembolism within and across hospitals.

RESULTS

Demographic-only data from 1,593 COVID-19 positive and 1,259 persons under investigation discharges were collected. Among 1,024 cases with detailed data, the

median age was 63 years, median BMI was 30.6, and 51.4% were black. Cough, fever, and shortness of breath were the top symptoms. 37.2% reported a known COVID-19 contact, 7.0% were healthcare workers, and 16.1% presented from congregated living facilities.

During hospitalization, 232 (22.7%) patients were treated in an ICU, 558 (54.9%) in a "cohorted" unit, 161 (15.7%) received mechanical ventilation, and 90 (8.8%) received high-flow nasal cannula. ICU patients more often received hydroxychloroquine (66% vs. 46%), corticosteroids (34% vs 18%), and antibiotic therapy (92% vs 71%) than general ward patients (p<0.05 for all). Overall, 219 (21.4%) patients died, with in-hospital mortality ranging from 7.9% to 45.7% across hospitals. 73% received at least one COVID-19-specific treatment, ranging from 32% to 96% across sites. Across 14 hospitals, the proportion of patients admitted directly to an ICU ranged from 0% to 43.8%; mechanical ventilation on admission from 0% to 12.8%; mortality from 7.9% to 45.7%. Use of at least one COVID-19 specific therapy varied from 32% to 96.3% across sites.

CONCLUSIONS

During the early days of the Michigan outbreak of COVID-19, patient characteristics, treatment, and outcomes varied widely within and across hospitals.

Article Summary

Strengths and Limitations of this Study

- Using rigorous data collection including a well-defined sampling strategy and trained data abstractors, our paper is the largest multi-hospital study to examine clinical aspects related to COVID-19 in Michigan.
- This is the first study to examine variations in clinical care processes, treatment approaches and outcomes across hospitals.
- The high rate of use of non-evidence-based therapies for treating COVID-19 has significant safety, economic and policy implications for the most critically ill subsets in the hospital.
- Given the observational nature of the study and potential missing documentation on symptoms, comorbidities, or treatments in the medical record, rationales for treatment or management decisions cannot be determined.
- Our sampling frame may be biased as patients who remain hospitalized may not be included in our cohort.

INTRODUCTION

Since detection in Wuhan, China,^{1 2} over 4.5 million cases of COVID-19, caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) have been reported.³ The United States (US) leads the world in the total number of cases, with over 1.5 million cases and 92,000 deaths reported as of May 20, 2020.⁴ Within the US, Michigan remains one of the hardest hit states, with over 52,000 cases and 5,000 deaths as of May 20, 2020.⁵

In the early days of the pandemic, data regarding patient characteristics, symptoms and signs and presentation and care strategies including aspects such as oxygenation, laboratory testing, and therapeutics were unclear. As well, short and longterm outcomes of patients exposed to these varying approaches was unknown. Some studies reported substantial variation in patient characteristics and treatment modalities across hospitals. But the extent of such variation and impact on outcomes remained unknown.

Michigan has a long history of collaborative quality improvement work that spans several disciplines including cardiovascular medicine, emergency medicine and hospital medicine, among others.⁶ These consortia collect detailed clinical variables from hospitals to populate a central registry, allowing benchmarking and comparisons of care and outcomes. As the COVID-19 pandemic unfolded in Southeast Michigan, several consortia came together to focus data collection on patients hospitalized with COVID-19.

BMJ Open

Using a well-established data collection strategy, we examined variations in clinical care processes, treatment approaches, and clinical outcomes across Michigan hospitals.

METHODS

A retrospective cohort design was used. Data were collected from medical records of patients discharged between March 16, 2020 and May 11, 2020 from one of 32 Michigan hospitals who participate in collaborative guality initiatives sponsored by Blue Cross Blue Shield of Michigan and Blue Care Network. Trained abstractors at each hospital identified adult patients >18 years of age that underwent testing for COVID-19 via reverse-transcriptase polymerase chain reaction, including both positive cases and persons under investigation (PUI) who eventually had a negative test. Demographic data (age, gender, race, ethnicity, payor) and in-hospital mortality were collected for all confirmed and PUI cases. A sample of COVID-19 positive cases from each hospital was selected for detailed abstraction. Positive cases were sorted by day of admission (e.g., Mon-Sun) and, for each day, a pseudo-random number (minute of hospital discharge) was used to select patients for detailed abstraction. Patients who were pregnant, transitioned to hospice within 3 hours of hospital admission, or discharged against medical advice were excluded. All data were entered into a registry (Mi-COVID19) using a structured data collection template.

Patient characteristics including comorbidities, home medications, presenting symptoms and risk factors for COVID-19 (e.g., exposure to sick contacts, healthcare worker) were collected. Clinical data during hospitalization including location of care (ward vs. intensive care unit [ICU], a "cohorted" COVID-19 only unit), vital signs, body

BMJ Open

mass index (BMI), laboratory and radiology findings and therapeutics were abstracted. Organ supports such as mechanical ventilation and other respiratory support, vasopressor use, renal replacement therapy (continuous renal replacement therapy [CRRT] and intermittent hemodialysis [iHD]) were also collected.

The primary outcomes of interest included hospital mortality, receipt of cardiopulmonary resuscitation (CPR), and occurrence of deep vein thrombosis (DVT) or pulmonary embolism (PE) (based on positive imaging findings or initiation of empiric therapy for presumed thrombosis). In addition, we performed pre-specified exploratory analyses in hospitals with at least 25 detailed abstractions (n=14 hospitals) to examine variation in patient characteristics, management and outcomes. Specifically, we assessed variation in use of COVID-19 specific treatments (defined as hydroxychloroquine, combination hydroxychloroquine plus azithromycin, Vitamin C [oral or intravenous], IL-6 inhibitors or remdesivir), antibiotic therapy, use of organ support (e.g., use of vasopressors, mechanical ventilation and CPR), occurrence of venous thrombosis and in-hospital mortality.

Descriptive statistics (e.g., mean, median, proportion) with measures of dispersion (e.g., standard error, inter-quartile range [IQR]) were used to summarize data. Data that were not documented in medical records (e.g., values of certain laboratory tests) were reported as missing. Pairwise comparisons were made using ttests for continuous data and chi-square tests for categorical data, respectively. Differences across hospitals were tested using the Kruskal–Wallis test for continuous variables and Pearson chi-square test for categorical variables. All statistical tests were two-sided with p<0.05 considered statistically significant. The study was reviewed by the

BMJ Open

Institutional Review Board of the University of Michigan and deemed "not regulated". It was not appropriate or possible to involve patients or the public in the design, or conduct, or reporting, or dissemination plans of our research.

RESULTS

DEMOGRAPHIC DATA

Demographic-only data from 1,593 COVID-19 positive and 1,259 PUI discharges from 32 Michigan hospitals were collected. PUIs had a median age of 64.4 years, 52.6% were male and 32.0% Black. COVID-19 positive patients had similar age and gender as PUIs (63.9 years, and 52.1% male, respectively), but were more commonly Black (57.1% vs. 32.0%, p<0.01). In the demographic-only cohort, 398 (25.0%) COVID-19 positive patients died during hospitalization.

Detailed data were abstracted on 1,024 (64.3%) randomly-selected COVID-19 positive patients. The most prevalent comorbidities were hypertension (65.4%), diabetes (36.8%), cardiovascular disease (26.0%) and chronic kidney disease (23.3%); 14.9% of patients had no comorbidities. Though 12.8% of patients had a diagnosis of asthma and 11.2% had a diagnosis of chronic obstructive pulmonary disease, pre-hospital use of inhaled steroids, long-acting beta-agonists and long-acting antimuscarinic agents was low at 4.2%, 2.9%, and 0.5%, respectively. Current smoking or vaping was uncommon, but 27.3% were former smokers, and 35.8% reported former vaping. 115 (11.3%) patients were on immunosuppressive medications prior to hospitalization, including 62 (6.1%) who were on oral steroids. Essential workers comprised 12.8% of the cohort, including healthcare workers (7.0%) and service

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

workers (5.8%, e.g., postal, food service, transportation). Prior to admission, 16.1% of patients resided in congregated living facilities, including nursing homes and homeless shelters (Table 1).

CLINICAL PRESENTATION AND INITIAL EVALUATION

In the detailed abstraction cohort (n=1,024), median duration of symptoms prior to hospitalization was 6 days (IQR 3-9). The most common presenting symptoms were cough (73.3%), fever (71.8%), and shortness of breath (72.2%); only 8% of patients did not report one of these 3 complaints (**Table 1**). Gastrointestinal symptoms including nausea, vomiting and diarrhea occurred in 39.4% of patients. Over a third of patients (37.2%) reported sick contacts at the time of admission, and 23.8% reported contact with a patient known to have COVID-19. The location of diagnostic testing for COVID-19 varied: 67.5% of patients were tested in hospital laboratories, 23.2% in commercial laboratories, and 8.0% in the state laboratory. Patients were most commonly admitted to a general medical/surgical ward (59.5%), but 15.7% were admitted to intermediate care, 13.5% were admitted directly to ICU, and 11.3% were admitted to an observation unit (**Figure 1**). A total of 419 (40.9%) of patients were admitted to a "cohorted" (COVID-19 only) unit. At admission, 6.3% of patients had do not resuscitate/do not intubate orders, which increased to 13.8% by discharge.

Common laboratory testing on admission included white blood cell count (93.7%), absolute lymphocyte count (75.8%), troponin (57.4%), lactate (57.2%), CRP (44.9%) and procalcitonin (42.4%) (missingness by laboratory test are reported in the e-Appendix). Among those with available laboratory data, patients who received ICU

BMJ Open

treatment had higher levels of inflammatory markers at admission including d-dimer (2.88mg/L vs. 1.65mg/L), ferritin (872ng/mL vs. 559ng/mL), CRP (24.3mg/dL vs. 13.8mg/dL) and LDH (476U/L vs. 346U/L) **(Table 2)**. Chest imaging (X-ray or CT) was performed in 528 (51.6%) patients within 1 day of admission and was more common in ICU than general care patients (59.9% vs 49.1%, p=0.004). ICU patients were more likely to have radiographic abnormalities on presentation. Viral respiratory panels, blood cultures and sputum cultures were collected in 722 (51.0%) patients, but were positive in only 48 (4.7%) patients; 9.5% of ICU patients vs. 3.3% of general care patients had a viral or bacterial pathogen identified (p<0.001).

CRITICAL CARE TREATMENT

Overall, 232 patients (22.7%) were treated in an ICU, including 138 (13.5%) who were admitted directly to an ICU, and 94 (9.2%) who were transferred to ICU a median of 2 days following admission. Median length of ICU stay was 6 days (IQR 3-9), which was similar in survivors vs. non-survivors (5 vs 6 days, p=0.790). Among 1,024 patients with detailed abstraction, the maximum respiratory support received was invasive mechanical ventilation in 161 patients (15.7%), non-invasive positive pressure ventilation in 15 (1.5%), heated high-flow nasal cannula in 60 (5.9%), oxygen mask (>40% Fi02 or >6L/min) in 88 (8.6%), and nasal cannula oxygen (1-6L/min) in 441 (43.1%) (**Table 3**). 259 (25.3%) patients received no respiratory support or oxygen therapy during hospitalization. Among 78 patients initiated on HHFNC, 13 (16.7%) progressed to invasive mechanical ventilation. Among 25 patients initiated on NIPPV,

10 (40.0%) progressed to invasive mechanical ventilation. An additional 12 patients and 2 patients, respectively, used HHFNC and NIPPV after extubation.

Upon initiation of mechanical ventilation, patients were predominantly treated with a volume control mode (75%), with high FIO_2 ($\geq 80\%$ in 49.1% of ventilated patients), and modest tidal volumes (median tidal volume 7.0 ml/kg predicted body weight, [IQR 6.2-8.0]). The median duration of mechanical ventilation was 6 days (IQR 3-8 days). Prone positioning was documented in 18 patients, pulmonary vasodilators in 2 patients, and extra corporeal membrane oxygenation in 2 patients. CPR was administered to 41 patients (4.0%), with only one patient surviving to hospital discharge.

Vasopressors were used in 141 patients (13.8%), dialysis in 53 (5.2%), and corticosteroids in 222 (21.7%) patients. 771 (75.3%) patients received broad-spectrum antibiotics, with use being more common in the ICU than general wards (91.8% vs. ie. 70.5%, p<0.001).

COVID-19 SPECIFIC THERAPIES

A total of 747 (72.9%) patients were treated with therapies targeting COVID-19, or the body's response to COVID-19, most commonly hydroxychloroquine (51%), hydroxychloroguine plus azithromycin (36%), and Vitamin C (10%). Treatment with IL-6 inhibitors and remdesivir was infrequent (27 and 17 patients, respectively). Use of COVID-19 treatments was more common in ICU than general care patients (88% vs. 69%, p<0.001). No patients in our sample received convalescent plasma. The proportion of patients treated with COVID-19 specific therapies decreased over time from 78.1% of patients admitted during March 8 to March 31 to 65.0% of patients

BMJ Open

admitted during April 1 to May 11 (p<0.001). Only 21 (2.0%) patients were enrolled into a clinical trial **(Table 2)**.

CLINICAL OUTCOMES

The in-hospital mortality rate for the full cohort of COVID-19 positive patients (demographic plus detailed abstractions) was 25.0%. Mortality varied by decade of age, ranging from 4.5% among patients aged 30-39 to 37.5% in patients aged 70-79 years (Figure 2). Among 219 decedents with detailed abstraction, 134 (61.5%) died following ICU treatment and 114 (52.1%) died after receiving mechanical ventilation. 40 of 219 decedents (18.3%) received cardiopulmonary resuscitation, and 91 (41.6%) were transitioned to comfort care prior to death. The most common causes of death were refractory hypoxemia (29.4%), cardiac arrhythmia (15.9%) and refractory shock (10.7%). Venous thromboembolism occurred in 32 (3.1%) of patients, of which 9 experienced proximal lower-extremity DVT, 21 experienced PE, and 2 experienced both DVT and PE.

Among the 805 patients that survived to hospital discharge, 86% were discharged home and 8% were discharged to a skilled nursing facility or rehabilitation center. Only 1 patient (0.1%) was discharged to the Detroit field hospital **(Table 3)**.

VARIATION ACROSS HOSPITALS

Among 14 hospitals with at least 25 detailed abstractions, substantial variation in demographics, illness severity, care processes, treatments, and outcomes of COVID-19 positive patients were observed **(Table 4)**. The proportion of patients over 65 years of

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

age ranged from 30.2% to 65.5%, while the proportion of Black patients ranged from 0% to 94.6%. Similarly, the proportion of patients admitted directly to an ICU ranged from 0% to 43.8%, while the proportion of patients who were transferred to an ICU after admission ranged from 0% to 24.1%. Treatment in "cohorted" units ranged from 0% to 100%. Mechanical ventilation on admission ranged from 0% to 12.8% while use of vasopressors on admission ranged from 0% to 14.8% across hospitals. Critical illness on presentation (defined as admission to an ICU with receipt of vasopressors or mechanical ventilation on admission) varied from 0% to 7.7%.

72.9% of patients received at least one COVID-19 specific therapy (e.g., hydroxychloroquine, hydroxychloroquine plus azithromycin, interleukin-6 inhibitor, antiviral therapy), but use varied from 32% to 96.3% across sites. Similarly, 65% of patients received concurrent antibiotics and COVID-19 specific treatment during hospitalization, with frequency varying from 50% to 100% in ICU patients vs. 17% to 95% in general care patients.

Mortality across hospitals varied from 7.9% to 45.7% of patients, and rates of CPR before death ranged from 0% to 66.7%. Finally, rates of VTE also varied, occurring in 0 to 11% of patients across hospitals.

DISCUSSION

While reports of COVID-19 patients from New York, Washington, and California exist,⁷⁻⁹ this is the first multi-center study to examine epidemiology, treatment and outcomes of COVID-19 hospitalizations in Michigan. Also, in contrast to prior multi-

BMJ Open

hospital US cohorts, the Mi-COVID19 registry includes a large sample of patients treated at a diverse set of 32 academic and community hospitals.

The demographics of our cohort differ from other cohorts. First, patients with confirmed COVID-19 in Michigan are disproportionally Black (over half of our cohort). This is in contrast to 32% of PUIs—indicating that the predominance of black patients with COVID-19 is not a reflection of local demographics, but rather disproportionate impact of COVID-19 on black patients. Second, in contrast to prior studies,^{17 10} our cohort was nearly 50:50 male:female, rather than male dominant. The reasons for this difference are unclear.

Consistent with prior reports, the main presenting symptoms were cough, dyspnea and fever. Similar to other studies,¹¹ a substantial proportion of patients had multiple comorbidities; but notably, 15% of our cohort had no known medical problems.¹² We found that a substantial proportion of patients reported contact with a known COVID-19 positive patient prior to developing symptoms. These findings mirror those of a study from Shenzen, China, where contacts of those with disease experienced a significantly higher rate of infection than the general public.¹³ Additionally, patients underwent COVID-19 testing through a number of venues including hospital, commercial and state-run laboratories, illustrating the myriad ways in which diagnosis was obtained early in the outbreak when testing was limited.¹⁴ Although only 14% of the sample was admitted directly to an ICU, an additional 9% were transferred to an ICU later in hospitalization. Hospital mortality in cases with detailed abstractions was 21%, but increased with age, consistent with prior studies.¹⁵

BMJ Open

Page 18 of 38

A key finding of our study is that a majority of patients hospitalized for COVID-19 were treated with therapies intended to mitigate SARS-CoV-2 viral replication or the body's immune response. More than half of patients were treated with hydroxychloroquine, and an additional 6% were treated with antivirals or immune modulating agents. Experts have increasingly guestioned the use of unproven COVID-19 therapies outside of a clinical trial,¹⁶ and have argued that supportive care and trial enrollment are the best options until data regarding efficacy of therapies acrrues.^{17 18} Accumulating observational and trial data now suggest no benefit from hydroxychloroguine,¹⁹⁻²¹ and concerns regarding harm from empiric use remain.²² Unfortunately, only 2% of our sample was enrolled in clinical trials. The high rate of experimental COVID-19 therapies outside empiric studies represents a lost opportunity for learning. It is also emblematic of the strong desire—particularly early in the pandemic—to use therapies with a theoretical potential to target the virus even though improved survival from critical illness is largely attributed to improvements in supportive care.²³ Notably, we still do not have targeted therapies for sepsis or acute respiratory distress syndrome, which are the major mechanisms by which patients die from COVID-19 infection.

Another strength of our study is the variation in clinical presentation and outcomes we observed across a heterogeneous sample of hospitals. Use of COVID-19 specific treatments, corticosteroids, and antibiotics varied markedly across hospitals. While we are unable to ascertain reasons for such variation, we anecdotally observed that practice evolved across hospitals over time. For example, at some Michigan hospitals, routine use of hydroxychloroquine was common in the first few weeks of the

BMJ Open

2
3
4
5
6
7
8
9
10
11
13
14
15
16
17
18
19
20
21
22
22
23
24
25
26
27
28
29
30
31
32
5Z
33
34
35
36
37
38
39
40
41
42
42 43
44
45
46
47
48
49
50
51
52
52 53
54
55
56
57
58
59
60

pandemic but curbed as trial data became available. In contrast, use of hydroxychloroquine continues to be encouraged at other hospitals even today.²⁴ While it is unclear if these practice changes influenced outcomes, future studies exploring the rationale and impact of these changes on patients will be valuable.

Our study has limitations. First, given the observational nature of the study, rationales for treatment or management decisions cannot be determined. Second, because our sampling frame included patients that were discharged or deceased, our findings may be biased as patients who remain hospitalized may not be included in our cohort (potentially explaining lower duration of mechanical ventilation and hospital stay). However, COVID-19 hospitalizations in Southeastern Michigan have been declining since mid-April—limiting the degree of bias from exclusion of patients still in the hospital. Third, while variation in care was observed, the implications of such variability on clinical outcomes is unknown. Nevertheless, given that therapeutic modalities are scarce and not without risks, reducing variation may improve patient safety and resource use. Fourth, our study depends on available documentation, so symptoms, comorbidities, or treatments not documented in the medical record may be omitted. For example, it is possible that the low use of prone positioning observed in our cohort may be due to incomplete documentation of this practice. Finally, we did not collect patient identifiers, so inter-hospital transfers could be reported as two separate hospitalizations. However, we did collect admission and discharge locations, and only 6% of the cohort was transferred from another hospital.

Our study also has strengths. Ours is the first multi-hospital study to examine clinical aspects related to COVID-19 in Michigan. Through a rigorous data collection

BMJ Open

structure including a well-defined sampling strategy and trained data abstractors, we provide novel and detailed insights into clinical care during the pandemic. Second, we were able to examine variation across sites finding substantial differences in clinical care and outcomes across hospitals. To our knowledge, this is the first study to examine differences in these important care processes, treatment approaches and outcomes across sites. Third, we report a high rate of use of non-evidence-based therapies for treating COVID-19. This finding has significant safety, economic and policy implications for the most critically ill subsets in the hospital. Finally, data collection for this effort remains ongoing, including longitudinal monitoring of patients after discharge. These data will help shed new light on the post hospital sequelae of COVID-19.

Michigan remains one of the regions most affected by COVID-19. This multicenter study provides granular clinical data regarding patients, care practices and clinical outcomes in the state. The wide variation in observed practices and outcomes suggests caution when interpreting findings from single center studies. Our study also demonstrates the value of hospital collaboratives to help inform best practices.

BIBL	LIOGRAPHY
1. Gi	uan WJ, Ni ZY, Hu Y, et al. Clinical Characteristics of Coronavirus Disease 2019 i
	China. N Engl J Med 2020 doi: 10.1056/NEJMoa2002032 [published Online Fire
	2020/02/29]
2. Zł	nu N, Zhang D, Wang W, et al. A Novel Coronavirus from Patients with Pneumonia
	in China, 2019. <i>N Engl J Med</i> 2020;382(8):727-33. doi:
	10.1056/NEJMoa2001017 [published Online First: 2020/01/25]
3 0	OVID-19 Dashboard by the Center for Systems Science and Engineering (CSSE)
0.00	Johns Hopkins University. Available online at: https://coronavirusjhuedu/maphtr
	Accessed April 20, 2020
4. Ce	enters for Disease Control Cases of Coronavirus Disease (COVID-19) in the US.
	Available online at: <u>https://www.cdc.gov/coronavirus/2019-ncov/cases-</u>
	updates/cases-in-us.html. Accessed April 20, 2020.
5. Mi	ichigan.gov. Coronavirus Resources - Confirmed cases by Jurisdiction. Available
	online at: https://www.michigan.gov/coronavirus/0,9753,7-406-98163-520743
	<u>,00.html</u> . Accessed April 20, 2020.
6. Bl	ue Cross Blue Shield Collaborative Quality Initiatives. Available online at:
	https://www.bcbsm.com/providers/value-partnerships/collaborative-quality-
	initiatives.html. Accessed April 20, 2020.
	···

7. Goyal P, Choi JJ, Pinheiro LC, et al. Clinical Characteristics of Covid-19 in New York
City. N Engl J Med 2020 doi: 10.1056/NEJMc2010419 [published Online First:
2020/04/18]
8. Bhatraju PK, Ghassemieh BJ, Nichols M, et al. Covid-19 in Critically III Patients in the
Seattle Region - Case Series. N Engl J Med 2020 doi: 10.1056/NEJMoa2004500
[published Online First: 2020/04/01]
9. Myers LC, Parodi SM, Escobar GJ, et al. Characteristics of Hospitalized Adults With
COVID-19 in an Integrated Health Care System in California. JAMA 2020 doi:
10.1001/jama.2020.7202 [published Online First: 2020/04/25]
10. Grasselli G, Zangrillo A, Zanella A, et al. Baseline Characteristics and Outcomes of
1591 Patients Infected With SARS-CoV-2 Admitted to ICUs of the Lombardy
Region, Italy. JAMA 2020 doi: 10.1001/jama.2020.5394 [published Online First:
2020/04/07]
11. Xie J, Tong Z, Guan X, et al. Clinical Characteristics of Patients Who Died of
Coronavirus Disease 2019 in China. JAMA Netw Open 2020;3(4):e205619. doi:
10.1001/jamanetworkopen.2020.5619 [published Online First: 2020/04/11]
12. Gold JAW, Wong KK, Szablewski CM, et al. Characteristics and Clinical Outcomes
of Adult Patients Hospitalized with COVID-19 - Georgia, March 2020. MMWR
<i>Morb Mortal Wkly Rep</i> 2020;69(18):545-50. doi: 10.15585/mmwr.mm6918e1
[published Online First: 2020/05/08]
13. Bi Q, Wu Y, Mei S, et al. Epidemiology and transmission of COVID-19 in 391 cases
and 1286 of their close contacts in Shenzhen, China: a retrospective cohort

BMJ Open

2	
3	study. <i>Lancet Infect Dis</i> 2020 doi: 10.1016/S1473-3099(20)30287-5 [published
4	
5 6	Online First: 2020/05/01]
7	·
8	14. Sharfstein JM, Becker SJ, Mello MM. Diagnostic Testing for the Novel Coronavirus.
9	
10	JAMA 2020 doi: 10.1001/jama.2020.3864 [published Online First: 2020/03/10]
11 12	
13	15. Richardson S, Hirsch JS, Narasimhan M, et al. Presenting Characteristics,
14	Comercidities, and Outcomes Among 5700 Detients Lloopitalized With COV/ID 10
15	Comorbidities, and Outcomes Among 5700 Patients Hospitalized With COVID-19
16 17	in the New York City Area. JAMA 2020 doi: 10.1001/jama.2020.6775 [published
18	
19	Online First: 2020/04/23]
20	
21 22	16. Bhimraj A, Morgan RL, Shumaker AH, et al. Infectious Diseases Society of America
23	
24	Guidelines on the Treatment and Management of Patients with COVID-19. Clin
25 26	
20	Infect Dis 2020 doi: 10.1093/cid/ciaa478 [published Online First: 2020/04/28]
28	17 Disc TW/ Janz DD In Defense of Evidence Deced Medicine for the Treatment of
29	17. Rice TW, Janz DR. In Defense of Evidence-Based Medicine for the Treatment of
30 31	COVID-19 ARDS. Ann Am Thorac Soc 2020 doi: 10.1513/AnnalsATS.202004-
32	
33	325IP [published Online First: 2020/04/23]
34	
35 36	18. Waterer GW, Rello J, Wunderink RG. SARS-CoV-2: First Do No Harm. Am J Respir
37	
38	Crit Care Med 2020 doi: 10.1164/rccm.202004-1153ED [published Online First:
39 40	2020/04/241
40	2020/04/21]
42	19. Tang W, Cao Z, Han M, et al. Hydroxychloroquine in patients with mainly mild to
43	
44 45	moderate coronavirus disease 2019: open label, randomised controlled trial. BMJ
46	
47	2020;369:m1849. doi: 10.1136/bmj.m1849 [published Online First: 2020/05/16]
48	
49 50	20. Mahevas M, Tran VT, Roumier M, et al. Clinical efficacy of hydroxychloroquine in
51	notionto with povid 10 province who require every charge charge
52	patients with covid-19 pneumonia who require oxygen: observational
53 54	
54 55	
56	
57	

comparative study using routine care data. BMJ 2020;369:m1844. doi:

10.1136/bmj.m1844 [published Online First: 2020/05/16]

- 21. Rosenberg ES, Dufort EM, Udo T, et al. Association of Treatment With Hydroxychloroquine or Azithromycin With In-Hospital Mortality in Patients With COVID-19 in New York State. JAMA 2020 doi: 10.1001/jama.2020.8630 [published Online First: 2020/05/12]
- 22. Bessiere F, Roccia H, Deliniere A, et al. Assessment of QT Intervals in a Case Series of Patients With Coronavirus Disease 2019 (COVID-19) Infection Treated With Hydroxychloroquine Alone or in Combination With Azithromycin in an Intensive Care Unit. JAMA Cardiol 2020 doi: 10.1001/jamacardio.2020.1787 [published Online First: 2020/05/02]
- 23. Angus DC. Optimizing the Trade-off Between Learning and Doing in a Pandemic. *JAMA* 2020 doi: 10.1001/jama.2020.4984 [published Online First: 2020/04/01]
- 24. Wells K. Hospitals Vary Treatment for Coronavirus Patients. *National Public Radio* 2020;Available online at: <u>https://www.npr.org/2020/05/18/857727140/hospitals-</u> vary-treatment-for-coronavirus-patients. Accessed May 19, 2020.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Table 1. Demographic and Clinical Characteristics of COVID-19 Positive Patients
(n=1,024)

Residence prior to hospitalization - no. (%)	
Home	824 (80.5%)
Congregated living facility ¹	165 (16.1%)
Sub-acute rehabilitation facility	9 (0.9%)
Unknown	18 (1.8%)
Admission location - no. (%)	
Emergency department	951 (92.9%)
Transfer from Another Hospital	60 (5.9%)
Direct admission	7 (0.7%)
Median age (IQR) - yr 🔜	63.3 (50.9-74.4)
Male Sex - no. (%)	533 (52.1%)
Race - no. (%)	
Black	526 (51.4%)
White	390 (38.1%)
Unknown	45 (4.4%)
Asian	30 (2.9%)
Other	26 (2.5%)
Native	4 (0.4%)
Islander	3 (0.3%)
Ethnicity - no. (%)	
Non-Hispanic	873 (85.3%)
Hispanic	30 (2.9%)
Unknown	117 (11.4%)
Insurance – no. (%)	
Medicare	497 (48.5%)
Commercial	251 (24.5%)
Medicaid	128 (12.5%)
Self-pay	29 (2.8%)
Other ²	117 (11.4%)
BMI - median (IQR)	30.6 (25.9-37.1)
Smoking history - no. (%)	
Never	615 (60.2%)
Former	279 (27.3%)
Current	61 (6.0%)
Unknown	65 (6.4%)
Vaping history - no. (%)	
Never	645 (63.2%)
Former	366 (35.8%)
Current	6 (0.6%)
Unknown	3 (0.3%)
Coexisting disorder - no. (%)	
Hypertension	670 (65.4%)
Diabetes	377 (36.8%)
Cardiovascular Disease	266 (26.0%)
Moderate/ Severe Kidney Disease	239 (23.3%)
Asthma	132 (12.9%)
CHF/Cardiomyopathy	131 (12.8%)
Dementia	123 (12.0%)
Chronic Obstructive Pulmonary Disease	115 (11.2%)
Cerebrovascular disease/ paraplegia	97 (9.5%)

1
2
3
4 5
6
7
8
9 10
11
12
13 14
15
16
17 18
19
20
21 22
22
24
25 26
20 27
28
29
30 31
32
33
34 35
36
37
38 39
40
41
42 43
44
45
46 47
47
49
50 51
51 52
53
54 55
55 56
57
58
59

Cancer ³	77 (7.5%)
Peripheral Vascular Disorders	41 (4.0%)
Chronic Pulmonary Disease (non-asthma/COPD)	35 (3.4%)
Rheumatoid Arthritis	29 (2.8%)
Peptic Ulcer Disease	10 (1.0%)
HIV/AIDS	7 (0.7%)
Organ transplant	8 (0.8%)
Inflammatory Bowel Disease	8 (0.8%)
No reported comorbidities	152 (14.9%)
Home Medications	
ACE Inhibitors	180 (17.6%)
Steroids/immunosuppressive therapy	115 (11.3%)
ARBs	136 (13.3%)
NSAIDs	182 (17.8%)
Statins	378 (37.0%)
Beta Blockers	298 (29.2%)
Anticoagulants	149 (14.6%)
Oral Steroids ⁴	62 (6.1%)
Inhaled steroids	43 (4.2%)
Inhaled long-acting beta-agonist	30 (2.9%)
Inhaled long-acting anti-cholinergic	5 (0.5%)
Home oxygen therapy	36 (3.5%)
Duration of symptoms before admission, days - median (IQR)	6 (3-9)
Respiratory symptoms - no. (%)	0 (3-3)
Cough (New or Worsening)	751 (73.3%)
Fever - no. (%)	735 (71.8%)
Fever (99.0 - 100.4 [F])	151 (14.7%)
Fever (>100.4 [F])	390 (38.1%)
Subjective fever	194 (18.9%)
Dyspnea / shortness of breath	739 (72.2%)
Nausea/vomiting or diarrhea	403 (39.4%)
Fatigue	361 (35.3%)
Myalgias	264 (25.8%)
Weakness	253 (24.7%)
Sputum production	146 (14.3%)
Altered Mental Status	144 (14.1%)
Non-pleuritic chest pain	100 (9.8%)
Generalized malaise	91 (8.9%)
Rhinorrhea	75 (7.3%)
Pleuritic chest pain	75 (7.3%)
No reported symptoms	14 (1.4%)
Sick contacts - no. (%)	381 (37.2%)
Known COVID-19 positive	244 (23.8%)
Unknown COVID-19 status	· · · · · · · · · · · · · · · · · · ·
Healthcare worker - no. (%)	236 (23.0%)
	72 (7.0%)
Service worker - no. (%) ⁵	59 (5.8%)
Initial location of admission - no. (%)	
General Medical/Surgical ward	608 (59.5%)
ICU Step down with	138 (13.5%)
Step-down unit	160 (15.7%)
Observation unit	115 (11.3%)
Missing/Unknown	3 (0.3%)
Admitted to COVID-19 specific (i.e., cohorted) unit	419 (40.9%)

Advanced Directives on admission	
DNR/DNI	64 (6.3%)
No CPR (intubation OK)	19 (1.9%)
No intubation (CPR OK)	3 (0.3%)
Abbreviations: COVID-19, coronavirus disease 2019; SE=s range	standard error; IQR, inter-quartile
¹ Includes assisted living, group home, skilled nursing facili correctional facilities, community living and inpatient psych	iatric facilities.
² Includes other payers, Michigan, out-of-state and governr	
³ Includes leukemia, lymphoma, hematologic cancer and a	
⁴ Includes oral prednisone, prednisolone, hydrocortisone ar	nd dexamethasone.

⁵ Service workers include food service, transportation, postal/delivery and other related fields.

for open terms only

General Ward

р

	Ever ICU (n = 232)
Vital signs on day of hospital admission	,
no. (%)	
Fever (>100.4 [F])	95 (40.9%)
Hypoxia / new or escalated O2 requirement	142 (61.2%)
Supplemental oxygen use	96 (41.4%)
Respiratory rate > 20	139 (59.9%)
Heart rate > 100 per minute	99 (42.7%)
Systolic blood pressure < 100 mmHg	27 (11.6%)
Day 1 laboratory measures, median (IQR)	
Hemoglobin	13.2 (11.4-14.7
White blood cell count, K/uL	7.3 (5.5-9.7)
Absolute lymphocyte count, K/uL	0.80 (0.60-1.20
Platelet count, K/uL	197 (149-256)
ALT, IU/L	32.0 (20.0-60.0
Lactate, mmol/L	1.6 (1.2-2.5)
Troponin pg/mL	9 (0-38)
Brain Natriuretic Peptide (BNP), pg/mL	79 (34-236)

atients by ICU-status

	(n = 232)	(n = 792)	ρ
ital signs on day of hospital admission,			
o. (%)			0.0070
Fever (>100.4 [F])	95 (40.9%)	295 (37.2%)	0.3073
Hypoxia / new or escalated O2 requirement	142 (61.2%)	257 (32.4%)	<.0001
Supplemental oxygen use	96 (41.4%)	145 (18.3%)	<.0001
Respiratory rate > 20	139 (59.9%)	306 (38.6%)	<.0001
Heart rate > 100 per minute	99 (42.7%)	321 (40.5%)	0.5596
Systolic blood pressure < 100 mmHg	27 (11.6%)	45 (5.7%)	0.0018
ay 1 laboratory measures, median QR)			
Hemoglobin	13.2 (11.4-14.7)	13.2 (12.0-14.6)	0.4573
White blood cell count, K/uL	7.3 (5.5-9.7)	6.5 (4.8-8.4)	<.0001
Absolute lymphocyte count, K/uL	0.80 (0.60-1.20)	1.00 (0.70-1.30)	0.3440
Platelet count, K/uL	197 (149-256)	204 (159-268)	0.4875
ALT, IU/L	32.0 (20.0-60.0)	27.0 (18.0-41.0)	0.2228
Lactate, mmol/L	1.6 (1.2-2.5)	1.4 (1.0-1.8)	0.0010
Troponin pg/mL	9 (0-38)	0 (0-12)	0.5872
Brain Natriuretic Peptide (BNP), pg/mL	79 (34-236)	49 (18-157)	0.0088
Procalcitonin, ng/mL	0.30 (0.17-0.94)	0.12 (0.06-0.29)	0.5054
D-dimer, mg/L	2.88 (1.19-35.00)	1.65 (0.59-368.00)	0.8240
Ferritin, ng/mL	872 (379-1531)	559 (237-1019)	0.1074
CRP, mg/dL	24.3 (12.0-107.1)	13.8 (5.8-66.2)	0.0031
LDH, IU/L	476 (337-668)	346 (254-455)	<.0001
Creatinine, mg/dL	1.3 (1.0-2.0)	1.1 (0.8-1.5)	0.5736
Total Bilirubin, mg/dL	0.6 (0.4-0.9)	0.5 (0.4-0.8)	0.7147
Respiratory viral panel positive for non- COVID-19 respiratory virus	2 (0.9%)	7 (0.9%)	0.9443
Positive blood culture within 1 day of admission	7 (3.0%)	9 (1.1%)	0.0422
Positive respiratory culture within 1 day of admission	4 (1.7%)	4 (0.5%)	0.0636
Any Chest imaging ¹	139 (59.9%)	389 (49.1%)	0.0038
Chest X-ray	118 (50.9%)	322 (40.7%)	0.0058
Chest Computed Tomography	34 (14.7%)	106 (13.4%)	0.6201
Imaging findings - no. (%)			
Pneumonia	61 (26.3%)	100 (12.6%)	<.0001
Non-specified opacities/air-space disease	84 (36.2%)	161 (20.3%)	<.0001
Pleural effusion	32 (13.8%)	37 (4.7%)	<.0001
Normal/no abnormalities	5 (2.2%)	30 (3.8%)	0.2287
Pulmonary Edema	25 (10.8%)	29 (3.7%)	<.0001
CT with Ground Glass Infiltrates	14 (6.0%)	58 (7.3%)	0.4995

1 2	
3 4	
5 6 7	
7 8 9	
10 11	
12 13	
14 15 16	
16 17 18	
19 20	
21 22	
23 24 25	
25 26 27	
28 29	
30 31	
32 33 34	
35	
37 38	
39 40 41	
42 43	
44 45	
46 47 48	
49 50	
51 52	
53 54	
55 56 57	
57	

60

Respiratory support on day of admission - no. (%)			
Invasive mechanical ventilation	46 (19.8%)	2 (0.3%)	<.0001
Non-invasive positive pressure	5 (2.2%)	2 (0.3%)	0.0020
HHFNC	5 (2.2%)	5 (2.2%)	0.1905
Oxygen mask (>40%fio2)	17 (7.3%)	20 (2.6%)	0.0006
Nasal cannula oxygen, 1-6L	76 (32.8%)	261 (33.0%)	0.9555
No supplemental oxygen	83 (8.1%)	502 (49.0%)	<.0001
Treatments during hospitalization - no (%)	•		
Covid-19 Specific treatment(s)			
Hydroxychloroquine	154 (66.4%)	364 (46.0%)	<.0001
Hydroxychloroquine + Azithromycin	112 (48.3%)	260 (32.8%)	<.0001
Vitamin C (PO or IV)	35 (15.1%)	68 (8.6%)	0.0038
Remdesivir	7 (3.0%)	10 (1.3%)	0.0658
IL-6 receptor inhibitor	27 (11.6%)	. (.%)	<.0001
Corticosteroids ²	79 (34.1%)	143 (18.1%)	<.0001
Antibiotics	213 (91.8%)	558 (70.5%)	<.0001
Azithromycin	149 (64.2%)	415 (52.4%)	0.0014
Ceftriaxone	124 (53.4%)	345 (43.6%)	0.0079
Cefepime	90 (38.8%)	79 (10.0%)	<.0001
Doxycycline	37 (15.9%)	111 (14.0%)	0.4615
Vancomycin	115 (49.6%)	106 (13.4%)	<.0001
Linezolid	12 (5.2%)	8 (1.0%)	<.0001
Anti-pseudomonals ³	123 (53.0%)	115 (14.5%)	<.0001
Antivirals ^₄	1 (0.4%)	13 (1.6%)	0.1626
Enrolled in clinical trial	10 (4.3%)	12 (1.5%)	0.0098

error.

¹ Includes chest imaging results 7 days before hospital encounter ² Hydrocortisone, Methylprednisolone, prednisolone or prednisone

³ Cefepime, gentamicin, imipenem, meropenem, piperacillin-tazobactam, ceftazadime, aztreonam or tobramycin

⁴ Non-remdesivir antivirals including Oseltamivir, Lopinavir/Ritonavir, Ribavirin, others

	All patients (n =1,024)	Discharged Alive n = 805	Died in Hospital n = 219
Treated in an ICU	232 (22.7%)	101 (12.5%)	131 (59.8%
Respiratory support ever received, no.(%)*			•
Invasive mechanical ventilation	161 (15.7%)	47 (5.8%)	114 (52.1%
Non-invasive positive pressure ventilation	27 (2.6%)	10 (1.2%)	17 (7.8%)
HHFNC	90 (8.8%)	57 (7.1%)	33 (15.1%)
Oxygen mask (>40%FIO ₂)	159 (15.5%)	76 (9.4%)	83 (37.9%)
Maximum respiratory support received, no. (%)**			
Invasive mechanical ventilation	161 (15.7%)	47 (5.8%)	114 (52.1%
Non-invasive positive pressure	15 (1.5%)	6 (0.7%)	9 (4.1%)
HHFNC	60 (5.9%)	40 (5.0%)	20 (9.1%)
Oxygen mask (>40%FIO ₂)	88 (8.6%)	48 (6.0%)	40 (18.3%)
Nasal canula oxygen, 1-6L/min	441 (43.1%)	415 (51.6%)	26 (11.9%)
No respiratory support	259 (25.3%)	249 (30.9%)	10 (4.6%)
Max FIO ₂ received, no.(%)		• •	
91-100%	126 (12.3%)	34 (4.2%)	92 (42%)
81-90%	30 (2.9%)	13 (1.6%)	17 (7.8%)
71-80%	86 (8.4%)	42 (5.2%)	44 (20.1%)
61-70%	16 (1.6%)	9 (1.1%)	7 (3.2%)
51-60%	26 (2.5%)	14 (1.7%)	12 (5.5%)
41-50%	24 (2.3%)	20 (2.5%)	4 (1.8%)
31-40%	170 (16.6%)	144 (17.9%)	26 (11.9%)
21-30%	287 (28%)	280 (34.8%)	7 (3.2%)
Non-respiratory organ support received, no. (%)		• •	
Vasopressor	141 (13.8%)	35 (4.3%)	106 (48.4%
Any dialysis***	53 (5.2%)	17 (2.1%)	36 (16.4%)
CRRT only	17 (1.7%)	1 (0.1%)	16 (7.3%)
iHD only	28 (2.7%)	15 (1.9%)	13 (5.9%)
CPR	41 (4.0%)	1 (0.1%)	40 (18.3%)

Table 3. Organ support for COVID-19 Positive Patients by Discharge Status (n=1,024)

Abbreviations: SE=standard error; ECMO=extra-corporeal membrane oxygenation; HHFNC=heated high flow nasal cannula; Fi02=fraction of inspired oxygen; L= liters/min; ICU=intensive care unit; PE=pulmonary embolism; DVT=deep vein thrombosis; CPR=cardiopulmonary resuscitation; CRRT=continuous renal replacement therapy; iHD=intermittent hemodialysis;

* Represents any use of respiratory support. Numbers are greater than 100% as one patient may have received multiple treatments.

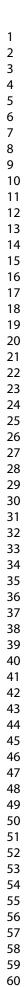
** Represents the highest level of respiratory support a patient received during hospitalization.

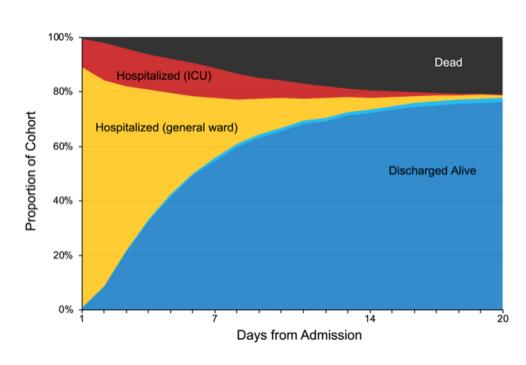
*** Includes Intermittent Hemodialysis (iHD), dialysis and ultrafiltration

Table 4. Variation in Clinical Care and Outcomes in COVID-19 Positive Patients Across Hospitals

			Range	across Ho	spitals			
	Min	10 th Pctl	25th Pctl	Median	75th Pctl	90th Pctl	Max	p ¹
Patient characteristics								
Age >65, %	30.2	35.3	39.6	51.3	56.8	64.4	65.5	<.000
Black, %	0.0	17.7	29.7	46.2	76.4	93.7	94.6	<.000
Male, %	39.2	45.6	47.1	53.0	56.8	72.4	73.8	0.07
Charlson comorbidity index, median	0.0	1.0	1.0	1.0	1.0	2.0	2.0	0.01
BMI, median	24.3	28.4	29.5	31.1	33.3	36.5	36.9	0.09
Age, median in years	39.0	46.5	60.8	62.4	66.4	73.5	76.0	<.000
Admission information, %								
Hospital-to-hospital transfer	0.0	0.0	0.0	0.00	2.8	10.7	20.9	<.000
Admitted directly to ICU	0.0	0.0	2.9	6.15	14.8	20.5	43.8	<.000
Transferred from floor to ICU	0.0	0.0	0.0	8.4	17.6	18.8	24.1	0.09
Admitted to a Cohorted unit	0.0	2.1	18.6	67.9	85.71	96.3	97.1	<.000
Severe illness on presentation ²	0.0	0.00	0.00	0.0	3.7	7.1	7.7	0.09
Vasopressor use on day 1	0.0	0.00	0.00	2.1	6.4	10.3	14.8	0.04
Mechanical ventilation on day 1	0.0	0.00	0.00	2.51	8.6	11.1	12.8	0.03
Treatment, %					0.0			
Treated in a Cohorted Unit	0.0	0.00	6.3	57.1	90.9	100.0	100.0	<.000
Treated in an ICU	4.2	5.4	14.0	19.1	31.0	38.5	62.5	<.000
COVID-19 Specific treatment	32.4	57.1	69.2	76.4	81.4	90.2	96.3	<.000
Concurrent antibiotic and COVID-19 specific treatment(s)	24.3	42.9	59.4	69.8	76.7	84.3	96.3	<.000
Hydroxychloroquine	13.5	31.4	42.3	59.7	65.5	81.5	82.4	<.000
Mechanical ventilation	2.1	2.7	6.4	10.9	31.0	38.5	40.6	<.000
Vasopressors	2.2	2.9	7.0	12.1	25.0	32.1	32.5	<.000
CPR before death	0.0	0.0	8.3	14.3	33.3	40.0	66.7	0.010
Outcomes, %								
Days of mechanical ventilation, median ³	1.0	1.0	1.0	5.0	8.0	8.0	9.0	0.01
Length of stay, median	2.0	3.0	3.0	4.5	6.0	8.0	8.5	<.000
ICU length of stay, median ⁴	1.0	2.0	3.5	5.0	6.5	7.5	9.5	0.01
DVT	0.0	0.0	0.0	0.0	2.1	3.5	7.1	0.05
VTE	0.0	0.0	0.0	2.9	5.2	6.3	10.7	0.20
PE	0.0	0.0	0.0	1.8	3.9	6.3	7.1	0.72
Discharge status, %								
Death	7.9	8.3	14.6	21.3	31.0	41.4	45.7	<.000
Transferred to another hospital	0.0	0.0	0.0	0.0	1.6	2.7	5.1	0.07

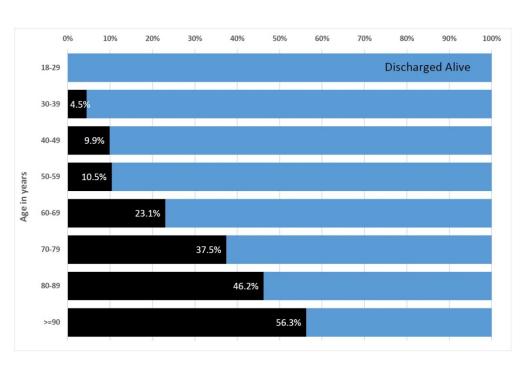
For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml


Differences across hospitals were tested using the Kruskal–Wallis test for continuous variables and Pearson equare test for categorical variables. Defined as admission to ICU on day 1 of hospitalization and treatment with both mechanical ventilation and	Discharged home	42.3	49.2	62.1	67.5	72.0	80.0	82.5	
iguare lest for categorical variables. Befined as admission to ICU on day 16 hospitalization and treatment with both mechanical ventilation and asopressors. For patients ever on mechanical ventilation Watables marked with asterisk represent variation from the demographic cohort breviations: BMI=body mass index; ICU=intensive care unit; CPR=cardiopulmonary resuscitation; DVT=dee hombosis; VTE=venous thromboembolism; PE=pulmonary embolism	¹ Differences across hospitals	42.3 were tested using th	48.2 he Kruskal	62.1 –Wallis te	67.5 est for cont	72.9 inuous va	80.0 riables an	82.5 d Pearso	< n c
inspressors. For patients ever on mechanical ventilation. To rapients ever on mechanical ventilation. Makeen water were in terms to epresent vention from the demographic cohort. Aberviations: BMI=body mass index; ICU=intensive care unit, CPR=cardiopulmonary resuscitation; DVT=dee hombosis; VTE=venous thromboenbolism; PE=pulmonary embolism.	square test for categorical varia	ables.							
<text></text>	vasopressors.					mechai			
<text></text>		cal ventilation							
		k represent variatio	on from the	e demogra	aphic coho	rt			
	Abbreviations: BMI=body mass	s index; ICU=intens	ive care ur	nit; CPR=	cardiopulm		suscitation	; DVT=de	e
1			p annoniai y	5					
1									
1									
1									
1									
1									
1									
1									
1									
1									
1									
1									
1									
1									
1									
1									
1									
1									
31									
51									
51									
501 San									
51									
51									
51 For peer review only - http://bmiopen.bmi.com/site/about/quidelines.xhtml									
51 For peer review only - http://bmiopen.bmi.com/site/about/quidelines.xhtml									
31 For peer review only - http://bmiopen.bmi.com/site/about/guidelines.xhtml									
51 For peer review only - http://bmiopen.bmi.com/site/about/quidelines.xhtml									
81 For peer review only - http://bmiopen.bmi.com/site/about/quidelines.xhtml									
81 For peer review only - http://bmiopen.bmi.com/site/about/quidelines.xhtml									
For peer review only - http://bmiopen.bmi.com/site/about/quidelines.xhtml									


Figure Legend 1

Legend. Figure depicts the proportion of the N=1024 patient cohort who are hospitalized on general care/ward (yellow), hospitalized in ICU (red), discharged alive (blue), transferred to a new hospital (light blue) and deceased over time to day 20 of hospital admission.

Figure Legend 2


Legend. Graph depicts the proportion of the demographic cohort (n-1593) who died in hospital by decade of age. Black shading indicates death whereas blue shading indicates discharge alive. to beet terien only

Caption : Caption : Figure 1. Proportion of COVID-19 Positive Patients in hospital, ICU, dead, and discharged over time (n=1,024)Legend. Figure depicts the proportion of the N=1024 patient cohort who are hospitalized on general care/ward (yellow), hospitalized in ICU (red), discharged alive (blue), transferred to a new hospital (light blue) and deceased over time to day 20 of hospital admission.

27x17mm (600 x 600 DPI)

Caption : Caption : Figure 2. Mortality rate for COVID-19 positive patients by decade of age (demographic data cohort, n=1,593) Legend. Graph depicts the proportion of the demographic cohort (n-1593) who died in hospital by decade of age. Black shading indicates death whereas blue shading indicates discharge alive.

116x75mm (300 x 300 DPI)

1	
2	
3 ⊿	
4 5	
3 4 5 6 7	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37	
27	
28	
29	
30	
27	
22	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51 52	
52	
53 54	
54 55	
55 56	
56 57	
57 58	
58	

60

1

Appendix: Availability of Laboratory Tests

Variable	N	% missing
Hemoglobin (Hgb)	959	6.3%
WBC *	959	6.3%
Absolute Lymphocyte Count *	776	24.2%
Platelet	957	6.5%
ALT *	803	21.6%
Lactate	586	42.8%
Troponin	588	42.6%
Brain Natriuretic Peptide (BNP)	282	72.5%
Procalcitonin	434	57.6%
D-dimer	333	67.5%
Ferritin *	419	59.1%
CRP *	460	55.1%
Lactic Acid Dehydrogenase (LDH)	392	61.7%
pH* (imputed)	326	68.2%
Creatinine *	956	6.6%
Total Bilirubin	777	24.1%

BMJ Open

STROBE (Strengthening The Reporting of OBservational Studies in Epidemiology) Checklist

A checklist of items that should be included in reports of observational studies. You must report the page number in your manuscript where you consider each of the items listed in this checklist. If you have not included this information, either revise your manuscript accordingly before submitting or note N/A.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

Section and Item	ltem No.	Recommendation	Reported on Page No.
Title and Abstract	1	(<i>a</i>) Indicate the study's design with a commonly used term in the title or the abstract	
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found	
ntroduction		R	
Background/Rationale	2	Explain the scientific background and rationale for the investigation being reported	
Objectives	3	State specific objectives, including any prespecified hypotheses	
Vethods			
Study Design	4	Present key elements of study design early in the paper	
Setting	5	Describe the setting, locations, and relevant dates, including periods of	
		recruitment, exposure, follow-up, and data collection	
Participants	6	(a) Cohort study—Give the eligibility criteria, and the sources and methods of	
		selection of participants. Describe methods of follow-up	
		<i>Case-control study</i> —Give the eligibility criteria, and the sources and methods of	
		case ascertainment and control selection. Give the rationale for the choice of cases and controls	
		<i>Cross-sectional study</i> —Give the eligibility criteria, and the sources and methods of selection of participants	
		(b) Cohort study—For matched studies, give matching criteria and number of exposed and unexposed	
		<i>Case-control study</i> —For matched studies, give matching criteria and the number of controls per case	
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	

	No.	Recommendation	Page No
Data Sources/	8*	For each variable of interest, give sources of data and details of methods of	
Measurement		assessment (measurement). Describe comparability of assessment methods if	
		there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	
Study Size	10	Explain how the study size was arrived at	
Quantitative Variables	11	Explain how quantitative variables were handled in the analyses. If applicable,	
		describe which groupings were chosen and why	
Statistical Mathada	12	(a) Describe all statistical methods, including those used to control for	
Statistical Methods	12		
		confounding	
		(b) Describe any methods used to examine subgroups and interactions	
		(c) Explain how missing data were addressed	
		(d) Cohort study—If applicable, explain how loss to follow-up was addressed	
		<i>Case-control study</i> —If applicable, explain how matching of cases and controls was	
		addressed	
		<i>Cross-sectional study</i> —If applicable, describe analytical methods taking account of	
		sampling strategy	
		(e) Describe any sensitivity analyses	
Results	1		1
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially	
		eligible, examined for eligibility, confirmed eligible, included in the study,	
		completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	
		(c) Consider use of a flow diagram	
Descriptive Data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and	
·		information on exposures and potential confounders	
		(b) Indicate number of participants with missing data for each variable of interest	
		(c) <i>Cohort study</i> —Summarise follow-up time (eg, average and total amount)	
Outcome Data	15*	Cohort study—Report numbers of outcome events or summary measures over	
		time	
		Case-control study—Report numbers in each exposure category, or summary	
		measures of exposure	
		Cross-sectional study—Report numbers of outcome events or summary measures	

16	(<i>a</i>) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders	
	and their precision (eg. 95% confidence interval). Make clear which confounders	
	· · · · · · · · · · · · · · · · · · ·	
	were adjusted for and why they were included	
	(b) Report category boundaries when continuous variables were categorized	
	(c) If relevant, consider translating estimates of relative risk into absolute risk for a	
	meaningful time period	
17	Report other analyses done—eg analyses of subgroups and interactions, and	
	sensitivity analyses	
18	Summarise key results with reference to study objectives	
19	Discuss limitations of the study, taking into account sources of potential bias or	
	imprecision. Discuss both direction and magnitude of any potential bias	
20	Give a cautious overall interpretation of results considering objectives, limitations,	
	multiplicity of analyses, results from similar studies, and other relevant evidence	
21	Discuss the generalisability (external validity) of the study results	
22	Give the source of funding and the role of the funders for the present study and, if	
	applicable, for the original study on which the present article is based	
		ed groups
al studie	25.	
2	18 19 20 21 22 itely for	 (c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period 17 Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses 18 Summarise key results with reference to study objectives 19 Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias 20 Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence 21 Discuss the generalisability (external validity) of the study results

Once you have completed this checklist, please save a copy and upload it as part of your submission. DO NOT include this checklist as part of the main manuscript document. It must be uploaded as a separate file.

BMJ Open

Variation in COVID-19 Characteristics, Treatment, and Outcomes in Michigan: An Observational Study in 32 Hospitals

Journal:	BMJ Open
Manuscript ID	bmjopen-2020-044921.R2
Article Type:	Original research
Date Submitted by the Author:	25-Jun-2021
Complete List of Authors:	Chopra, Vineet; University of Michigan Michigan Medicine, General Internal Medicine Flanders, Scott A.; University of Michigan, Vaughn, Valerie ; University of Michigan, Petty, Lindsay; University of Michigan Medical School, Division of Infectious Diseases Gandhi, Tejal; University of Michigan Michigan Medicine McSparron, Jakob; University of Michigan Health System Malani, Anurag; St Joseph Mercy Health System O'Malley, Megan; University of Michigan Medicine Kim, Tae; University of Michigan Michigan Medicine McLaughlin, Elizabeth; University of Michigan Michigan Medicine Prescott, Hallie; University of Michigan Michigan Medicine, Internal Medicine
Primary Subject Heading :	Infectious diseases
Secondary Subject Heading:	Epidemiology, Infectious diseases, Intensive care
Keywords:	COVID-19, Quality in health care < HEALTH SERVICES ADMINISTRATION & MANAGEMENT, Protocols & guidelines < HEALTH SERVICES ADMINISTRATION & MANAGEMENT

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2 3	1	Variation in COVID-19 Characteristics, Treatment, and Outcomes in Michigan: An
4 5		
6 7	2	Observational Study in 32 Hospitals
8 9	3	
10 11	4	
12 13	5	Vineet Chopra MD, MSc (a,b)
14 15	6	Scott A. Flanders MD (a,b)
16 17 18	7	Valerie M. Vaughn MD, MSc (a,b)
19 20	8	Lindsay A. Petty MD (c,b)
21 22	9	Tejal Gandhi, MD (c,b)
23 24	10	Jakob I. McSparron MD (b,d)
25 26 27	11	Anurag N. Malani MD (e,b)
28 29	12	Megan O'Malley, PhD (a,b)
30 31	13	Tae Kim, MHSA (f,g)
32 33 34	14	Elizabeth McLaughlin MS, RN (a,b)
35 36	15	Hallie C. Prescott MD, MSc (d,b)
37 38	16	
39 40 41	17	From: (a) The Division of Hospital Medicine, Department of Medicine, University of
42 43	18	Michigan Health System, Ann Arbor, MI, USA; (b) The Michigan Hospital Medicine
44 45	19	Safety Collaborative, Ann Arbor, MI, USA; (c) Division of Infectious Diseases,
46 47 48	20	Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI,
49 50	21	USA; (d) Division of Pulmonary and Critical Care Medicine, Department of Medicine,
51 52	22	University of Michigan Health System, Ann Arbor, Michigan, USA; (e) e) Division of
53 54 55	23	Infectious Diseases, Department of Internal Medicine, St. Joseph Mercy Health System,
55 56 57		
58 59		1
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Valerie M. Vaughn MD, MSc (a,b)
Lindsay A. Petty MD (c,b)
Tejal Gandhi, MD (c,b)
Jakob I. McSparron MD (b,d)
Anurag N. Malani MD (e,b)
Megan O'Malley, PhD (a,b)
Tae Kim, MHSA (f,g)
Elizabeth McLaughlin MS, RN (a,b)
Hallie C. Prescott MD, MSc (d,b)
From: (a) The Division of Hospital Medicine, Department of Medicine, University of
Michigan Health System, Ann Arbor, MI, USA; (b) The Michigan Hospital Medicine
Safety Collaborative, Ann Arbor, MI, USA; (c) Division of Infectious Diseases,
Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI,
USA; (d) Division of Pulmonary and Critical Care Medicine, Department of Medicine,
University of Michigan Health System, Ann Arbor, Michigan, USA; (e) e) Division of
Infectious Diseases, Department of Internal Medicine, St. Joseph Mercy Health System,

2 3 4	24	Ann Arbor, MI, USA; (f) Michigan Arthroplasty Registry Collaborative Quality Initiative
5 6	25	and (g) Department of Orthopaedic Surgery, University of Michigan Health System, Ann
7 8	26	Arbor, MI, USA.
9 10 11	27	
12 13	28	Abstract Word Count: 299
14 15	29	Word Count: 3407
16 17 18	30	Conflicts of Interest: No relevant conflicts disclosed by coauthors.
19 20	31	
21 22	32	Primary Funding Source: Blue Cross Blue Shield of Michigan (BCBSM) and Blue
23 24 25	33	Care Network as part of the BCBSM Value Partnerships program.
26 27	34	
28 29	35	Address for Correspondence:
30 31 32	36	Vineet Chopra MD, MSc
33 34	37	2800 Plymouth Road, Building 16, #432 W
35 36	38	Ann Arbor, MI 48109
37 38 39	39	vineetc@umich.edu
40 41	40	Phone - (734) 615-8341
42 43	41	Fax - (734) 936-8944
44 45	42	Keywords:
46 47 48	43	Covid-19; Quality in Health care; Protocols and Guidelines
49 50	44	
51 52	45	
53 54 55	46	
56 57		
58 59		2
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

	47	
	48	
	49	Additional Contributions & Acknowledgements:
) I	50	The authors thank Qisu (Sue) Zhang, MPH, Tawny Czilok, RN, MHI, Liz Vasher, RN,
<u>2</u> 3	51	Jessica Southwell, RN, MSN, Danny Nielsen, MS, and Jennifer Horowitz, MA for help
1 5	52	with data analytics and project management.
5 7 3	53	
))	54	We also thank all the BCBSM Collaborative Quality Initiatives (CQI's) that partnered
 <u>2</u>	55	together on data collection and offered project management/analytics support. Lastly,
5 1 5	56	we are grateful to all of the hospitals who volunteered to be part of MiCOVID-19
5	57	including: Beaumont-Dearborn, Beaumont-Grosse Pointe, Beaumont- Farmington Hills,
3	58	Beaumont- Royal Oak, Beaumont- Taylor, Beaumont- Trenton, Beaumont- Troy,
))	59	Beaumont- Wayne, Bronson Battle Creek, Bronson Methodist, Detroit Medical Center-
- 3 1	60	Detroit Receiving, Detroit Medical Center-Harper Hutzel, Detroit Medical Center-Detroit-
5	61	Huron Valley Sinai, Henry Ford, Henry Ford Allegiance, Henry Ford Macomb, Henry
7 3	62	Ford West Bloomfield, Henry Ford West Wyandotte, Holland Hospital, Hurley Medical
,) 	63	Center, Lakeland Hospital, McLaren Flint, McLaren Greater Lansing, McLaren Port
<u>2</u> 3	64	Huron, Mercy Health Muskegon, Mercy Health St. Mary's, Metro Health, Michigan
1 5	65	Medicine, MidMichigan Alpena, MidMichigan Gratiot, MidMichigan Midland, Munson
2 7 2	66	Medical Center, Oaklawn Hospital, Sinai Grace, Sparrow, St. Joseph Mercy Ann Arbor,
)	67	St. Joseph Mercy Chelsea, St. Joseph Mercy Livingston, St. Joseph Mercy Oakland, St.
 <u>2</u>	68	Mary Mercy Livonia.
s 1 5	69	
5		

1 2		
2 3 4	70	Contributor Statements:
5 6	71	Vineet Chopra MD, MSc – manuscript planning; interpretation of the data; manuscript
7 8	72	drafting/revisions; final approval to be published
9 10 11	73	Scott A. Flanders MD – manuscript planning; manuscript drafting/revisions; final
12 13	74	approval to be published
14 15	75	Valerie M. Vaughn MD, MSc – manuscript planning; manuscript drafting/revisions; final
16 17 18	76	approval to be published
19 20	77	Lindsay A. Petty MD – manuscript planning; manuscript drafting/revisions; final approval
21 22	78	to be published
23 24 25	79	Tejal Gandhi, MD – manuscript planning; manuscript drafting/revisions; final approval to
26 27	80	be published
28 29	81	Jakob I. McSparron MD – manuscript planning; manuscript drafting/revisions; final
30 31 32	82	approval to be published
33 34	83	Anurag N. Malani MD – manuscript planning; manuscript drafting/revisions; final
35 36	84	approval to be published
37 38	85	Megan O'Malley, PhD – data analysis; interpretation of the data; final approval to be
39 40 41	86	published
42 43	87	Tae Kim, MHSA (f,g) – manuscript planning; final approval to be published
44 45	88	Elizabeth McLaughlin MS, RN (a,b) – manuscript planning; manuscript
46 47 48	89	drafting/revisions; final approval to be published
49 50	90	Hallie C. Prescott MD, MSc – manuscript planning; interpretation of the data;
51 52	91	manuscript drafting/revisions; final approval to be published
53 54 55	92	
56 57		
58 59 60		4 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2		
3	93	ABSTRACT
4 5	94 95	OBJECTIVES
6 7	55	Objectives
8 9	96	To describe patient characteristics, symptoms, patterns of care and outcomes for
10 11	97	patients hospitalized with COVID-19 in Michigan.
12 13	98	
14 15 16	99	DESIGN
16 17 18	100	Multi-center retrospective cohort study.
19 20	101	
21 22 23	102	SETTING
23 24 25	103	32 acute care hospitals in the state of Michigan.
26 27	104	
28 29	105	PARTICIPANTS
30 31 32	106	Patients discharged (March 16 to May 11, 2020) with suspected or confirmed
33 34	107	COVID-19 were identified. Trained abstractors collected demographic information on all
35 36	108	patients, and detailed clinical data on a subset of COVID-19 positive patients.
37 38 39	109	
40 41	110	PRIMARY OUTCOME MEASUREMENTS
42 43	111	Patient characteristics, treatment, and outcomes including cardiopulmonary
44 45	112	resuscitation, mortality, and venous thromboembolism within and across hospitals.
46 47 48	113	
49 50	114	RESULTS
51 52	115	Demographic-only data from 1,593 COVID-19 positive and 1,259 persons under
53 54 55 56 57 58	116	investigation discharges were collected. Among 1,024 cases with detailed data, the
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 7 of 45

BMJ Open

117	median age was 63 years, median BMI was 30.6, and 51.4% were black. Cough, fever,
118	and shortness of breath were the top symptoms. 37.2% reported a known COVID-19
119	contact, 7.0% were healthcare workers, and 16.1% presented from congregated living
120	facilities.
121	During hospitalization, 232 (22.7%) patients were treated in an ICU, 558 (54.9%)
122	in a "cohorted" unit, 161 (15.7%) received mechanical ventilation, and 90 (8.8%)
123	received high-flow nasal cannula. ICU patients more often received hydroxychloroquine
124	(66% vs. 46%), corticosteroids (34% vs 18%), and antibiotic therapy (92% vs 71%) than
125	general ward patients (p<0.05 for all). Overall, 219 (21.4%) patients died, with in-
126	hospital mortality ranging from 7.9% to 45.7% across hospitals. 73% received at least
127	one COVID-19-specific treatment, ranging from 32% to 96% across sites.
128	Across 14 hospitals, the proportion of patients admitted directly to an ICU ranged from
129	0% to 43.8%; mechanical ventilation on admission from 0% to 12.8%; mortality from
130	7.9% to 45.7%. Use of at least one COVID-19 specific therapy varied from 32% to
131	96.3% across sites.
132	
133	Conclusions
134	During the early days of the Michigan outbreak of COVID-19, patient
135	characteristics, treatment, and outcomes varied widely within and across hospitals.
	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
	 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134

136 Article Summary

- 137 Strengths and Limitations of this Study
- Using rigorous data collection including a well-defined sampling strategy and
 trained data abstractors, our paper is the largest multi-hospital study to examine
- This is the first study to examine variations in clinical care processes, treatment

clinical aspects related to COVID-19 in Michigan.

- 142 approaches and outcomes across hospitals.
- The high rate of use of non-evidence-based therapies for treating COVID-19 has
 - significant safety, economic and policy implications for the most critically ill
 - 145 subsets in the hospital.
- Given the observational nature of the study and potential missing documentation on symptoms, comorbidities, or treatments in the medical record, rationales for
 - 148 treatment or management decisions cannot be determined.
 - Our sampling frame may be biased as patients who remain hospitalized may not
- 5 150 be included in our cohort.

1 2	
2 3 4	152
5 6	153
7 8	154
9 10	155
11 12	156
13 14 15	157
15 16 17	
17 18 19	158
20 21	159
22 23	160
24 25	161
26 27	162
28 29	163
30 31	164
32 33 34	165
35 36	166
37 38	167
39 40	168
41 42	169
43 44	170
45 46	
47 48 49	171
49 50 51	172
52 53	
54 55	
56 57	
58 59	
~~	

60

152 INTRODUCTION

Since detection in Wuhan, China,¹² over 4.5 million cases of COVID-19, caused
by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) have been
reported.³ The United States (US) leads the world in the total number of cases, with
over 1.5 million cases and 92,000 deaths reported as of May 20, 2020.⁴ Within the US,
Michigan remains one of the hardest hit states, with over 52,000 cases and 5,000
deaths as of May 20, 2020.⁵

In the early days of the pandemic, data regarding patient characteristics,
 symptoms and signs and presentation and care strategies including aspects such as
 oxygenation, laboratory testing, and therapeutics were unclear. As well, short and long term outcomes of patients exposed to these varying approaches was unknown. Some
 studies reported substantial variation in patient characteristics and treatment modalities
 across hospitals. But the extent of such variation and impact on outcomes remained
 unknown.

Michigan has a long history of collaborative quality improvement work that spans several disciplines including cardiovascular medicine, emergency medicine and hospital medicine, among others.⁶ These consortia collect detailed clinical variables from hospitals to populate a central registry, allowing benchmarking and comparisons of care and outcomes. As the COVID-19 pandemic unfolded in Southeast Michigan, several consortia came together to focus data collection on patients hospitalized with COVID-19 172 19.

Using a well-established data collection strategy, we examined variations in clinical care processes, treatment approaches, and clinical outcomes across Michigan hospitals.

METHODS

A retrospective cohort design was used. Data were collected from medical records of patients discharged between March 16, 2020 and May 11, 2020 from one of 32 Michigan hospitals who participate in collaborative quality initiatives sponsored by Blue Cross Blue Shield of Michigan and Blue Care Network. Trained abstractors at each hospital identified adult patients >18 years of age that underwent testing for COVID-19 via reverse-transcriptase polymerase chain reaction, including both positive cases and persons under investigation (PUI) who eventually had a negative test. Abstractors were asked to abstract as many eligible cases as possible for their hospital. Demographic data (age, gender, race, ethnicity, payor) and in-hospital mortality were collected for all confirmed and PUI cases. A sample of COVID-19 positive cases from each hospital was selected for detailed abstraction. Positive cases were sorted by day of admission (e.g., Mon-Sun) and, for each day, a pseudo-random number (minute of hospital discharge) was used to select patients for detailed abstraction. Patients who were pregnant, transitioned to hospice within 3 hours of hospital admission, or discharged against medical advice were excluded. All data were entered into a registry (Mi-COVID19) using a structured data collection template. Of the 92 noncritical access, nonfederal hospitals in Michigan, data from 32 hospitals (34.8%) was included in the sample. Included

BMJ Open

1 2		
2 3 4	195	hospitals are diverse in terms of size, teaching status, and ownership structure
5 6	196	(Appendix 1).
7 8	197	
9 10 11	198	Patient characteristics including comorbidities, home medications, presenting
12 13	199	symptoms and risk factors for COVID-19 (e.g., exposure to sick contacts, healthcare
14 15	200	worker) were collected. Clinical data during hospitalization including location of care
16 17 18	201	(ward vs. intensive care unit [ICU], a "cohorted" COVID-19 only unit), vital signs, body
19 20	202	mass index (BMI), laboratory and radiology findings and therapeutics were abstracted.
21 22	203	Organ supports such as mechanical ventilation and other respiratory support,
23 24 25	204	vasopressor use, renal replacement therapy (continuous renal replacement therapy
26 27	205	[CRRT] and intermittent hemodialysis [iHD]) were also collected.
28 29	206	The primary outcomes of interest included hospital mortality, receipt of cardiopulmonary
30 31 32	207	resuscitation (CPR), and occurrence of deep vein thrombosis (DVT) or pulmonary
33 34	208	embolism (PE) (based on positive imaging findings or initiation of empiric therapy for
35 36	209	presumed thrombosis). In addition, we performed pre-specified exploratory analyses in
37 38	210	hospitals with at least 25 detailed abstractions (n=14 hospitals) to examine variation in
39 40 41	211	patient characteristics, management and outcomes. Specifically, we assessed variation
42 43	212	in use of COVID-19 specific treatments (defined as hydroxychloroquine, combination
44 45	213	hydroxychloroquine plus azithromycin, Vitamin C [oral or intravenous], IL-6 inhibitors or
46 47 48	214	remdesivir), antibiotic therapy, use of organ support (e.g., use of vasopressors,
49 50	215	mechanical ventilation and CPR), occurrence of venous thrombosis and in-hospital
51 52	216	mortality.
53 54 55		
55 56 57		

3	
4	
5	
6	
6 7	
8	
9	
9	
10	
11	
12	
13	
14	
11 12 13 14 15 16 17 18 19	
16	
17	
18	
19	
20	
20 ⊃1	
21	
22	
20 21 22 23 24 25	
24	
25	
26 27 28	
27	
28	
29	
30	
31	
21	
32 33 34 35	
33	
34	
35	
36 37 38	
37	
38	
39	
40	
41	
42	
43	
43 44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	

60

217	Descriptive statistics (e.g., mean, median, proportion) with measures of
218	dispersion (e.g., standard error, inter-quartile range [IQR]) were used to summarize
219	data. Data that were not documented in medical records (e.g., values of certain
220	laboratory tests) were reported as missing. Pairwise comparisons were made using t-
221	tests for continuous data and chi-square tests for categorical data, respectively.
222	Differences across hospitals were tested using the Kruskal–Wallis test for continuous
223	variables and Pearson chi-square test for categorical variables. All statistical tests were
224	two-sided with p<0.05 considered statistically significant. The study was reviewed by the
225	Institutional Review Board of the University of Michigan and deemed "not regulated". It
226	was not appropriate or possible to involve patients or the public in the design, or
227	conduct, or reporting, or dissemination plans of our research.
228	
229	Patient and Public Involvement
230	Patient and Public Involvement No patient involved.
231	No patient involved.
232	
233	Data Availability
234	
235	All data relevant to the study are included in the article or uploaded as supplementary
236	information.
237	
238	RESULTS
239	DEMOGRAPHIC DATA

Page 13 of 45

BMJ Open

2 3 4	240	Demographic-only data from 1,593 COVID-19 positive and 1,259 PUI discharges
5 6	241	from 32 Michigan hospitals were collected. PUIs had a median age of 64.4 years,
7 8	242	52.6% were male and 32.0% Black. COVID-19 positive patients had similar age and
9 10 11	243	gender as PUIs (63.9 years, and 52.1% male, respectively), but were more commonly
12 13	244	Black (57.1% vs. 32.0%, p<0.01). In the demographic-only cohort, 398 (25.0%) COVID-
14 15	245	19 positive patients died during hospitalization.
16 17	246	Detailed data were abstracted on 1,024 (64.3%) randomly-selected COVID-19
18 19 20	247	positive patients. The most prevalent comorbidities were hypertension (65.4%),
21 22	248	diabetes (36.8%), cardiovascular disease (26.0%) and chronic kidney disease (23.3%);
23 24	249	14.9% of patients had no comorbidities. Though 12.8% of patients had a diagnosis of
25 26 27	250	asthma and 11.2% had a diagnosis of chronic obstructive pulmonary disease, pre-
28 29	251	hospital use of inhaled steroids, long-acting beta-agonists and long-acting
30 31	252	antimuscarinic agents was low at 4.2%, 2.9%, and 0.5%, respectively. Current smoking
32 33 34	253	or vaping was uncommon, but 27.3% were former smokers, and 35.8% reported former
34 35 36	254	vaping. 115 (11.3%) patients were on immunosuppressive medications prior to
37 38	255	hospitalization, including 62 (6.1%) who were on oral steroids. Essential workers
39 40	256	comprised 12.8% of the cohort, including healthcare workers (7.0%) and service
41 42 43	257	workers (5.8%, e.g., postal, food service, transportation). Prior to admission, 16.1% of
44 45	258	patients resided in congregated living facilities, including nursing homes and homeless
46 47	259	shelters (Table 1).
48 49 50	260	
50 51 52	261	CLINICAL PRESENTATION AND INITIAL EVALUATION

1 2

2		
3 4	262	In the detailed abstraction cohort (n=1,024), median duration of symptoms prior
5 6	263	to hospitalization was 6 days (IQR 3-9). The most common presenting symptoms were
7 8	264	cough (73.3%), fever (71.8%), and shortness of breath (72.2%); only 8% of patients did
9 10 11	265	not report one of these 3 complaints (Table 1). Gastrointestinal symptoms including
12 13	266	nausea, vomiting and diarrhea occurred in 39.4% of patients. Over a third of patients
14 15	267	(37.2%) reported sick contacts at the time of admission, and 23.8% reported contact
16 17	268	with a patient known to have COVID-19. The location of diagnostic testing for COVID-19
18 19 20	269	varied: 67.5% of patients were tested in hospital laboratories, 23.2% in commercial
21 22	270	laboratories, and 8.0% in the state laboratory. Patients were most commonly admitted
23 24	271	to a general medical/surgical ward (59.5%), but 15.7% were admitted to intermediate
25 26 27	272	care, 13.5% were admitted directly to ICU, and 11.3% were admitted to an observation
28 29	273	unit (Figure 1). A total of 419 (40.9%) of patients were admitted to a "cohorted"
30 31	274	(COVID-19 only) unit. At admission, 6.3% of patients had do not resuscitate/do not
32 33 34	275	intubate orders, which increased to 13.8% by discharge.
35 36	276	Common laboratory testing on admission included white blood cell count
37 38	277	(93.7%), absolute lymphocyte count (75.8%), troponin (57.4%), lactate (57.2%), CRP
39 40	278	(44.9%) and procalcitonin (42.4%) (missingness by laboratory test are reported in the e-
41 42 43	279	Appendix 2). Among those with available laboratory data, patients who received ICU
44 45	280	treatment had higher levels of inflammatory markers at admission including d-dimer
46 47	281	(2.88mg/L vs. 1.65mg/L), ferritin (872ng/mL vs. 559ng/mL), CRP (24.3mg/dL vs.
48 49 50	282	13.8mg/dL) and LDH (476U/L vs. 346U/L) (Table 2) . Chest imaging (X-ray or CT) was
51 52	283	performed in 528 (51.6%) patients within 1 day of admission and was more common in
53 54	284	ICU than general care patients (59.9% vs 49.1%, p=0.004). ICU patients were more
55 56 57		
57 58 59		A.
59		For peer review only - http://bmiopen.bmi.com/site/about/guidelines.xhtml

Page 15 of 45

1

BMJ Open

2		
3 4	285	likely to have radiographic abnormalities on presentation. Viral respiratory panels, blood
5 6	286	cultures and sputum cultures were collected in 722 (51.0%) patients, but were positive
7 8	287	in only 48 (4.7%) patients; 9.5% of ICU patients vs. 3.3% of general care patients had a
9 10 11	288	viral or bacterial pathogen identified (p<0.001).
12 13	289	
14 15	290	CRITICAL CARE TREATMENT
16 17	291	Overall, 232 patients (22.7%) were treated in an ICU, including 138 (13.5%) who
18 19 20	292	were admitted directly to an ICU, and 94 (9.2%) who were transferred to ICU a median
21 22	293	of 2 days following admission. Median length of ICU stay was 6 days (IQR 3-9), which
23 24	294	was similar in survivors vs. non-survivors (5 vs 6 days, p=0.790). Among 1,024 patients
25 26 27	295	with detailed abstraction, the maximum respiratory support received was invasive
28 29	296	mechanical ventilation in 161 patients (15.7%), non-invasive positive pressure
30 31	297	ventilation in 15 (1.5%), heated high-flow nasal cannula in 60 (5.9%), oxygen mask
32 33 34	298	(>40% Fi02 or >6L/min) in 88 (8.6%), and nasal cannula oxygen (1-6L/min) in 441
34 35 36	299	(43.1%) (Table 3). 259 (25.3%) patients received no respiratory support or oxygen
37 38	300	therapy during hospitalization. Among 78 patients initiated on HHFNC, 13 (16.7%)
39 40	301	progressed to invasive mechanical ventilation. Among 25 patients initiated on NIPPV,
41 42 43	302	10 (40.0%) progressed to invasive mechanical ventilation. An additional 12 patients and
44 45	303	2 patients, respectively, used HHFNC and NIPPV after extubation.
46 47	304	Upon initiation of mechanical ventilation, patients were predominantly treated
48 49 50	305	with a volume control mode (75%), with high FIO ₂ (\geq 80% in 49.1% of ventilated
51 52	306	patients), and modest tidal volumes (median tidal volume 7.0 ml/kg predicted body
53 54 55	307	weight, [IQR 6.2-8.0]). The median duration of mechanical ventilation was 6 days (IQR
55 56 57		
58 59		1 .
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2	
3 4	308
5 6	309
7 8 9	31(
9 10 11	31:
12 13	312
14 15	313
16 17 18	314
19 20	31
21 22	31(
23 24 25	31
25 26 27	318
28 29	319
30 31	320
32 33 34	32:
35 36	322
37 38 39	323
39 40 41	324
42 43	32
44 45	320
46 47 48	327
49 50	328
51 52 53	329
53 54 55	33(
56 57	
58	
59 60	

808	3-8 days). Prone positioning was documented in 18 patients, pulmonary vasodilators in
09	2 patients, and extra corporeal membrane oxygenation in 2 patients. CPR was
10	administered to 41 patients (4.0%), with only one patient surviving to hospital discharge.
11	Vasopressors were used in 141 patients (13.8%), dialysis in 53 (5.2%), and
12	corticosteroids in 222 (21.7%) patients. 771 (75.3%) patients received broad-spectrum
13	antibiotics, with use being more common in the ICU than general wards (91.8% vs
14	70.5%, p<0.001).
15	
16	COVID-19 SPECIFIC THERAPIES
17	A total of 747 (72.9%) patients were treated with therapies targeting COVID-19,
18	or the body's response to COVID-19, most commonly hydroxychloroquine (51%),
19	hydroxychloroquine plus azithromycin (36%), and Vitamin C (10%). Treatment with IL-6
20	inhibitors and remdesivir was infrequent (27 and 17 patients, respectively). Use of
21	COVID-19 treatments was more common in ICU than general care patients (88% vs.
22	69%, p<0.001). No patients in our sample received convalescent plasma. The
23	proportion of patients treated with COVID-19 specific therapies decreased over time
24	from 78.1% of patients admitted during March 8 to March 31 to 65.0% of patients
25	admitted during April 1 to May 11 (p<0.001). Only 21 (2.0%) patients were enrolled into
26	a clinical trial (Table 2).
27	
28	CLINICAL OUTCOMES
29	The in-hospital mortality rate for the full cohort of COVID-19 positive patients
30	(demographic plus detailed abstractions) was 25.0%. Mortality varied by decade of age,

BMJ Open

2 3 4 5 6 7 8 9 10 11	331	ranging from 4.5% among patients aged 30-39 to 37.5% in patients aged 70-79 years
	332	(Figure 2). Among 219 decedents with detailed abstraction, 134 (61.5%) died following
	333	ICU treatment and 114 (52.1%) died after receiving mechanical ventilation. 40 of 219
	334	decedents (18.3%) received cardiopulmonary resuscitation, and 91 (41.6%) were
12 13	335	transitioned to comfort care prior to death. The most common causes of death were
14 15 16	336	refractory hypoxemia (29.4%), cardiac arrhythmia (15.9%) and refractory shock
10 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39	337	(10.7%). Venous thromboembolism occurred in 32 (3.1%) of patients, of which 9
	338	experienced proximal lower-extremity DVT, 21 experienced PE, and 2 experienced both
	339	DVT and PE.
	340	Among the 805 patients that survived to hospital discharge, 86% were
	341	discharged home and 8% were discharged to a skilled nursing facility or rehabilitation
	342	center. Only 1 patient (0.1%) was discharged to the Detroit field hospital (Table 3).
	343	
	344	VARIATION ACROSS HOSPITALS
	345	Among 14 hospitals with at least 25 detailed abstractions, substantial variation in
	346	demographics, illness severity, care processes, treatments, and outcomes of COVID-19
40 41	347	positive patients were observed (Table 4). The proportion of patients over 65 years of
42 43	348	age ranged from 30.2% to 65.5%, while the proportion of Black patients ranged from 0%
44 45	349	to 94.6%. Similarly, the proportion of patients admitted directly to an ICU ranged from
46 47 48	350	0% to 43.8%, while the proportion of patients who were transferred to an ICU after
48 49 50 51 52 53 54 55 56 57	351	admission ranged from 0% to 24.1%. Treatment in "cohorted" units ranged from 0% to
	352	100%. Mechanical ventilation on admission ranged from 0% to 12.8% while use of
	353	vasopressors on admission ranged from 0% to 14.8% across hospitals. Critical illness

Page 18 of 45

BMJ Open

1

2		
3 4	354	on presentation (defined as admission to an ICU with receipt of vasopressors or
5 6 7 8 9	355	mechanical ventilation on admission) varied from 0% to 7.7%.
	356	72.9% of patients received at least one COVID-19 specific therapy (e.g.,
9 10 11	357	hydroxychloroquine, hydroxychloroquine plus azithromycin, interleukin-6 inhibitor,
12 13	358	antiviral therapy), but use varied from 32% to 96.3% across sites. Similarly, 65% of
14 15	359	patients received concurrent antibiotics and COVID-19 specific treatment during
16 17	360	hospitalization, with frequency varying from 50% to 100% in ICU patients vs. 17% to
18 19 20	361	95% in general care patients.
21 22	362	Mortality across hospitals varied from 7.9% to 45.7% of patients, and rates of
23 24	363	CPR before death ranged from 0% to 66.7%. Finally, rates of VTE also varied, occurring
25 26 27	364	in 0 to 11% of patients across hospitals.
27 28 29	365	
30 31	366	DISCUSSION
32 33 34 35 36	367	While reports of COVID-19 patients from New York, Washington, and California
	368	exist, ⁷⁻⁹ this is the first multi-center study to examine epidemiology, treatment and
37 38	369	outcomes of COVID-19 hospitalizations in Michigan. Also, in contrast to prior multi-
39 40	370	hospital US cohorts, the Mi-COVID19 registry includes a large sample of patients
41 42 43	371	treated at a diverse set of 32 academic and community hospitals.
43 44 45	372	The demographics of our cohort differ from other cohorts. First, patients with
46 47	373	confirmed COVID-19 in Michigan are disproportionally Black (over half of our cohort).
48 49	374	This is in contrast to 32% of PUIs—indicating that the predominance of black patients
50 51 52	375	with COVID-19 is not a reflection of local demographics, but rather disproportionate
53 54	376	impact of COVID-19 on black patients. Second, in contrast to prior studies, ¹⁷¹⁰ our
55 56		
57 58		
59		For peer review only - http://bmiopen.hmi.com/site/about/quidelines.yhtml

Page 19 of 45

BMJ Open

377	cohort was nearly 50:50 male:female, rather than male dominant. The reasons for this
378	difference are unclear.

Consistent with prior reports, the main presenting symptoms were cough. dyspnea and fever. Similar to other studies,¹¹ a substantial proportion of patients had multiple comorbidities; but notably, 15% of our cohort had no known medical problems.¹² We found that a substantial proportion of patients reported contact with a known COVID-19 positive patient prior to developing symptoms. These findings mirror those of a study from Shenzen, China, where contacts of those with disease experienced a significantly higher rate of infection than the general public.¹³ Additionally, patients underwent COVID-19 testing through a number of venues including hospital, commercial and state-run laboratories, illustrating the myriad ways in which diagnosis was obtained early in the outbreak when testing was limited.¹⁴ Although only 14% of the sample was admitted directly to an ICU, an additional 9% were transferred to an ICU later in hospitalization. Hospital mortality in cases with detailed abstractions was 21%, but increased with age, consistent with prior studies.¹⁵ A key finding of our study is that a majority of patients hospitalized for COVID-19 were treated with therapies intended to mitigate SARS-CoV-2 viral replication or the body's immune response. More than half of patients were treated with hydroxychloroquine, and an additional 6% were treated with antivirals or immune

396 modulating agents. Experts have increasingly questioned the use of unproven COVID-

- ⁴⁹ 397 19 therapies outside of a clinical trial,¹⁶ and have argued that supportive care and trial
- ⁵¹₅₂ 398 enrollment are the best options until data regarding efficacy of therapies acrrues.^{17 18}
- 54 399 Accumulating observational and trial data now suggest no benefit from

Page 20 of 45

1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
19 20
21
21
22 23
23
23 24 25
25
26
27
28
29 30
30
31
32
33
34
34 35 36 37
36
37
38
39
40
41
42
43
44
45
46
47
48
40 49
49 50
50
51 52
52 53
54
55
56
57
58
59
<u> </u>

60

400	hydroxychloroquine, ¹⁹⁻²¹ and concerns regarding harm from empiric use remain. ²²
401	Unfortunately, only 2% of our sample was enrolled in clinical trials. The high rate of
402	experimental COVID-19 therapies outside empiric studies represents a lost opportunity
403	for learning. It is also emblematic of the strong desire—particularly early in the
404	pandemic—to use therapies with a theoretical potential to target the virus even though
405	improved survival from critical illness is largely attributed to improvements in supportive
406	care. ²³ Notably, we still do not have targeted therapies for sepsis or acute respiratory
407	distress syndrome, which are the major mechanisms by which patients die from COVID-
408	19 infection.
409	Another strength of our study is the variation in clinical presentation and
410	outcomes we observed across a heterogeneous sample of hospitals. Use of COVID-19
411	specific treatments, corticosteroids, and antibiotics varied markedly across hospitals.

412 While we are unable to ascertain reasons for such variation, we anecdotally observed

that practice evolved across hospitals over time. For example, at some Michigan

414 hospitals, routine use of hydroxychloroquine was common in the first few weeks of the

415 pandemic but curbed as trial data became available. In contrast, use of

416 hydroxychloroquine continues to be encouraged at other hospitals even today.²⁴ While it

417 is unclear if these practice changes influenced outcomes, future studies exploring the

418 rationale and impact of these changes on patients will be valuable.

419 Our finding provides corroboratory information regarding the first COVID wave
 420 within Michigan. For example, in a single center retrospective study, Imam and
 421 colleagues found that advanced age and increasing number of comorbidities were
 422 independent predictors of in-hospital mortality in hospitalized Michigan patients, just as

Page 21 of 45

BMJ Open

1 2	
2 3 4	4
5 6	4
7 8 9	4
10	4
11 12 13 14 15 16 17	4
14 15	4
16 17 18	4
19 20	4
21 22	4
23 24 25	4
26 27	4
28 29	4
30 31 32 33 34	4
32 33 34	4
35 36	4
37 38	4
39 40 41	4
42 43	4
44 45	4
46 47 48	4
49 50	4
51 52	4
53 54 55	4
55 56 57	
58 59	
60	

we did in our cohort.²⁵ Similarly, in two national population-level studies led by the 423 Centers for Disease Prevention and Control, individuals over 65 years of age and those 424 with >3 comorbidities experienced greater risk of hospitalization and adverse outcomes, 425 again consistent with our findings.^{26 27} Our findings are also similar to others regarding 426 427 disparities in COVID care and outcomes, especially among minority populations.²⁸ 428 Despite these findings, our study also differ from other national studies in important ways. For example, we observed a low rate of readmissions in our cohort. In contrast, 429 Donnely et al. using Veterans Health Affairs (VHA) data reported a readmission rate of 430 431 19.9% at 60-days.²⁹ While the reasons for this discrepancy are unclear, it is possible that practice pattern differences including variation in threshold for readmission and 432 differences in patient characteristics may account for these discrepancies. As we begin 433 to understand and manage the chronic sequelae of acute COVID,³⁰ studies 434 understanding reasons for these pattern differences would be important. Another 435 important difference lies in the use of therapeutics targeting COVID-19. For example, 436 437 reports from New York City and Seattle show greater rates of use of remdesivir, and IL-6 inhibitors.^{31 32} Whether these differences were due to practice variation (which 438 439 occurred widely in the early US waves of COVID-19), vs. lack of access to therapeutics 440 which was also reported is unclear. Our study has limitations. First, given the observational nature of the study, 441 442 rationales for treatment or management decisions cannot be determined. Second, because our sampling frame included patients that were discharged or deceased, our 443 444 findings may be biased as patients who remain hospitalized may not be included in our 445 cohort (potentially explaining lower duration of mechanical ventilation and hospital stay).

3 4	,
4 5 6 7 8 9 10	
7 8	
9 10	,
11 12	
13 14	
15 16	
11 12 13 14 15 16 17 18 19	
19 20	
20 21 22 23 24	
23 24 25	
25 26 27	,
28 29	
30 31	,
32	
34 35	
33 34 35 36 37 38	
39	
40 41	
42 43	
44 45 46	
40 47 48	,
49 50	
51 52	,
53 54	
55 56	
57 58	
59 60	

1 2

446 However, COVID-19 hospitalizations in Southeastern Michigan have been declining since mid-April-limiting the degree of bias from exclusion of patients still in the 447 hospital. Third, while variation in care was observed, the implications of such variability 448 449 on clinical outcomes is unknown. Nevertheless, given that therapeutic modalities are 450 scarce and not without risks, reducing variation may improve patient safety and 451 resource use. Fourth, our study depends on available documentation, so symptoms, 452 comorbidities, or treatments not documented in the medical record may be omitted. For example, it is possible that the low use of prone positioning observed in our cohort may 453 454 be due to incomplete documentation of this practice. Finally, we did not collect patient identifiers, so inter-hospital transfers could be reported as two separate hospitalizations. 455 456 However, we did collect admission and discharge locations, and only 6% of the cohort 457 was transferred from another hospital.

Our study also has strengths. Ours is the first multi-hospital study to examine 458 clinical aspects related to COVID-19 in Michigan. Through a rigorous data collection 459 460 structure including a well-defined sampling strategy and trained data abstractors, we provide novel and detailed insights into clinical care during the pandemic. Second, we 461 462 were able to examine variation across sites finding substantial differences in clinical 463 care and outcomes across hospitals. To our knowledge, this is the first study to examine 464 differences in these important care processes, treatment approaches and outcomes 465 across sites. Third, we report a high rate of use of non-evidence-based therapies for treating COVID-19. This finding has significant safety, economic and policy implications 466 467 for the most critically ill subsets in the hospital. Finally, data collection for this effort

1		
2 3 4	468	remains ongoing, including longitudinal monitoring of patients after discharge. These
5 6	469	data will help shed new light on the post hospital sequelae of COVID-19.
7 8 9	470	Michigan remains one of the regions most affected by COVID-19. This multi-
9 10 11	471	center study provides granular clinical data regarding patients, care practices and
12 13	472	clinical outcomes in the state. The wide variation in observed practices and outcomes
14 15	473	suggests caution when interpreting findings from single center studies. Our study also
16 17 18	474	demonstrates the value of hospital collaboratives to help inform best practices.
19 20	475	
21 22	476	Ethics Statement
23 24 25	477	The study was deemed "not regulated" by the University of Michigan IRB (HUM
26 27	478	00179611).
28 29	479	
30 31 32	480	BIBLIOGRAPHY
33 34	481	1. Guan WJ, Ni ZY, Hu Y, et al. Clinical Characteristics of Coronavirus Disease 2019 in
35 36	482	China. N Engl J Med 2020 doi: 10.1056/NEJMoa2002032 [published Online First:
37 38	483	2020/02/29]
39 40 41	484	2. Zhu N, Zhang D, Wang W, et al. A Novel Coronavirus from Patients with Pneumonia
42 43	485	in China, 2019. <i>N Engl J Med</i> 2020;382(8):727-33. doi:
44 45	486	10.1056/NEJMoa2001017 [published Online First: 2020/01/25]
46 47 48	487	3. COVID-19 Dashboard by the Center for Systems Science and Engineering (CSSE) at
49 50	488	Johns Hopkins University. Available online at: <u>https://coronavirusjhuedu/maphtml</u>
51 52	489	Accessed April 20, 2020
53 54 55		
55 56 57		
58 59		2
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

3 4	490	4. Centers for Disease Control Cases of Coronavirus Disease (COVID-19) in the US.
5 6	491	Available online at: https://www.cdc.gov/coronavirus/2019-ncov/cases-
7 8 9	492	updates/cases-in-us.html. Accessed April 20, 2020.
10 11	493	5. Michigan.gov. Coronavirus Resources - Confirmed cases by Jurisdiction. Available
12 13	494	online at: https://www.michigan.gov/coronavirus/0,9753,7-406-98163-520743
14 15 16	495	<u>,00.html</u> . Accessed April 20, 2020.
17 18	496	6. Blue Cross Blue Shield Collaborative Quality Initiatives. Available online at:
19 20	497	https://www.bcbsm.com/providers/value-partnerships/collaborative-quality-
21 22 22	498	initiatives.html. Accessed April 20, 2020.
23 24 25	499	7. Goyal P, Choi JJ, Pinheiro LC, et al. Clinical Characteristics of Covid-19 in New York
26 27	500	City. N Engl J Med 2020 doi: 10.1056/NEJMc2010419 [published Online First:
28 29	501	2020/04/18]
30 31 32	502	8. Bhatraju PK, Ghassemieh BJ, Nichols M, et al. Covid-19 in Critically III Patients in the
33 34	503	Seattle Region - Case Series. N Engl J Med 2020 doi: 10.1056/NEJMoa2004500
35 36	504	[published Online First: 2020/04/01]
37 38	505	9. Myers LC, Parodi SM, Escobar GJ, et al. Characteristics of Hospitalized Adults With
39 40 41	506	COVID-19 in an Integrated Health Care System in California. JAMA 2020 doi:
42 43	507	10.1001/jama.2020.7202 [published Online First: 2020/04/25]
44 45	508	10. Grasselli G, Zangrillo A, Zanella A, et al. Baseline Characteristics and Outcomes of
46 47 48	509	1591 Patients Infected With SARS-CoV-2 Admitted to ICUs of the Lombardy
49 50	510	Region, Italy. JAMA 2020 doi: 10.1001/jama.2020.5394 [published Online First:
51 52	511	2020/04/07]
53 54		
55 56 57		
58 59		2
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

1 2		
2 3 4	512	11. Xie J, Tong Z, Guan X, et al. Clinical Characteristics of Patients Who Died of
5 6	513	Coronavirus Disease 2019 in China. JAMA Netw Open 2020;3(4):e205619. doi:
7 8	514	10.1001/jamanetworkopen.2020.5619 [published Online First: 2020/04/11]
9 10 11	515	12. Gold JAW, Wong KK, Szablewski CM, et al. Characteristics and Clinical Outcomes
12 13	516	of Adult Patients Hospitalized with COVID-19 - Georgia, March 2020. MMWR
14 15	517	Morb Mortal Wkly Rep 2020;69(18):545-50. doi: 10.15585/mmwr.mm6918e1
16 17	518	[published Online First: 2020/05/08]
18 19 20	519	13. Bi Q, Wu Y, Mei S, et al. Epidemiology and transmission of COVID-19 in 391 cases
21 22	520	and 1286 of their close contacts in Shenzhen, China: a retrospective cohort
23 24	521	study. Lancet Infect Dis 2020 doi: 10.1016/S1473-3099(20)30287-5 [published
25 26 27 28 29 30 31 32 33 34	522	Online First: 2020/05/01]
	523	14. Sharfstein JM, Becker SJ, Mello MM. Diagnostic Testing for the Novel Coronavirus.
	524	JAMA 2020 doi: 10.1001/jama.2020.3864 [published Online First: 2020/03/10]
	525	15. Richardson S, Hirsch JS, Narasimhan M, et al. Presenting Characteristics,
34 35 36	526	Comorbidities, and Outcomes Among 5700 Patients Hospitalized With COVID-19
37 38	527	in the New York City Area. JAMA 2020 doi: 10.1001/jama.2020.6775 [published
39 40	528	Online First: 2020/04/23]
41 42 43	529	16. Bhimraj A, Morgan RL, Shumaker AH, et al. Infectious Diseases Society of America
43 44 45	530	Guidelines on the Treatment and Management of Patients with COVID-19. Clin
46 47	531	Infect Dis 2020 doi: 10.1093/cid/ciaa478 [published Online First: 2020/04/28]
48 49	532	17. Rice TW, Janz DR. In Defense of Evidence-Based Medicine for the Treatment of
50 51 52	533	COVID-19 ARDS. Ann Am Thorac Soc 2020 doi: 10.1513/AnnalsATS.202004-
53 54	534	325IP [published Online First: 2020/04/23]
55 56		
57 58		
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1

Page 26 of 45

2 3 4 5 6 7 8 9 10 11	535	18. Waterer GW, Rello J, Wunderink RG. SARS-CoV-2: First Do No Harm. Am J Respir
	536	Crit Care Med 2020 doi: 10.1164/rccm.202004-1153ED [published Online First:
	537	2020/04/21]
	538	19. Tang W, Cao Z, Han M, et al. Hydroxychloroquine in patients with mainly mild to
12 13	539	moderate coronavirus disease 2019: open label, randomised controlled trial. BMJ
14 15	540	2020;369:m1849. doi: 10.1136/bmj.m1849 [published Online First: 2020/05/16]
16 17 18	541	20. Mahevas M, Tran VT, Roumier M, et al. Clinical efficacy of hydroxychloroquine in
19 20	542	patients with covid-19 pneumonia who require oxygen: observational
21 22	543	comparative study using routine care data. BMJ 2020;369:m1844. doi:
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41	544	10.1136/bmj.m1844 [published Online First: 2020/05/16]
	545	21. Rosenberg ES, Dufort EM, Udo T, et al. Association of Treatment With
	546	Hydroxychloroquine or Azithromycin With In-Hospital Mortality in Patients With
	547	COVID-19 in New York State. JAMA 2020 doi: 10.1001/jama.2020.8630
	548	[published Online First: 2020/05/12]
	549	22. Bessiere F, Roccia H, Deliniere A, et al. Assessment of QT Intervals in a Case
	550	Series of Patients With Coronavirus Disease 2019 (COVID-19) Infection Treated
	551	With Hydroxychloroquine Alone or in Combination With Azithromycin in an
42 43	552	Intensive Care Unit. JAMA Cardiol 2020 doi: 10.1001/jamacardio.2020.1787
44 45	553	[published Online First: 2020/05/02]
46 47 49	554	23. Angus DC. Optimizing the Trade-off Between Learning and Doing in a Pandemic.
48 49 50	555	JAMA 2020 doi: 10.1001/jama.2020.4984 [published Online First: 2020/04/01]
51 52		
53 54		
55 56 57		
58 59		2
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

1 2			
3 4	556	24. Wells K. Hospitals Vary Treatment for Coronavirus Patients. National Public Radio)
5 6	557	2020;Available online at: https://www.npr.org/2020/05/18/857727140/hospitals-	
7 8 9	558	vary-treatment-for-coronavirus-patients. Accessed May 19, 2020.	
9 10 11	559	25. Imam Z, Odish F, Gill I, et al. Older age and comorbidity are independent mortality	,
12 13	560	predictors in a large cohort of 1305 COVID-19 patients in Michigan, United	
14 15	561	States. J Intern Med 2020;288(4):469-76. doi: 10.1111/joim.13119 [published	
16 17	562	Online First: 2020/06/05]	
18 19 20	563	26. Kim L, Garg S, O'Halloran A, et al. Risk Factors for Intensive Care Unit Admission	
21 22	564	and In-hospital Mortality Among Hospitalized Adults Identified through the US	
23 24 25	565	Coronavirus Disease 2019 (COVID-19)-Associated Hospitalization Surveillance	;
23 26 27	566	Network (COVID-NET). Clin Infect Dis 2021;72(9):e206-e14. doi:	
28 29	567	10.1093/cid/ciaa1012 [published Online First: 2020/07/17]	
30 31	568	27. Ko JY, Danielson ML, Town M, et al. Risk Factors for Coronavirus Disease 2019	
32 33 34	569	(COVID-19)-Associated Hospitalization: COVID-19-Associated Hospitalization	
35 36	570	Surveillance Network and Behavioral Risk Factor Surveillance System. Clin	
37 38	571	Infect Dis 2021;72(11):e695-e703. doi: 10.1093/cid/ciaa1419 [published Online	
39 40 41	572	First: 2020/09/19]	
42 43	573	28. Price-Haywood EG, Burton J, Fort D, et al. Hospitalization and Mortality among	
44 45	574	Black Patients and White Patients with Covid-19. N Engl J Med	
46 47 48	575	2020;382(26):2534-43. doi: 10.1056/NEJMsa2011686 [published Online First:	
48 49 50	576	2020/05/28]	
51 52	577	29. Donnelly JP, Wang XQ, Iwashyna TJ, et al. Readmission and Death After Initial	
53 54 55	578	Hospital Discharge Among Patients With COVID-19 in a Large Multihospital	
55 56 57			
58 59			2
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

BMJ Open

3 4	579	System. JAMA 2021;325(3):304-06. doi: 10.1001/jama.2020.21465 [published
5 6	580	Online First: 2020/12/15]
7 8 9	581	30. Mahase E. Covid-19: What do we know about "long covid"? BMJ 2020;370:m2815.
9 10 11	582	doi: 10.1136/bmj.m2815 [published Online First: 2020/07/16]
12 13	583	31. Richardson S, Hirsch JS, Narasimhan M, et al. Presenting Characteristics,
14 15 16	584	Comorbidities, and Outcomes Among 5700 Patients Hospitalized With COVID-19
17 18	585	in the New York City Area. JAMA 2020;323(20):2052-59. doi:
19 20	586	10.1001/jama.2020.6775 [published Online First: 2020/04/23]
21 22	587	32. Bhatraju PK, Ghassemieh BJ, Nichols M, et al. Covid-19 in Critically III Patients in
23 24 25	588	the Seattle Region - Case Series. N Engl J Med 2020;382(21):2012-22. doi:
26 27	589	10.1056/NEJMoa2004500 [published Online First: 2020/04/01]
28 29	590	
30 31 32	591	
33 34		
35 36		
37 38		
39 40		
41 42		
43 44		
45 46		
47		
48 49		
50		
51		
52 53		
55 54		
55		
56		
57		
58		
59 60		2 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
60		· ·· ·· ······························

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56 57

3	592	Table 1. Demographic and Clinical Characteristics of COVID-19 Positive Patients
ŀ	593	(n=1,024)
)	594	

Residence prior to hospitalization - no. (%) 824 (80.5%) Home Congregated living facility¹ 165 (16.1%) Sub-acute rehabilitation facility 9 (0.9%) Unknown 18 (1.8%) Admission location - no. (%) 951 (92.9%) Emergency department Transfer from Another Hospital 60 (5.9%) Direct admission 7 (0.7%) Median age (IQR) - yr 63.3 (50.9-74.4) Male Sex - no. (%) 533 (52.1%) Race - no. (%) Black 526 (51.4%) White 390 (38.1%) Unknown 45 (4.4%) 30 (2.9%) Asian 26 (2.5%) Other Native 4 (0.4%) Islander 3 (0.3%) Ethnicity - no. (%) Non-Hispanic 873 (85.3%) 30 (2.9%) Hispanic <u>117 (</u>11.4%) Unknown Insurance – no. (%) 497 (48.5%) Medicare Commercial 251 (24.5%) 128 (12.5%) Medicaid Self-pay 29 (2.8%) Other² 117 (11.4%) BMI - median (IQR) 30.6 (25.9-37.1) Smoking history - no. (%) Never 615 (60.2%) Former 279 (27.3%) Current 61 (6.0%) Unknown 65 (6.4%) Vaping history - no. (%) 645 (63.2%) Never Former 366 (35.8%) Current 6 (0.6%) Unknown 3 (0.3%) Coexisting disorder - no. (%) **Hypertension** 670 (65.4%) Diabetes 377 (36.8%) Cardiovascular Disease 266 (26.0%) Moderate/ Severe Kidney Disease 239 (23.3%) Asthma 132 (12.9%) CHF/Cardiomyopathy 131 (12.8%) Dementia 123 (12.0%) Chronic Obstructive Pulmonary Disease 115 (11.2%) Cerebrovascular disease/ paraplegia 97 (9.5%)

1 2 3
4 5
5 6 7
8
9 10
11 12
13 14
15 16
17 18
19 20
21
22 23
24 25
26 27
28 29
30 31
32
33 34
35 36
37 38
39 40
41 42
43 44
45
46 47
48 49
50 51
52 53
54 55
56 57
58
59

Cancer ³	77 (7.5%)
Peripheral Vascular Disorders	41 (4.0%)
Chronic Pulmonary Disease (non-asthma/COPD)	35 (3.4%)
Rheumatoid Arthritis	29 (2.8%)
Peptic Ulcer Disease	10 (1.0%)
HIV/AIDS	7 (0.7%)
Organ transplant	8 (0.8%)
Inflammatory Bowel Disease	8 (0.8%)
No reported comorbidities	152 (14.9%)
Home Medications	
ACE Inhibitors	180 (17.6%)
Steroids/immunosuppressive therapy	115 (11.3%)
ARBs	136 (13.3%)
NSAIDs	182 (17.8%)
Statins	378 (37.0%)
Beta Blockers	298 (29.2%)
Anticoagulants	149 (14.6%)
Oral Steroids ⁴	62 (6.1%)
Inhaled steroids	43 (4.2%)
Inhaled long-acting beta-agonist	30 (2.9%)
Inhaled long-acting anti-cholinergic	5 (0.5%)
Home oxygen therapy	36 (3.5%)
Duration of symptoms before admission, days - median (IQR)	6 (3-9)
Respiratory symptoms - no. (%)	, /
Cough (New or Worsening)	751 (73.3%)
Fever - no. (%)	735 (71.8%)
Fever (99.0 - 100.4 [F])	151 (14.7%)
Fever (>100.4 [F])	390 (38.1%)
Subjective fever	194 (18.9%)
Dyspnea / shortness of breath	739 (72.2%)
Nausea/vomiting or diarrhea	403 (39.4%)
Fatigue	361 (35.3%)
Myalgias	264 (25.8%)
Weakness	253 (24.7%)
Sputum production	146 (14.3%)
Altered Mental Status	144 (14.1%)
Non-pleuritic chest pain	100 (9.8%)
Generalized malaise	91 (8.9%)
Rhinorrhea	75 (7.3%)
Pleuritic chest pain	75 (7.3%)
No reported symptoms	14 (1.4%)
Sick contacts - no. (%)	381 (37.2%)
Known COVID-19 positive	244 (23.8%)
Unknown COVID-19 status	236 (23.0%)
ealthcare worker - no. (%)	72 (7.0%)
Service worker - no. (%) ⁵	59 (5.8%)
nitial location of admission - no. (%)	
General Medical/Surgical ward	608 (59.5%)
ICU	138 (13.5%)
Step-down unit	160 (15.7%)
Observation unit	115 (11.3%)
Missing/Unknown	3 (0.3%)
Admitted to COVID-19 specific (i.e., cohorted) unit	419 (40.9%)

Advanced Directives on admission

No CPR (intubation OK)

No intubation (CPR OK)

DNR/DNI

range

Abbreviations: COVID-19, coronavirus disease 2019; SE=standard error; IQR, inter-quartile

⁵ Service workers include food service, transportation, postal/delivery and other related fields.

¹ Includes assisted living, group home, skilled nursing facility, and homeless shelters,

correctional facilities, community living and inpatient psychiatric facilities.

³ Includes leukemia, lymphoma, hematologic cancer and any malignancy.

⁴ Includes oral prednisone, prednisolone, hydrocortisone and dexamethasone.

² Includes other payers, Michigan, out-of-state and government.

64 (6.3%)

19 (1.9%)

3 (0.3%)

d servic.

Table 2 – Clinical and Laboratory Data in COVID-19 Positive Patients by ICU-status 641 (n=1,024)

	Ever ICU (n = 232)	General Ward (n = 792)	р	
Vital signs on day of hospital admission, no. (%)				
Fever (>100.4 [F])	95 (40.9%)	295 (37.2%)	0.3073	
Hypoxia / new or escalated O2 requirement	142 (61.2%)	257 (32.4%)	<.0001	
Supplemental oxygen use	96 (41.4%)	145 (18.3%)	<.0001	
Respiratory rate > 20	139 (59.9%)	306 (38.6%)	<.0001	
Heart rate > 100 per minute	99 (42.7%)	321 (40.5%)	0.5596	
Systolic blood pressure < 100 mmHg	27 (11.6%)	45 (5.7%)	0.0018	
Day 1 laboratory measures, median (IQR)				
Hemoglobin	13.2 (11.4-14.7)	13.2 (12.0-14.6)	0.4573	
White blood cell count, K/uL	7.3 (5.5-9.7)	6.5 (4.8-8.4)	<.0001	
Absolute lymphocyte count, K/uL	0.80 (0.60-1.20)	1.00 (0.70-1.30)	0.3440	
Platelet count, K/uL	197 (149-256)	204 (159-268)	0.4875	
ALT, IU/L	32.0 (20.0-60.0)	27.0 (18.0-41.0)	0.2228	
Lactate, mmol/L	1.6 (1.2-2.5)	1.4 (1.0-1.8)	0.0010	
Troponin pg/mL	9 (0-38)	0 (0-12)	0.5872	
Brain Natriuretic Peptide (BNP), pg/mL	79 (34-236)	49 (18-157)	0.0088	
Procalcitonin, ng/mL	0.30 (0.17-0.94)	0.12 (0.06-0.29)	0.5054	
D-dimer, mg/L	2.88 (1.19-35.00)	1.65 (0.59-368.00)	0.8240	
Ferritin, ng/mL	872 (379-1531)	559 (237-1019)	0.1074	
CRP, mg/dL	24.3 (12.0-107.1)	13.8 (5.8-66.2)	0.0031	
LDH, IU/L	476 (337-668)	346 (254-455)	<.0001	
Creatinine, mg/dL	1.3 (1.0-2.0)	1.1 (0.8-1.5)	0.5736	
Total Bilirubin, mg/dL	0.6 (0.4-0.9)	0.5 (0.4-0.8)	0.7147	
Respiratory viral panel positive for non- COVID-19 respiratory virus	2 (0.9%)	7 (0.9%)	0.9443	
Positive blood culture within 1 day of admission	7 (3.0%)	9 (1.1%)	0.0422	
Positive respiratory culture within 1 day of admission	4 (1.7%)	4 (0.5%)	0.0636	
Any Chest imaging ¹	139 (59.9%)	389 (49.1%)	0.0038	
Chest X-ray	118 (50.9%)	322 (40.7%)	0.0058	
Chest Computed Tomography	34 (14.7%)	106 (13.4%)	0.6201	
Imaging findings - no. (%)				
Pneumonia	61 (26.3%)	100 (12.6%)	<.0001	
Non-specified opacities/air-space disease	84 (36.2%)	161 (20.3%)	<.0001	
Pleural effusion	32 (13.8%)	37 (4.7%)	<.0001	
Normal/no abnormalities	5 (2.2%)	30 (3.8%)	0.2287	
Pulmonary Edema	25 (10.8%)	29 (3.7%)	<.0001	
CT with Ground Glass Infiltrates	14 (6.0%)	58 (7.3%)	0.4995	

			1		
		Respiratory support on day of dmission - no. (%)			
		Invasive mechanical ventilation	46 (19.8%)	2 (0.3%)	<.0001
		Non-invasive positive pressure	5 (2.2%)	2 (0.3%)	0.0020
		HHFNC	5 (2.2%)	5 (2.2%)	0.1905
		Oxygen mask (>40%fio2)	17 (7.3%)	20 (2.6%)	0.0006
		Nasal cannula oxygen, 1-6L	76 (32.8%)	261 (33.0%)	0.9555
		No supplemental oxygen	83 (8.1%)	502 (49.0%)	<.0001
	Т	reatments during hospitalization - no.			
	(*	%)			
	C	Covid-19 Specific treatment(s)			
		Hydroxychloroquine	154 (66.4%)	364 (46.0%)	<.0001
		Hydroxychloroquine + Azithromycin	112 (48.3%)	260 (32.8%)	<.0001
		Vitamin C (PO or IV)	35 (15.1%)	68 (8.6%)	0.0038
		Remdesivir	7 (3.0%)	10 (1.3%)	0.0658
		IL-6 receptor inhibitor	27 (11.6%)	. (.%)	<.0001
	C	Corticosteroids ²	79 (34.1%)	143 (18.1%)	<.0001
	A	Antibiotics	213 (91.8%)	558 (70.5%)	<.0001
		Azithromycin	149 (64.2%)	415 (52.4%)	0.0014
		Ceftriaxone	124 (53.4%)	345 (43.6%)	0.0079
		Cefepime	90 (38.8%)	79 (10.0%)	<.0001
		Doxycycline	37 (15.9%)	111 (14.0%)	0.4615
		Vancomycin	115 (49.6%)	106 (13.4%)	<.0001
		Linezolid	12 (5.2%)	8 (1.0%)	<.0001
		Anti-pseudomonals ³	123 (53.0%)	115 (14.5%)	<.0001
			123 (33.0 /0)		
	A	•		· · · · · · · · · · · · · · · · · · ·	
	E	The pseudomonals ² Antivirals ⁴ Enrolled in clinical trial Abbreviations: COVID-19=coronavirus dise	1 (0.4%) 10 (4.3%)	13 (1.6%) 12 (1.5%)	0.1626
	E A e 1 2 3 to	Intivirals ⁴ Enrolled in clinical trial Abbreviations: COVID-19=coronavirus dise error. Includes chest imaging results 7 days befo Hydrocortisone, Methylprednisolone, pred Cefepime, gentamicin, imipenem, merope obramycin	1 (0.4%) 10 (4.3%) ase 2019; HHFNC=hea bre hospital encounter nisolone or prednisone nem, piperacillin-tazob	13 (1.6%) 12 (1.5%) ated high flow nasal cann actam, ceftazadime, aztre	0.1626 0.0098 ula; SE=standard
643	E A e 1 2 3 tc 4	Intivirals ⁴ Enrolled in clinical trial Abbreviations: COVID-19=coronavirus dise error. Includes chest imaging results 7 days befor Hydrocortisone, Methylprednisolone, pred Cefepime, gentamicin, imipenem, merope	1 (0.4%) 10 (4.3%) ase 2019; HHFNC=hea bre hospital encounter nisolone or prednisone nem, piperacillin-tazob	13 (1.6%) 12 (1.5%) ated high flow nasal cann actam, ceftazadime, aztre	0.1626 0.0098 ula; SE=standard
643	E A e 1 2 3 tc 4	Intivirals ⁴ Enrolled in clinical trial Abbreviations: COVID-19=coronavirus dise error. Includes chest imaging results 7 days befo Hydrocortisone, Methylprednisolone, pred Cefepime, gentamicin, imipenem, merope obramycin	1 (0.4%) 10 (4.3%) ase 2019; HHFNC=hea bre hospital encounter nisolone or prednisone nem, piperacillin-tazob	13 (1.6%) 12 (1.5%) ated high flow nasal cann actam, ceftazadime, aztre	0.1626 0.0098 ula; SE=standard
644	E A e 1 2 3 tc 4	Intivirals ⁴ Enrolled in clinical trial Abbreviations: COVID-19=coronavirus dise error. Includes chest imaging results 7 days befo Hydrocortisone, Methylprednisolone, pred Cefepime, gentamicin, imipenem, merope obramycin	1 (0.4%) 10 (4.3%) ase 2019; HHFNC=hea bre hospital encounter nisolone or prednisone nem, piperacillin-tazob	13 (1.6%) 12 (1.5%) ated high flow nasal cann actam, ceftazadime, aztre	0.1626 0.0098 ula; SE=standard
644 645	E A e 1 2 3 tc 4	Intivirals ⁴ Enrolled in clinical trial Abbreviations: COVID-19=coronavirus dise error. Includes chest imaging results 7 days befo Hydrocortisone, Methylprednisolone, pred Cefepime, gentamicin, imipenem, merope obramycin	1 (0.4%) 10 (4.3%) ase 2019; HHFNC=hea bre hospital encounter nisolone or prednisone nem, piperacillin-tazob	13 (1.6%) 12 (1.5%) ated high flow nasal cann actam, ceftazadime, aztre	0.1626 0.0098 ula; SE=standard
644 645 646	E A e 1 2 3 tc 4	Intivirals ⁴ Enrolled in clinical trial Abbreviations: COVID-19=coronavirus dise error. Includes chest imaging results 7 days befo Hydrocortisone, Methylprednisolone, pred Cefepime, gentamicin, imipenem, merope obramycin	1 (0.4%) 10 (4.3%) ase 2019; HHFNC=hea bre hospital encounter nisolone or prednisone nem, piperacillin-tazob	13 (1.6%) 12 (1.5%) ated high flow nasal cann actam, ceftazadime, aztre	0.1626 0.0098 ula; SE=standard
644 645 646 647	E A e 1 2 3 tc 4	Intivirals ⁴ Enrolled in clinical trial Abbreviations: COVID-19=coronavirus dise error. Includes chest imaging results 7 days befo Hydrocortisone, Methylprednisolone, pred Cefepime, gentamicin, imipenem, merope obramycin	1 (0.4%) 10 (4.3%) ase 2019; HHFNC=hea bre hospital encounter nisolone or prednisone nem, piperacillin-tazob	13 (1.6%) 12 (1.5%) ated high flow nasal cann actam, ceftazadime, aztre	0.1626 0.0098 ula; SE=standard
644 645 646 647 648	E A e 1 2 3 tc 4	Intivirals ⁴ Enrolled in clinical trial Abbreviations: COVID-19=coronavirus dise error. Includes chest imaging results 7 days befo Hydrocortisone, Methylprednisolone, pred Cefepime, gentamicin, imipenem, merope obramycin	1 (0.4%) 10 (4.3%) ase 2019; HHFNC=hea bre hospital encounter nisolone or prednisone nem, piperacillin-tazob	13 (1.6%) 12 (1.5%) ated high flow nasal cann actam, ceftazadime, aztre	0.1626 0.0098 ula; SE=standard
644 645 646 647 648 649	E A e 1 2 3 tc 4	Intivirals ⁴ Enrolled in clinical trial Abbreviations: COVID-19=coronavirus dise error. Includes chest imaging results 7 days befo Hydrocortisone, Methylprednisolone, pred Cefepime, gentamicin, imipenem, merope obramycin	1 (0.4%) 10 (4.3%) ase 2019; HHFNC=hea bre hospital encounter nisolone or prednisone nem, piperacillin-tazob	13 (1.6%) 12 (1.5%) ated high flow nasal cann actam, ceftazadime, aztre	0.1626 0.0098 ula; SE=standard
644 645 646 647 648 649 650	E A e 1 2 3 tc 4	Intivirals ⁴ Enrolled in clinical trial Abbreviations: COVID-19=coronavirus dise error. Includes chest imaging results 7 days befo Hydrocortisone, Methylprednisolone, pred Cefepime, gentamicin, imipenem, merope obramycin	1 (0.4%) 10 (4.3%) ase 2019; HHFNC=hea bre hospital encounter nisolone or prednisone nem, piperacillin-tazob	13 (1.6%) 12 (1.5%) ated high flow nasal cann actam, ceftazadime, aztre	0.1626 0.0098 ula; SE=standard
644 645 646 647 648 649	E A e 1 2 3 tc 4	Intivirals ⁴ Enrolled in clinical trial Abbreviations: COVID-19=coronavirus dise error. Includes chest imaging results 7 days befo Hydrocortisone, Methylprednisolone, pred Cefepime, gentamicin, imipenem, merope obramycin	1 (0.4%) 10 (4.3%) ase 2019; HHFNC=hea ore hospital encounter nisolone or prednisone nem, piperacillin-tazob	13 (1.6%) 12 (1.5%) ated high flow nasal cann actam, ceftazadime, aztre	0.1626 0.0098 ula; SE=standard
644 645 646 647 648 649 650	E A e 1 2 3 tc 4	Intivirals ⁴ Enrolled in clinical trial Abbreviations: COVID-19=coronavirus dise error. Includes chest imaging results 7 days befo Hydrocortisone, Methylprednisolone, pred Cefepime, gentamicin, imipenem, merope obramycin	1 (0.4%) 10 (4.3%) ase 2019; HHFNC=hea ore hospital encounter nisolone or prednisone nem, piperacillin-tazob	13 (1.6%) 12 (1.5%) ated high flow nasal cann actam, ceftazadime, aztre	0.1626 0.0098 ula; SE=standard
644 645 646 647 648 649 650 651	E A e 1 2 3 tc 4	Intivirals ⁴ Enrolled in clinical trial Abbreviations: COVID-19=coronavirus dise error. Includes chest imaging results 7 days befo Hydrocortisone, Methylprednisolone, pred Cefepime, gentamicin, imipenem, merope obramycin	1 (0.4%) 10 (4.3%) ase 2019; HHFNC=hea ore hospital encounter nisolone or prednisone nem, piperacillin-tazob	13 (1.6%) 12 (1.5%) ated high flow nasal cann actam, ceftazadime, aztre	0.1626 0.0098 ula; SE=standard
644 645 646 647 648 649 650 651 652 653	E A e 1 2 3 tc 4	Intivirals ⁴ Enrolled in clinical trial Abbreviations: COVID-19=coronavirus dise error. Includes chest imaging results 7 days befo Hydrocortisone, Methylprednisolone, pred Cefepime, gentamicin, imipenem, merope obramycin	1 (0.4%) 10 (4.3%) ase 2019; HHFNC=hea ore hospital encounter nisolone or prednisone nem, piperacillin-tazob	13 (1.6%) 12 (1.5%) ated high flow nasal cann actam, ceftazadime, aztre	0.1626 0.0098 ula; SE=standard
644 645 646 647 648 649 650 651 652 653 654	E A e 1 2 3 tc 4	Intivirals ⁴ Enrolled in clinical trial Abbreviations: COVID-19=coronavirus dise error. Includes chest imaging results 7 days befo Hydrocortisone, Methylprednisolone, pred Cefepime, gentamicin, imipenem, merope obramycin	1 (0.4%) 10 (4.3%) ase 2019; HHFNC=hea ore hospital encounter nisolone or prednisone nem, piperacillin-tazob	13 (1.6%) 12 (1.5%) ated high flow nasal cann actam, ceftazadime, aztre	0.1626 0.0098 ula; SE=standard
644 645 646 647 648 649 650 651 652 653 654 655	E A e 1 2 3 tc 4	Intivirals ⁴ Enrolled in clinical trial Abbreviations: COVID-19=coronavirus dise error. Includes chest imaging results 7 days befo Hydrocortisone, Methylprednisolone, pred Cefepime, gentamicin, imipenem, merope obramycin	1 (0.4%) 10 (4.3%) ase 2019; HHFNC=hea ore hospital encounter nisolone or prednisone nem, piperacillin-tazob	13 (1.6%) 12 (1.5%) ated high flow nasal cann actam, ceftazadime, aztre	0.1626 0.0098 ula; SE=standard
644 645 646 647 648 649 650 651 652 653 654	E A e 1 2 3 tc 4	Intivirals ⁴ Enrolled in clinical trial Abbreviations: COVID-19=coronavirus dise error. Includes chest imaging results 7 days befo Hydrocortisone, Methylprednisolone, pred Cefepime, gentamicin, imipenem, merope obramycin	1 (0.4%) 10 (4.3%) ase 2019; HHFNC=hea ore hospital encounter nisolone or prednisone nem, piperacillin-tazob	13 (1.6%) 12 (1.5%) ated high flow nasal cann actam, ceftazadime, aztre	0.1626 0.0098 ula; SE=standard
644 645 646 647 648 649 650 651 652 653 654 655	E A e 1 2 3 tc 4	Intivirals ⁴ Enrolled in clinical trial Abbreviations: COVID-19=coronavirus dise error. Includes chest imaging results 7 days befo Hydrocortisone, Methylprednisolone, pred Cefepime, gentamicin, imipenem, merope obramycin	1 (0.4%) 10 (4.3%) ase 2019; HHFNC=hea ore hospital encounter nisolone or prednisone nem, piperacillin-tazob	13 (1.6%) 12 (1.5%) ated high flow nasal cann actam, ceftazadime, aztre	0.1626 0.0098 ula; SE=standard
644 645 646 647 648 649 650 651 652 653 654 655	E A e 1 2 3 tc 4	Intivirals ⁴ Enrolled in clinical trial Abbreviations: COVID-19=coronavirus dise error. Includes chest imaging results 7 days befo Hydrocortisone, Methylprednisolone, pred Cefepime, gentamicin, imipenem, merope obramycin	1 (0.4%) 10 (4.3%) ase 2019; HHFNC=hea ore hospital encounter nisolone or prednisone nem, piperacillin-tazob	13 (1.6%) 12 (1.5%) ated high flow nasal cann actam, ceftazadime, aztre	0.1626 0.0098 ula; SE=standard
644 645 646 647 648 649 650 651 652 653 654 655	E A e 1 2 3 tc 4	Intivirals ⁴ Enrolled in clinical trial Abbreviations: COVID-19=coronavirus dise error. Includes chest imaging results 7 days befo Hydrocortisone, Methylprednisolone, pred Cefepime, gentamicin, imipenem, merope obramycin	1 (0.4%) 10 (4.3%) ase 2019; HHFNC=hea pre hospital encounter nisolone or prednisone nem, piperacillin-tazob nivir, Lopinavir/Ritonav	13 (1.6%) 12 (1.5%) ated high flow nasal cann actam, ceftazadime, aztro <u>vir, Ribavirin, others</u>	0.1626 0.0098 ula; SE=standard

Table 3. Organ support for COVID-19 Positive Patients by Discharge Status (n=1,024)

232 (22.7%)		Hospital n = 219
	101 (12.5%)	131 (59.8%
	· · ·	
161 (15.7%)	47 (5.8%)	114 (52.1%
27 (2.6%)	10 (1.2%)	17 (7.8%)
90 (8.8%)	57 (7.1%)	33 (15.1%)
159 (15.5%)	76 (9.4%)	83 (37.9%)
	, <i>r</i>	
161 (15.7%)	47 (5.8%)	114 (52.1%
15 (1.5%)	6 (0.7%)	9 (4.1%)
60 (5.9%)	40 (5.0%)	20 (9.1%)
88 (8.6%)		40 (18.3%)
	415 (51.6%)	26 (11.9%)
	249 (30.9%)	10 (4.6%)
		, <i>,</i> ,
126 (12.3%)	34 (4.2%)	92 (42%)
		17 (7.8%)
		44 (20.1%)
. ,	· · ·	7 (3.2%)
	14 (1.7%)	12 (5.5%)
		4 (1.8%)
	· · ·	26 (11.9%)
		7 (3.2%)
141 (13.8%)	35 (4.3%)	106 (48.4%
		36 (16.4%)
		16 (7.3%)
28 (2.7%)		13 (5.9%)
41 (4.0%)		40 (18.3%)
	90 (8.8%) 159 (15.5%) 161 (15.7%) 15 (1.5%) 60 (5.9%) 88 (8.6%) 441 (43.1%) 259 (25.3%) 126 (12.3%) 30 (2.9%) 86 (8.4%) 16 (1.6%) 26 (2.5%) 24 (2.3%) 170 (16.6%) 287 (28%) 141 (13.8%) 53 (5.2%) 17 (1.7%) 28 (2.7%) 41 (4.0%)	90 (8.8%) $57 (7.1%)$ $159 (15.5%)$ $76 (9.4%)$ $161 (15.7%)$ $47 (5.8%)$ $15 (1.5%)$ $6 (0.7%)$ $60 (5.9%)$ $40 (5.0%)$ $88 (8.6%)$ $48 (6.0%)$ $441 (43.1%)$ $415 (51.6%)$ $259 (25.3%)$ $249 (30.9%)$ $126 (12.3%)$ $34 (4.2%)$ $30 (2.9%)$ $13 (1.6%)$ $86 (8.4%)$ $42 (5.2%)$ $16 (1.6%)$ $9 (1.1%)$ $26 (2.5%)$ $14 (1.7%)$ $24 (2.3%)$ $20 (2.5%)$ $170 (16.6%)$ $144 (17.9%)$ $287 (28%)$ $280 (34.8%)$ $141 (13.8%)$ $35 (4.3%)$ $53 (5.2%)$ $17 (2.1%)$ $17 (1.7%)$ $1 (0.1%)$ $28 (2.7%)$ $15 (1.9%)$

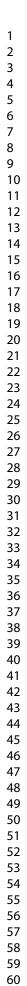
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

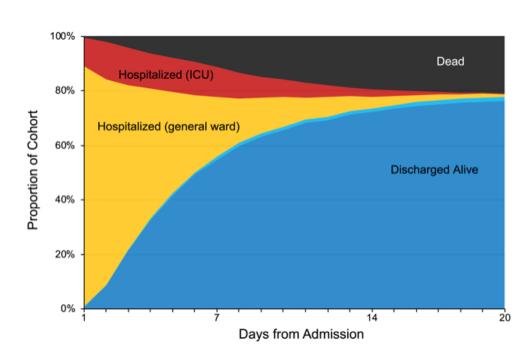
1 2 3 4 5 6 7	667 668 669 670
8 9 10 11 12 13 14 15	671 672
16 17 18 19 20 21 22	
23 24 25 26 27 28 29 30	
31 32 33 34 35 36 37	
38 39 40 41 42 43 44 45	
46 47 48 49 50 51 52	
53 54 55 56 57 58 59 60	

669 Table 4. Variation in Clinical Care and Outcomes in COVID-19 Positive Patients Across 570 Hospitals 571

	Range across Hospitals							
	Min	10 th Pctl	25th Pctl	Median	75th Pctl	90th Pctl	Max	p1
Patient characteristics								
Age >65, %	30.2	35.3	39.6	51.3	56.8	64.4	65.5	<.000
Black, %	0.0	17.7	29.7	46.2	76.4	93.7	94.6	<.000
Male, %	39.2	45.6	47.1	53.0	56.8	72.4	73.8	0.07
Charlson comorbidity index, median	0.0	1.0	1.0	1.0	1.0	2.0	2.0	0.01
BMI, median	24.3	28.4	29.5	31.1	33.3	36.5	36.9	0.09
Age, median in years	39.0	46.5	60.8	62.4	66.4	73.5	76.0	<.000
Admission information, %								
Hospital-to-hospital transfer	0.0	0.0	0.0	0.00	2.8	10.7	20.9	<.000
Admitted directly to ICU	0.0	0.0	2.9	6.15	14.8	20.5	43.8	<.000
Transferred from floor to ICU	0.0	0.0	0.0	8.4	17.6	18.8	24.1	0.09
Admitted to a Cohorted unit	0.0	2.1	18.6	67.9	85.71	96.3	97.1	<.000
Severe illness on presentation ²	0.0	0.00	0.00	0.0	3.7	7.1	7.7	0.09
Vasopressor use on day 1	0.0	0.00	0.00	2.1	6.4	10.3	14.8	0.04
Mechanical ventilation on day 1	0.0	0.00	0.00	2.51	8.6	11.1	12.8	0.03
Treatment, %								
Treated in a Cohorted Unit	0.0	0.00	6.3	57.1	90.9	100.0	100.0	<.000
Treated in an ICU	4.2	5.4	14.0	19.1	31.0	38.5	62.5	<.000
COVID-19 Specific treatment	32.4	57.1	69.2	76.4	81.4	90.2	96.3	<.000
Concurrent antibiotic and COVID-19								
specific treatment(s)	24.3	42.9	59.4	69.8	76.7	84.3	96.3	<.000
Hydroxychloroquine	13.5	31.4	42.3	59.7	65.5	81.5	82.4	<.000
Mechanical ventilation	2.1	2.7	6.4	10.9	31.0	38.5	40.6	<.000
Vasopressors	2.2	2.9	7.0	12.1	25.0	32.1	32.5	<.000
CPR before death	0.0	0.0	8.3	14.3	33.3	40.0	66.7	0.010
Outcomes, %								
Days of mechanical ventilation, median ³	1.0	1.0	1.0	5.0	8.0	8.0	9.0	0.01
Length of stay, median	2.0	3.0		4.5	6.0	8.0	9.0 8.5	<.000
ICU length of stay, median ⁴	1.0	2.0	3.0 3.5	4.5 5.0	6.5	7.5	8.5 9.5	
DVT	0.0	0.0	0.0	0.0	2.1	3.5	9.5 7.1	0.01
VTE								
PE	0.0	0.0	0.0	2.9	5.2	6.3	10.7	0.20
Discharge status, %	0.0	0.0	0.0	1.8	3.9	6.3	7.1	0.72
Death	7.0	0.0	14.0	04.0	21.0		457	~ 000
	7.9	8.3	14.6	21.3	31.0	41.4	45.7	<.000
Transferred to another hospital	0.0	0.0	0.0	0.0	1.6	2.7	5.1	C

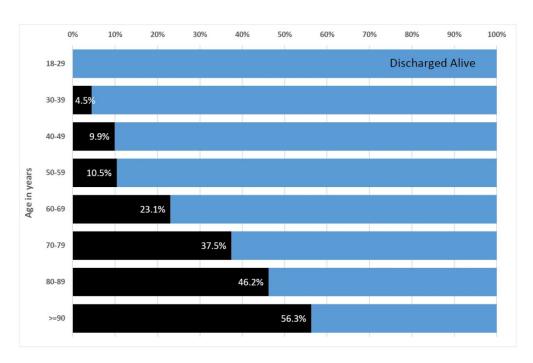
2		Discharged home	40.0	40.0	00.4	07.5	70.0		00.5	10001
4		¹ Differences across hospitals were tes	42.3	48.2 he Kruska	62.1 –Wallis t	67.5	72.9	80.0 80.0	82.5 d Pearso	<.0001 n chi-
5		square test for categorical variables.	-							
6 7		² Defined as admission to ICU on day 1	of hospita	lization an	d treatm	ent with bot	h mecha	nical ventil	ation and	
8		vasopressors.	lation							
9		 ³ For patients ever on mechanical venti ⁴ For patients ever in ICU 	ation							
10		* Variables marked with asterisk repres	ent variatio	on from the	e demogr	aphic coho	rt			
11		Abbreviations: BMI=body mass index; I	CU=intens	ive care u	nit; CPR	=cardiopuln		suscitation	; DVT=de	ep vein
12 13		thrombosis; VTE=venous thromboembo	olism; PE=	pulmonary	embolis	m				
14	673									
15	674									
16	675 676									
17	676 677									
18 19	678									
20	679									
21	680									
22	681									
23 24	682									
24 25										
26										
27										
28 29										
29 30										
31										
32										
33										
34 35										
36										
37										
38										
39 40										
41										
42										
43										
44 45										
45										
47										
48										
49 50										
50 51										
52										
53										
54										
55 56										
57										
58										
59		For poor review or he	http://kmai-	non hmi -	nn/cita/-	bout/auta-	inor yhter	J	3.	
60		For peer review only -	nup://bmj0	pen.pmJ.C	JII/SILE/a	bout/guidel	mes.xntm	I		


683 Figure Legend 1


684
685 Legend. Figure depicts the proportion of the N=1024 patient cohort who are hospitalized on
686 general care/ward (yellow), hospitalized in ICU (red), discharged alive (blue), transferred to a
687 new hospital (light blue) and deceased over time to day 20 of hospital admission.

689 Figure Legend 2

Legend. Graph depicts the proportion of the demographic cohort (*n*-1593) who died in hospital by decade of age. Black shading indicates death whereas blue shading indicates discharge alive.


- to occurrences on the second

Caption : Caption : Figure 1. Proportion of COVID-19 Positive Patients in hospital, ICU, dead, and discharged over time (n=1,024)Legend. Figure depicts the proportion of the N=1024 patient cohort who are hospitalized on general care/ward (yellow), hospitalized in ICU (red), discharged alive (blue), transferred to a new hospital (light blue) and deceased over time to day 20 of hospital admission.

27x17mm (600 x 600 DPI)

Caption : Caption : Figure 2. Mortality rate for COVID-19 positive patients by decade of age (demographic data cohort, n=1,593) Legend. Graph depicts the proportion of the demographic cohort (n-1593) who died in hospital by decade of age. Black shading indicates death whereas blue shading indicates discharge alive.

116x75mm (300 x 300 DPI)

MI-COVID19 Sites

5 6 7	Hospital	Bed Size ¹	Total Patient Discharges ²	Teaching Hospital Status	Ownership Status ³	Location ⁴
8 9	Hospital 1	632	30354	Yes	Voluntary non-profit - Private	Metropolitan
10 11	Hospital 2	330	13159	Yes	Voluntary non-profit - Private	Metropolitan
12 13	Hospital 3	250	12186	Yes	Voluntary non-profit - Private	Metropolitan
14 15	Hospital 4	1070	61758	Yes	Voluntary non-profit - Private	Metropolitan
16 17	Hospital 5	189	6142	Yes	Voluntary non-profit - Private	Metropolitan
18 19	Hospital 6	193	9816	Yes	Voluntary non-profit - Private	Metropolitan
20 21	Hospital 7	458	34863	Yes	Voluntary non-profit - Private	Metropolitan
22 23	Hospital 8	215	7797	Yes	Voluntary non-profit - Private	Metropolitan
24 25	Hospital 9	179	7254	No	Proprietary	Metropolitan
26 27	Hospital 10	434	26705	Yes	Voluntary non-profit - Private	Metropolitan
28 29	Hospital 11	273	10815	Yes	Proprietary	Metropolitan
30 31	Hospital 12	584	19882	Yes	Proprietary	Metropolitan
32	Hospital 13	189	8639	No	Voluntary non-profit - Private	Metropolitan
33 34	Hospital 14	443	17240	Yes	Voluntary non-profit - Other	Metropolitan
35 36	Hospital 15	158	7704	Yes	Proprietary	Metropolitan
37 38	Hospital 16	317	15093	Yes	Voluntary non-profit - Private	Metropolitan
39 40 41	Hospital 17	378	17969	Yes	Voluntary non-profit - Private	Metropolitan

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 41 of 45

BMJ Open

Hospital	Bed Size ¹	Total Patient Discharges ²	Teaching Hospital Status	Ownership Status ³	Location ^₄
Hospital 18	196	9307	No	Voluntary non-profit - Private	Metropolitan
Hospital 19	283	15855	Yes	Voluntary non-profit - Church	Metropolitan
) Hospital 20	208	10476	Yes	Voluntary non-profit - Private	Metropolitan
Hospital 21	1059	44920	Yes	Voluntary non-profit - Private	Metropolitan
Hospital 22	139	4362	No	Proprietary	Micropolitan
Hospital 23	79	3349	Yes	Voluntary non-profit - Private	Micropolitan
B Hospital 24	328	15767	Yes	Voluntary non-profit - Other	Metropolitan
Hospital 25	391	21759	Yes	Voluntary non-profit - Other	Micropolitan
Hospital 26	537	30614	Yes	Voluntary non-profit - Church	Metropolitan
Hospital 27	133	3763	No	Voluntary non-profit - Private	Metropolitan
Hospital 28	136	2767	Yes	Voluntary non-profit - Other	Metropolitan
Hospital 29	443	19102	Yes	Voluntary non-profit - Private	Metropolitan
Hospital 30	304	15804	Yes	Voluntary non-profit - Private	Metropolitan
Hospital 31	404	18345	Yes	Proprietary	Metropolitan
Hospital 32	109	32636	Yes	Voluntary non-profit - Other	Metropolitan

¹Data obtained from 2015 Michigan Certificate of Need Annual Survey, Basic Total Licensed Beds Utilization Statistics. Retrieved 3/21/2017 from http://www.michigan.gov/documents/mdhhs/Report_011 - Licensed_Beds_in_Hospitals_by_County_538170_7.pdf ²Data obtained from American Hospital Directory, Inc.'s Individual Hospital Statistics for Michigan. Retrieved 6/1/2020 from https://www.ahd.com/states/hospital MI.html

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

³Data obtained from data.medicare.gov; Hospital General Information. Retrieved from 06/03/2020 from <u>https://data.cms.gov/provider-data/dataset/xubh-q36u</u>

⁴Data obtained from <u>https://www2.census.gov/geo/maps/metroarea/stcbsa_pg/Feb2013/cbsa2013_MI.pdf</u>

* The American Hospital Directory reports data for Ascension Providence Hospital, Novi Campus and Ascension Providence Hospital, Southfield Campus together, so individual discharge numbers and teaching status for these two sites was not available. The data presented in this table represents numbers for both of these sites combined.

Appendix: Availability	of Laboratory Tests
------------------------	---------------------

Variable	N	% missing
Hemoglobin (Hgb)	959	6.3%
WBC *	959	6.3%
Absolute Lymphocyte Count *	776	24.2%
Platelet	957	6.5%
ALT *	803	21.6%
Lactate	586	42.8%
Troponin	588	42.6%
Brain Natriuretic Peptide (BNP)	282	72.5%
Procalcitonin	434	57.6%
D-dimer	333	67.5%
Ferritin *	419	59.1%
CRP *	460	55.1%
Lactic Acid Dehydrogenase (LDH)	392	61.7%
pH* (imputed)	326	68.2%
Creatinine *	956	6.6%
Total Bilirubin	777	24.1%

BMJ Open

STROBE (Strengthening The Reporting of OBservational Studies in Epidemiology) Checklist

A checklist of items that should be included in reports of observational studies. You must report the page number in your manuscript where you consider each of the items listed in this checklist. If you have not included this information, either revise your manuscript accordingly before submitting or note N/A.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.annals.org/, and Epidemiology at http://www.strobe-statement.org.

Section and Item	ltem No.	Recommendation	Reported or Page No.
Title and Abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract	
		(b) Provide in the abstract an informative and balanced summary of what was	
		done and what was found	
Introduction			
Background/Rationale	2	Explain the scientific background and rationale for the investigation being reported	
Objectives	3	State specific objectives, including any prespecified hypotheses	
		\sim	
Methods Study Design	4	Present key elements of study design early in the paper	
Study Design	4	Present key elements of study design early in the paper	
Setting	5	Describe the setting, locations, and relevant dates, including periods of	
		recruitment, exposure, follow-up, and data collection	
Participants	6	(a) Cohort study—Give the eligibility criteria, and the sources and methods of	
		selection of participants. Describe methods of follow-up	
		<i>Case-control study</i> —Give the eligibility criteria, and the sources and methods of	
		case ascertainment and control selection. Give the rationale for the choice of	
		cases and controls	
		<i>Cross-sectional study</i> —Give the eligibility criteria, and the sources and methods of	
		selection of participants	
		(b) Cohort study—For matched studies, give matching criteria and number of	
		exposed and unexposed	
		<i>Case-control study</i> —For matched studies, give matching criteria and the number	
		of controls per case	
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and	
		effect modifiers. Give diagnostic criteria, if applicable	

Section and Item	ltem No.	Recommendation	Reported Page No
Data Sources/	8*	For each variable of interest, give sources of data and details of methods of	
Measurement		assessment (measurement). Describe comparability of assessment methods if	
		there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	
Study Size	10	Explain how the study size was arrived at	
Quantitative Variables	11	Explain how quantitative variables were handled in the analyses. If applicable,	
		describe which groupings were chosen and why	
Statistical Methods	12	(a) Describe all statistical methods, including those used to control for	
		confounding	
		(b) Describe any methods used to examine subgroups and interactions	
		(c) Explain how missing data were addressed	
		(d) Cohort study—If applicable, explain how loss to follow-up was addressed	
		<i>Case-control study</i> —If applicable, explain how matching of cases and controls was	
		addressed	
		<i>Cross-sectional study</i> —If applicable, describe analytical methods taking account of	
		sampling strategy	
		(e) Describe any sensitivity analyses	
Results			
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially	
		eligible, examined for eligibility, confirmed eligible, included in the study,	
		completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	
		(c) Consider use of a flow diagram	
Descriptive Data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and	
		information on exposures and potential confounders	
		(b) Indicate number of participants with missing data for each variable of interest	
		(c) Cohort study—Summarise follow-up time (eg, average and total amount)	
Outcome Data	15*	Cohort study—Report numbers of outcome events or summary measures over	
		time	
		Case-control study—Report numbers in each exposure category, or summary	
		measures of exposure	
		<i>Cross-sectional study</i> —Report numbers of outcome events or summary measures	

Section and Item	ltem No.	Recommendation	Reported or Page No.
Main Results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates	
		and their precision (eg, 95% confidence interval). Make clear which confounders	
		were adjusted for and why they were included	
		(b) Report category boundaries when continuous variables were categorized	
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a	
		meaningful time period	
Other Analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and	
		sensitivity analyses	
Discussion			
			1
Key Results	18	Summarise key results with reference to study objectives	
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or	
		imprecision. Discuss both direction and magnitude of any potential bias	
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations,	
		multiplicity of analyses, results from similar studies, and other relevant evidence	
Generalisability	21	Discuss the generalisability (external validity) of the study results	
Other Information			
Funding	22	Give the source of funding and the role of the funders for the present study and, if	
		applicable, for the original study on which the present article is based	
*Give information sepa	arately for	cases and controls in case-control studies and, if applicable, for exposed and unexpos	ed groups in
cohort and cross-section	onal studie	25.	
•		hecklist, please save a copy and upload it as part of your submission. DO NOT includ	e this
checklist as part of the	e main ma	nuscript document. It must be uploaded as a separate file.	