Supplementary Materials for

Molecular insights into the human ABCB6 transporter

Guangyuan Song^{1*}, Sensen Zhang^{1*}, Mengqi Tian^{1*}, Laixing Zhang^{1*}, Runyu Guo¹, Wei Zhuo¹, Maojun Yang^{1#}

¹Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China.

*These authors contribute equally to this work.

[#]To whom correspondence should be addressed.

This file includes:

Supplementary Figs. S1 to S11 Supplementary Table S1

Supplementary Figures and Figure legends

Supplementary Fig. S1 Reconstruction and structure determination of the apostate hABCB6.

a, Representative cryo-EM micrograph of apo-state hABCB6 in nanodisc.

b, 2D class averages of the apo-state hABCB6 sample in nanodisc.

c, The workflow of 2D/3D reconstruction with apo-state hABCB6 cryo-EM data. In brief, 1,450 k particles were kept after 2D classification, and subjected to three rounds of 3D classification. A final dataset containing 260 k particles were used for high-resolution refinement (see methods for more details).

d, Gold-standard Fourier Shell correlation (FSC) curve of apo state hABCB6 after 3D refinement. The resolution estimation was based on the criterion of FSC 0.143 cutoff. **e**, Angular distribution of the apo-state hABCB6 final reconstruction.

Supplementary Fig. S2 The interactions within two hABCB6 monomers.

- **a**, The interaction between TM2 and TM5 from two neighboring monomers.
- **b**, The interaction between the "plug" and TM6 from two neighboring monomers.

ABCB6 ABCB7 ABCB1 HMT1 ATM1	1 MVTVGNY MVLRY	10 CEAEGPVG 	20 PAWMQDGLSPCI	30 FFFTLVPSTRM LELVLLYVGFF	40 ALGTLALVL SIGSLNLLQKRKAT	50 ALPCRRRE SDPYRRKNRFGK	60 70 RPAGADSLSWGAGPRIS .LLAMHSWRWAAAAA. EPIGIISW.WILGIAL.
ABCB6 ABCB7 ABCB1 HMT1 ATM1	PYVLQLL AFEKRR. TYVVDI.	80 LATLQAAL .HSAILIR S MLLL	90 PLAGLAGRVGTI PLVSVSGSGP NLVIYALRV. PRCPVIGRIV.	LOO 1 ARGAPLPSYLL	10 120 LASVLESLAGACGL CKTTVVCLILFLLF	130 WLLVVERSQARQ WIIVLISCADSK	140, 150 RLAMGIWIKFRH.SPGL QWRPHQLGA QWRPHQLGA RSKFRSGL
ABCB6 ABCB7 ABCB1 HMT1 ATM1	LLLWTVA LGTARAY L YVWAID IRNHS	160 FAAENLAL QIPESLKS IVFETIFI PVI	170 VSWNSPQWWWAI ITWQI VYSPHPNETFQ FTVSI	180 ADLG LGKG SIVLADHVARL LS	VLCVFATAIYLTYR	190 QVQFSLWV NSGQFLDA. SQFLDA. RKRHTHDPLDFE TQRPLLF.	200 LRYVVSGGLFV[GLWAP AKALQVWPL ERQLTEESN.VNNENAI NSAVNLWNQ
ABCB6 ABCB7 ABCB1 HMT1 ATM1	210 GLRPQSY IEKRTCW MDL SQNPSTV AQKDITH	2 TLQV HGHAGGGL EGDRNGGA QLGVSA K.KSVEQF	20 21 HEEDQ.DVERS HT.D KKKNFFKLNNK STSNF.GTLKS SS.AP.KV.KT	90 24 VRSAAQQSTW PKE.GLKD EKDKKEKKPT .SKKPSDKSW VKKTS.KAPT	9 259 RDFGRKLRLISGYI VDTRKIIKAMLSYV VSVFSMFRYSN AEYFRSFSTLLPY LSELKILKDLFRYI	260 MPRGSPALQLVV WPKDRPDLRARV MDKLYMVVGT. MPTKDYRLQFQI MPKGNNKVRIRV	270 280 LICLGLMGLERALNVLV AISLGFLGGAKAMNIVV LAAIIHGAGLPLM LICLVLFLGRAVVILA LIALGLLISAKILNVQV
ABCB6 ABCB7 ABCB1 HMT1 ATM1	29 PIFYRNI PFMFKYA MLVFGEM PRQLGVL PFFFKQT	Q VNLL VDSL TDIFANAG TEKL IDSM		300 APWNSLAW 4SGNMLNLS SSDINDTGFFM CIPWSDVIL AWD	310 TVTSYVFL.K DAPNTVATMATAVL NLEEDMTRYA F DPTVALPAAIGLTI	320 FLQGGGTGSTGF IGYGVSRAGAAF YYYSGGAGVLV VIYRFLQGNMGV LCYGVARFGSVL	330 340 VSNLRTFLWIRVOOFTS FNEVENAVFGKVAQNSI AAYIOVSFWCLAAGROI IGSLRSFLWPVSQYAY FGELRNAVFAKVAQNAI
ABCB6 ABCB7 ABCB1 HMT1 ATM1	35 RRVELLI RRIAKNV HKIRKQF RAISTKA RTVSLQT	9 FSHLHELS FLHLHNLD FHAIMRQE LRHVLNLS FQHLMKLD	360 3 LRWHIGRRTCE LGFHISROTCA IGWFDVHDVGE YDFHINKRACE LGWHISROTC	ZO, 38 LRIADRGTSS SKAIDRGTRG NTRLTDDVSK LTALTKGSTKG	9 399 VTGLLSYLVFNVIP ISFVLSALVFNLLP INEGIG NTFAEQVVFQIGP LSQVLTAMVFHIIP	400 TLADIIIGIIYF IMFEVMLVSGVL DKIGMF VLLDLGVAMVYF ISFEISVVCGIL	410 SMFFNAWEGLIVF YYKCGAOBALVIL FQSMATFETGFIVGFTR FIKFDIYETLIVL TYQFGASEAAITF
ABCB6 ABCB7 ABCB1 HMT1 ATM1	42 G GWKLTLV S	9 CMSLYLTL TLGTYTAF ILAISPVL MTLCYCYV TMLLYSIF	430 TIVVTEWRT GLSAAVWAKILS TVKITSWRT TIKTTAWRT	440 KFRRAMNTQE RFRIEMNKAD SFTDKELLAY EARRKMVNSW HFRRDANKAD	450 460 NATRARAVDSLLNY NDAGNAAIDSLLNY AKAGAVAEEVLAAI RESYAVQNDAIMNF NKAASVALDSLINF	470 ETVKYYNAESYE ETVKYFNNERYE RTVIAFGGQKKE ETVKNFDADDFE EAVKYFNNEKYL	480 VERYREATIKYQGLEWR AQRYDGFLKTYETASLK LERYNKNLEEAKRIGIK NERYGHAVDIYLKQERK ADRYNGSLMNYRDSQIK
4 ABCB6 ABCB7 ABCB1 HMT1 ATM1	90 SSASLVL STSTLAM KAITANI VLFSLNF VSQ <u>SL</u> AF	500 LNQTQNLV SIGAAFLL LNIVQGGI LNSGQNLI	519 IGLGLLAGSLL FSVGLTAIMVL IYASYALAFWY FTFSLAIACLU FTTALTAMMYM	520 CAYFVTEQKLQ ASQGIVAGTLT STTLVLSGEYS SAYRVTFGFNT GCTGVIGGNLT	530 VGDYVLFG VGDLVMVN IGQVLTVFFSVLIG VGDFVILL VGDLVLIN	540 TYTIQLYMPLNW GLLFQLSLPLNF AFSVGQASPS TYMIQLQQPLNF QLVFQLSVPLNF	550 560 FGIYYRMIQTNFIDMEN LGTYYRETRQALIDMIT IEAFANARGAAYE FGILYRSLQNSIIDTER LGSVYRDLKQSLIDMET
ABCB6 ABCB7 ABCB1 HMT1 ATM1	570 MFDLLKE LFTLLKV IFKIIDN LLEIFEE LFKLRKN	5 ETEVKDLP DTQIKDKV KPSIDSYS KPTVVEKP EVKIKNAE	80 GAGPLRFQI MASPLQI.TPQ KSGHKPDNI NAPDLKVT RPLMLPENVI	590 (GRIEFENVHF LATVAFDNVHF (GRLEFRNVHF 2GKVIFSHVSF YDITFENVF	600.61 SYADGRETLOD YIEGQKVISGI SYPSRKEVKILKGI AYDPRKPVISDI GYHPDRKILKNA	0 620 SFTVMPGQTLAL SFEVPAGKKVAI NLKVQSGQTVAL NFVAQPGKVIAL SFTIPAGWKTAI	630 VGPSGAGKSTILRLLFR VGGSGSGKSTIVRLLFR VGNSGCGKSTIVQLMOR VGBSGGKSTINRILLR VGSSGSGKSTILKLVFR
ABCB6 ABCB7 ABCB1 HMT1 ATM1	640 FYDISSG FYEPQKG LYDPTEG FFDVNSG FYDPESG	650 CIRIDGQD SIYLAGQN MVSVDGQD SITIDDQD RILINGRD	660 ISQUTQASLRSI IQDUSLESLRSI IRTINVRFLRSI IRNVTLSSLRSI IKE <u>YDI</u> DALRKY	670 IGVVPODTVL IGVVPODAVL IGVVPODSTL IGVVPODTPL	680 69 FNDTIADNIRYGRV FHNTIYYNLLYGNI FATTIAENIRYGRE FNDTILYNIKYAKP FNDTIWENVKFGRI	• <th>719 AAGIHDAIMAFPEGYRTI LAGLHDAILRMPHGYDT EANAYDFIMKLPHKFDT AAQIHDRILQFPDGYNS KAQLAPLIKKLPQGFDT</th>	719 AAGIHDAIMAFPEGYRTI LAGLHDAILRMPHGYDT EANAYDFIMKLPHKFDT AAQIHDRILQFPDGYNS KAQLAPLIKKLPQGFDT

a

h		720		730			740		7	7 5 <u>0</u>			76 Q			77 Q			7	вò		-	790	
D	ABCB6 ABCB7 ABCB1 HMT1 ATM1	QVGE QVGE LVGE RVGE IVGE	RGLK RGLK RGAQ RGLK RGLM	LSGG LSGG LSGG ISGG	EKQF EKQF EKQF	VAI VAI LAI LAI	ART ARA ARA ARA ARV	I LKA I LKD LVRNI I LKDI LLKN	PGII PPVI PKII PSII ARIN		EAT EAT EAT EAT	SAL SSL SAL SAL SAL	DTSN DSIJ DTES DTNJ DTHJ	ERA EET EAV ERQ EQA	IQA ILG VQV IQA LLR	SLA AMK ALD ALN TIR	KVC DVV KAR RLA DNF	AN KG SG	RTT RTS RTT RTA RTS	IVV IFI IVI VVI VYI	AHRI AHRI AHRI AHRI AHRI	LST\ LST\ LST\ LST]	VNA VDA VRNA TNA ADA	DQILV DEIIV DVIAG DLILC DKIIV
	ABCB6 ABCB7 ABCB1 HMT1 ATM1	800 IKDG LDQG FDDG ISNG LDNG	CIVE KVAE VIVE RIVE RVRE	8 RGRH RGTH KGNH IGTH EGKH	IO EALI HGLI DELM EELI LELI	S.R ANP KEK KRD AMP	GGV HSI GGA GSL	B20 ADMI SEMI FKL KKMI KKMI KELI	NQL NHT VTM VTM NFQ NTI	8 QGQ SSR TAG AMG EDL	BET VQN NEV KTS DHL	SED HDN ELEI AETI ENE	IKP(PKWE NAAI H LKD.	340 TME CAKK DESK	R EN. SEI	 DAL	.ISI EMSS	KEEE SNDS	RKK RSS	LQE LIR 	E KRS E	IVNS IRRS	SVKG	CGNCS SQAQD
	ABCB6 ABCB7 ABCB1 HMT1 ATM1	C RKLS	TKEA:	 LDES		/SFW	 RIMI	KLNL	 rewe	YFV	VGV	 FCA		GLQ	 PAF	 AII 	F S K :	I I G V	 FTR 	 IDD 	 PETI	KRQI	ISNL	FSLLF
	ABCB6 ABCB7 ABCB1 HMT1 ATM1	 LALG 	IISF	 ITFF	LQGE	TFG	KAGI	EILTI	KRLF	YMV	FRS	MLR(<u>o</u> dvs	WFD	 DPK 	 NTT 	GAL	TTRI	 AND	 AAQ 	 VKG2	AIGS	SRLA	VITQN
	ABCB6 ABCB7 ABCB1 HMT1 ATM1	 IANL 	GTGI	 IISF	IYGW	IQLT	LLLI	LAIVI	PII4	IAG	VVE	 МКМ: 	LSG()ALK	 DKK	 ELE 	GSGI	KIAT	 EAI	 ENF 	 RTV 	VSLI	IQEQ	кгенм
	ABCB6 ABCB7 ABCB1 HMT1 ATM1	YAQS	LQVP	YRNS	LRKA	HIF	GITI	FSFT	2AMN	IYFS	YAG	 CFRI	FGA	LVA	 HKL	 MSF 	EDVI	LLVF	SAV		AMA	VGQN	/SSF	 APDYA
	ABCB6 ABCB7 ABCB1 HMT1 ATM1	 KAKI 	SAAH	 IIMI	IEKI	PLI	DSYS	STEG	LMPN	ITLE	GNV	TFG	EVVE	NYP	 TRP 	 DIP 	VLQ	GLSI	 EVK 	 KGQ 		LVGS	SSGC	GKSTV
	ABCB6 ABCB7 ABCB1 HMT1 ATM1	 VQLL	ERFY	DPLA	GKVI	LDG	KEII	KRLN	VQWI		LGI	 VSQ: 	 EPII	FDC	 SIA 	 ENI 	AYGI	DNSF	VVs	QEE	IVR	A A K F	EANI	HAFIE
	ABCB6 ABCB7 ABCB1 HMT1 ATM1	 SLPN 	 КҮЗТІ 	KVGD	KGTQ)LSG	GQK	QRIA	 I A R A	LVR	QPH	 ILL:	LDE7	ATSA		 ESE 		QEAL	 DKA	 REG 	RTC		AHRL	 STIQN
	ABCB6 ABCB7 ABCB1 HMT1 ATM1	 ADLI	VVFQ:	NGRV	KEHG	тно тно	QLL2	AQKG		MVS	VQA	 GТКI	 RQ 											

Supplementary Fig. S3 Sequence alignment of ABC transporters.

a,b, Sequence alignment of human ABCB1, ABCB6, ABCB7 and yeast HMT1, ATM1 using ESPript3.

Supplementary Fig. S4 The H-P pocket of hABCB6.

a,b, The electrostatic properties of the interior surface of the translocation pathway. hydrophobic region (a) and positive region (b) were shown separately. Scale: red, negative (-5 kT/e); blue, positive (+5 kT/e). Two "plugs" and W546 are shown in (a). Side chains of representative arginine are shown in (b).

c, The structure of porphyrin.

d, The structure of protoporphyrin IX.

Supplementary Fig. S5 Sequence alignment of the "plug" and W546.

a, Sequence alignment of the "plug" in ABCB6 among different species.

b, Sequence alignment of W546 in ABCB6 among different species.

Supplementary Fig. S6 Reconstruction and structure determination of the nucleotide-bound hABCB6.

a, Representative cryo-EM micrograph of nucleotide-bound state hABCB6 in nanodisc.

b, 2D class averages of the nucleotide-bound state hABCB6 sample in nanodisc.

c, The workflow of 2D/3D reconstruction with nucleotide-bound state hABCB6 cryo-EM data. In brief, 1,300 k particles were kept after 2D classification, and subjected to three rounds of 3D classification. A final dataset containing 218 k particles were used for high-resolution refinement (see methods for more details).

d, Angular distribution of the nucleotide-bound state hABCB6 final reconstruction.

e, Gold-standard Fourier Shell correlation (FSC) curve of nucleotide-bound state

hABCB6 after 3D refinement. The resolution estimation was based on the criterion of FSC 0.143 cutoff.

Supplementary Fig. S7 Representative cryo-EM densities of hABCB6.

a, Density maps of representative transmembrane regions of nucleotide-bound hABCB6. Stick style atomic models (gold) were fitted into the cryo-EM density maps (gray mesh). The density maps were contoured at 10.0 σ .

b, Density maps of the representative nucleotide-binding region of nucleotide-bound hABCB6, similar to the panel (a).

Supplementary Fig. S8 The translocation pathway in hABCB6.

The substrate translocation pathway of hABCB6 in two conformations calculated by HOLE software. The pockets are shown as meshed surface and two cavities are divided by the plug or W546 in different conformations.

Supplementary Fig. S9 Comparisons of hABCB6 with other homologous proteins.

a, Comparison of occluded hABCB6 with outward-facing ABCB1 (6C0V).

b, Comparison of occluded hABCB6 with outward-facing Sav1866 (2HYD).

c, Comparison of inward-facing conformation hABCB6 with mouse ABCB1 (4M1M).

Supplementary Fig. S10 Molecular docking of PPIX and GSH in hABCB6

- a, The hABCB6-PPIX dock model and the interactions between PPIX and hABCB6.
- **b**, The hABCB6-GSH dock model and the interactions between GSH and hABCB6.
- c, The ATPase rate assay of PPIX-related mutants: T432A and N498A.
- d, The ATPase rate assay of GSH-related mutants: R276A, R330A, and T394A.

Supplementary Fig. S11 Structural interpretation of the pathogenic mutations.

a, The pathogenic mutations of hABCB6. Mutations related to different diseases are marked with different colors. Red: Porphyria. Yellow: dyschromatosis universalis hereditaria (DUH). Magenta: familial pseudohyperkalemia (FP). Green: ocular coloboma.

b, The interaction between R276 and D397.

Supplementary Table S1 | Cryo-EM data collection, refinement and validation statistics

	ABCB6	ABCB6[EQ]
Data collection and processing		
Magnification	130,000	81,000
Voltage (kV)	300	300
Electron exposure $(e^{-}/Å^2)$	50	50
Defocus range (µm)	-1.5 ~ -2.5	$-1.5 \sim -2.5$
Pixel size (Å)	0.86	0.97
Software	RELION-3	RELION-3
Symmetry imposed	C2	C2
Initial particle images (no.)	1450,000	1300,000
Final particles images (no.)	259,000	218,000
Map resolution (Å)	3.62	3.52
FSC threshold	0.143	0.143
Local map resolution range (Å)	2.4-4.0	2.4-4.0
Refinement		
Software	PHENIX 1.14	PHENIX 1.14
Initial model used (PDB code)		
Model resolution (Å)	3.7	3.6
FSC threshold	0.5	0.5
Map sharpening <i>B</i> factor	-162.9	-198.7
Model composition		
Non-hydrogen atoms	8828	9394
Protein residues	782	1184
Ligand	0	0
B factors (Å ²)		
Protein	55.36	45.08
Ligand	0	0
R.m.s deviations		
Bond length (Å)	0.005	0.004
Bond angles (°)	1.199	0.839
Validation		
MolProbity score	2.55	1.52
Clashscore	5.69	4.66
Poor rotamers (%)	7.73	0.40
Ramachandran plot		
Favored (%)	89.28	95.92
Allowed (%)	9.56	4.08
Disallowed (%)	0.18	0.00