
Supplementary Tables, figures and methods for  
Chromatin looping links target genes with genetic risk for dermatological traits 

Table S1. Summary statistics of the HiChIP datasets used in this project. 

Cell Type (HiChIP) Reads 
(millions) 

Valid interaction 
pairs (millions) 

Number of significant loops 

HaCaT unstim combined 
(Keratinocytes) 

569.5 273.1 58268 

HaCaT unstim rep 1 252.2 133.1 13950 
HaCaT unstim rep 2 317.3 140.1 38118 
HaCaT combined IFN-γ stimulated 624.8 309.8 68887 
HaCaT IFN-γ stimulated rep 1 262.9 136.7 14456 
HaCaT IFN-γ stimulated rep 2 361.9 173.2 47100 
MyLa combined (CD8+ T cells) 730.2 288.6 51274 
MyLa rep 1 446.4 190.3 33257 
MyLa rep 2 283.7 98.3 13743 
CD4+ Naïve T cells combined 407.5 230.4 54642 
CD4+ Naïve T cells rep 1 (B2) 190.5 107.1 29352 
CD4+ Naïve T cells rep 2 (B3) 217.0 123.4 28405 
GM12878 (B-cell) 504.7 241.3 76451 

 

Table S2. Summary statistics of the Hi-C datasets used in this project. 

Cell Type (Hi-C) Reads (millions) Valid interaction pairs (millions) 
HaCaT unstim (Keratinocytes) 169.7 106.2 
HaCaT IFN-γ stimulated 182.2 121.4 
MyLa (CD8+ T cells) 190.7 130.0 
Naïve T cell  773.1 506.7 
GM12878 1204.8 855.4 

   

Table S3. Significant motifs enriched in peaks linked specifically in stimulated cells. 

Motif q-value 
IRF2 0.0059 
ISRE 0.0610 
IRF1 0.0985 

 

Table S4. Style of loci tested. 

Disease Linked all 
closest 
genes 

Linked some 
closest gene 

Not linked any 
closest genes 

Tested 
loci 

Loci with no 
genes nearby 

Psoriatic Arthritis 4 0 3 7 0 
Psoriasis 25 5 14 44 4 
Atopic dermatitis 7 3 6 16 4 
Melanoma 13 1 7 21 3 
Systemic sclerosis 8 7 3 18 1 

 



Figure S1. Properties of the ChIP peaks identified from the HiChIP dataset. A) hierarchical clustering 
of the HiChIP peaks for the individual samples using correlation distance. B) PCA of the HiChIP peaks 
for the individual HiChIP samples. 

 

 

  



Figure S2. Overlap of loops identified in the two replicates for each condition compared to the 
loops identified in the merged datasets. 

 

  



Figure S3. Enrichment over background that disease associated variants have in HiChIP H3K27ac 
signal. Numbers inside each square represent the number of disease associated variants that 
directly overlap HiChIP H3K27ac peaks in each of the studied cell types. 

  



Figure S4. Distribution plots of significant interactions. X-axis: genomic distance (bp); Y-axis: 
number of interactions. A) HiChIP; B) Capture-Hi-C. 

 

  



Fibure S5. Functional properties of HiChIP interactions in IFN-γ stimulated HaCaT cells. A) Overlap 
of the genes identified through region capture Hi-C and HiChIP in HaCaT and MyLa cells for the same 
regions across all diseases studied. B) Enrichment of H3K27ac peaks in significant Capture-Hi-C 
interactions vs randomized. Red line indicates 95% confidence interval. C) Pathways identified by DE 
genes in IFN-γ stim. D) Boxplot displaying the number of interactions that originate from each UP 
regulated promoter in unstimulated vs IFN -γ stimulated conditions. E) Normalized H3K27ac signal 
present in the peaks that were linked two UP regulated promoters only in IFN-γ stimulated cells. 
Although the H3K27ac signal was higher in IFN-γ stimulated cells we find that there were already 
significant levels of H3K27ac in unstimulated cells. F) Pathways identified from differentially bound 
HiChIP H3K27ac peaks and HiChIP H3K27ac peaks linked to genes by HiChIP interactions to 
promoters of genes that were found to be differentially expressed during IFN-γ stimulation. 



 

  



Figure S6. Venn diagram of genes identified in each cell type in each replicate for psoriasis. 

 

 

  



Figure S7. Venn diagram representing the number of genes identified by cell type for all diseases. 

 

 

  



Figure S8. Correlation between number of genes identified by HiChIP vs eQTL. The number of genes 
linked by HiChIP in Naïve T cells and GM12878 cells correlates with the number of genes linked by 
eQTL from eQTLgen (R2 = 0.604). 

  

  



Figure S9. HiChIP interactions from the ETS1 locus provide a functional mechanism for this locus in 
atopic dermatitis. Tracks (in order): Gencode genes; SNPs associated with Atopic Dermititis (r2 > 0.8); 
SNPs associated with Psoriasis (r2 > 0.8); H3K27ac signal in naïve T cells; Significant long range 
interactions originating from the atopic dermatitis associated locus in naïve T cells; H3K27ac signal in 
GM12878 cells; Significant long range interactions originating from the atopic dermatitis associated 
locus in GM12878 cells; H3K27ac signal in MyLa cells; Significant long range interactions originating 
from the atopic dermatitis associated locus in MyLa cells; H3K27ac signal in unstimulated HaCaT cells; 
H3K27ac signal in IFN-γ stimulated HaCaT cells. 

 

 

  



Figure S10. Hi-C contact maps for the ETS1 locus. 

 

  



Figure S11. Hi-C contact maps for the SATB1 locus. Hi-C contact maps show a cell type specific loop 
(highlighted in green) that is present between the psoriasis SNPs and the SATB1 promoter. 

  



Figure S12. HiChIP interactions from the EXOC2/IRF4/DUSP22 locus link IRF4 and DUSP22 as 
candidate genes in psoriasis. Tracks (in order): Gencode genes; SNPs associated with Psoriasis (r2 > 
0.8); H3K27ac signal in naïve T cells; H3K27ac signal in MyLa cells; Significant long range interactions 
originating from the atopic dermatitis associated locus in MyLa cells; H3K27ac signal in unstimulated 
HaCaT cells; H3K27ac signal in IFN-γ stimulated HaCaT cells; H3K27ac signal in GM12878 cells; H3K27ac 
signal in naïve T cells. 

 

 

  



Figure S13. Hi-C contact maps for the EXOC2/IRF4/DUSP22 locus. 

 

 



Figure S14. HiChIP interactions from the IFNLR1/GRHL3 locus link GRHL3 as a candidate gene in 
psoriasis. Tracks for other cell types. Tracks (in order): RefSeq genes; SNPs associated with Psoriasis; 
H3K27ac signal in GM12878 cells; Significant long range interactions originating from the psoriasis 
associated locus in GM12878 cells; H3K27ac signal in MyLa cells; Significant long range interactions 
originating from the psoriasis associated locus in MyLa cells; H3K27ac signal in Naïve T cells; Significant 
long range interactions originating from the psoriasis associated locus in Naïve T cells. 

 

 

  



Figure S15. Hi-C contact maps for the IFNLR1/GRHL3 locus. 

  



Figure S16. Comparison of H3K27ac in HaCaT cells with publicly available ChIP-seqs generated 
from primary keratinocytes in different conditions. A) View of the promoter region of GRHL3. all 
conditions show a peak for H3K27ac and H3K4me3 indicating promoter activity for this gene in all 
conditions. B) View of the GWAS SNPs. We can see that there is presence of H3K27ac and H3K4me1 
in progenitor cells and H3K4me1 in migrating cells but no H3K4me3 in any condition. This indicates 
that the region functions as an enhancer and not as a promoter (which is next to it rather than 
overlapping) in these cell populations. 

 

 

 



 Figure S17. Hi-C contact maps for the FOXO1 locus. 

 

  



Supplementary materials and methods 
Cell culture 
HaCaT keratinocyte cells (Addexbio T0020001) and My-La CD8+ cells (Sigma-Aldrich, 
95051033) were authenticated by STR DNA profiling at the University of Manchester. HaCaT 
cells were cultured in high-glucose Dulbecco’s modified eagle’s medium (DMEM) 
supplemented with 10% foetal bovine serum (FBS) and penicillin-streptomycin. For HaCaT 
stimulation experiments, the media was supplemented with 100 ng/mL recombinant human 
IFN-γ (285-IF-100; R&D Systems) and cells incubated for 8 hours prior to harvest. My-La CD8+ 
cells (Sigma-Aldrich, 95051033) were cultured in Roswell Park Memorial Institute (RPMI) 1640 
medium supplemented with 10% AB human serum (Sigma Aldrich), 100 U/mL recombinant 
human IL-2 (Sigma-Aldrich) and penicillin-streptomycin (final concentration 100 U penicillin, 
0.1 mg streptomycin/ml). HaCaT and My-La cells were tested for mycoplasma by enzymatic 
assay at the University of Manchester (last tested on 29/10/2020). 

Cell crosslinking for chromatin-based experiments  
HaCaT cells were crosslinked for 10 minutes in 1% formaldehyde and the reaction was 
quenched with 0.135M glycine. The crosslinked cells were scraped from the flask, pelleted, 
washed in PBS and the supernatant removed. My-La cells were crosslinked for 10 minutes in 
1% (HiChIP) or 2% (Hi-C) formaldehyde and the reaction was quenched with 0.135M glycine 
and the supernatant removed. Fixed cells were snap frozen on dry ice and stored at -80°C.  

HiChIP library generation and processing 
HiChIP libraries were generated according to the Chang Lab protocol (Mumbach et al., 2016).  
10 million crosslinked cells were lysed and the chromatin digested using 375 U of MboI (NEB, 
R0147M) for 4 hours at 37°C. Fragment ends were filled in using dCTP, dGTP, dTTP and biotin-
14 dATP (Life Technologies) and ligated at room temperature overnight. The nuclei were lysed 
and the chromatin sheared to lengths of approximately 200-700 bp using a Covaris S220. 
Immunoprecipitation was performed overnight at 4°C using 20 µg of H3K27ac antibody 
(Abcam ab4729). The DNA was captured on a 1:1 mixture of protein A and G Dynabeads 
(Invitrogen 10001D and 10003D). After washes, the DNA was eluted with proteinase K at 65°C 
overnight. The sample was cleaned using Zymo Clean and Concentrator Columns (Zymo 
D4013) and quantified using the Qubit DNA HS kit. 20-35 ng of DNA was taken forward for 
biotin-pulldown with streptavidin C-1 beads at room temperature for 30 minutes. The beads 
were suspended in TD buffer from the Nextera kit and transposed with Tn5 (Illumina) at 55°C 
for exactly 10 minutes. The volume of Tn5 was dependent on DNA quantity and defined by 
the original HiChIP protocol. After washes, the library was amplified off the beads using 
Phusion polymerase and Nextera indexing primers (Illumina). AMPure XP beads (Beckman 
Coulter, A63882) were used to select fragments approximately 300 – 700 bp in length. 
Quantification and quality control of the final HiChIP library was conducted using a 
Bioanalyzer and KAPA quantification kit (Kapa Biosystems). Libraries underwent Next 
Generation Sequencing on a HiSeq 2500 generating 100 bp paired-ends. 

Sequencing data for the HiChIP libraries was filtered and the adapters were removed using 
fastp v0.19.4 (Chen et al., 2018). The reads were then mapped to the GRCh38 genome with 
Hi-C Pro v2.11.0 (Servant et al., 2015), using default settings. Enriched regions (H3K27ac 
peaks) were identified using HiChIP-peaks v 0.1.1 (Shi et al., 2019) with default settings and 
FDR < 0.01. Loops were identified using FitHiChIP (Bhattacharyya et al., 2019) using the 
following settings: Coverage normalization, stringent background with merging enabled, 



peaks generated from HiChIP-peaks and 5 kb bin size. Viewpoints for the figures were 
generated by selecting interactions originating from within 10 kb of the SNPs. 

We have noticed that one replicate produced significantly more loops than the other 
replicate. This could be caused by the fact that this replicate contained significantly more 
reads than the latter. We tested this hypothesis by down sampling the number of unique valid 
pairs identified in one replicate (HaCaT unstim 2) to the same depth of the other (HaCaT 
unstim 1). While this reduced the number of loops identified slightly it was not enough by 
itself to correct the number of loops (from 38118 to 36211). The results from HiChIP-peaks 
show that one replicate 2 had significantly higher proportion of reads in peaks (a metric for 
ChIP enrichment) compared to replicate 1 (54% vs 45%). In addition to this we also noticed 
some slight differences in the raw contact statistics in which replicate 2 contained more short 
range (<20kb) paired end tags than replicate 1 (30% vs 15%) and fewer long range and trans 
paired end tags (trans: 13% vs 20%, >20kb: 56% vs 63%). We think that these two factors 
could be the main contributors to the differences in number of loops called and the PCA in 
the next section, rather than the number of reads.  

To create the Venn diagrams for the overlap of the interactions we used bedtools v2.28.0 
(Quinlan & Hall, 2010) PairToPair with a slop of 5kb to identify the interactions that were 
present in two conditions, which was then repeated for each two-way comparison between 
the replicates and the combined datasets. Because of the slop some interactions in one group 
could overlap multiple interactions from the other group and vice-versa which can cause 
some inconsistencies in the reported numbers in which the sum of all subsections of a group 
is higher than the total number of interactions. We have tried to minimize this effect, but the 
results remain approximate. This does not affect the overall message of the figures presented. 

HiChIP clustering and principal component analysis 
To validate the reproducibility and cell type specificity of our HiChIP loops we collected the 
top 10000 significant loops from each individual replicate and combined it to create a set of 
82545 loops across all samples. For each of these loops we then collected the raw FitHiChIP 
p-value from each sample from the raw interactions file (replacing missing entries with 1). We 
then ran hierarchical clustering using correlation (seaborn clustermap) and PCA (Scikit-learn) 
analysis on the resulting data matrix. 

For the clustering of the peaks we used the included differential peak calling module of 
HiChIP-peaks (Shi et al., 2019) and used the data matrix provided to run hierarchical clustering 
using correlation (seaborn clustermap) and PCA (Scikit-learn) analysis on the resulting data 
matrix. 

We noticed that although the hierarchical clustering showed a better correlation between 
conditions than across batches, the PCA showed that the amount variance explained by batch 
was greater than the IFN-γ stimulation. We see this both when analysing loops or peaks by 
themselves (figure 1A-B, S1A-B). We believe that slight differences in culturing conditions 
introduced this variability as these are biological replicates that have been generated 
completely independently of each other. The results from differential analysis of both RNA-
seq and peaks’ motifs enrichments show strong enrichment for IFN-γ response pathways, 
indicating that the stimulation was nevertheless successful and created the right response in 
the samples.  



Hi-C library generation and processing 
In-situ Hi-C libraries were generated for HaCaT and MyLa cell lines as previously described 
(Ray-Jones et al., 2020). 50 million crosslinked cells were lysed and the chromatin digested 
with HindIII at 37°C overnight. Restriction cut sites were filled in using dCTP, dGTP, dTTP and 
biotin-14-dATP (Life Technologies), then in-nucleus ligation was carried out at 16°C for 4-6 
hours. Crosslinks were reversed by proteinase-K overnight at 65°C and RNA was digested 
using RNaseA for 60 minutes at 37°C. The DNA was purified by sequential phenol and phenol-
chloroform extractions and ethanol-precipitated at -20°C overnight, followed by two further 
phenol-chloroform extractions and a second overnight precipitation. 

A 40 µg aliquot of DNA was taken forward for further processing following QC steps. T4 DNA 
polymerase used to remove biotin-14-dATP from non-ligated ends then the DNA purified by 
phenol-chloroform extraction and ethanol precipitation overnight. The DNA was sheared 
using a Covaris S220 sonicator and end-repair was performed using T4 DNA polymerase, T4 
DNA polynucleotide kinase and DNA polymerase I, large (Klenow) fragment. The sample was 
purified using Qiagen MinElute Kit, with a modified protocol described by (Belton et al., 2012). 
Klenow (exo-) was used to adenylate DNA fragment ends and a double-sided SPRI bead size 
selection was used to obtain fragments of approximately 200-600 bp. Dynabeads MyOne 
Streptavidin C1 beads (Life Technologies) were used to pull down biotinylated fragments, 
which were then ligated to annealed Illumina sequencing adapters. PCR was performed using 
Phusion HF (NEB) and TruPE PCR primers (Illumina), then the amplified DNA was cleaned twice 
using 1.8X volume of SPRI beads. The quality and quantity of the Hi-C libraries was tested by 
Bioanalyzer and KAPA qPCR. Hi-C libraries were analysed by Next Generation Sequencing. The 
My-La Hi-C library was sequenced on an Illumina HiSeq 2500 generating 100bp paired ends. 
The HaCaT Hi-C libraries were sequenced on an Illumina HiSeq 4000 generating 75 bp paired 
ends. 

The sequencing data was filtered and adapters were removed using fastp v0.19.4 (Chen et al., 
2018). The reads were then mapped to the GRCh38 genome with Hi-C Pro v2.11.0 (Servant et 
al., 2015), using default settings. The Hi-C interaction matrices were normalised within Hi-C 
Pro using iterative correction and eigenvector decomposition (ICE). TADs were identified 
using OnTAD v1.2 (An et al., 2019), a novel Optimized Nested TAD caller for Hi-C data, using 
Hi-C data binned at a 40 kb resolution and a maximum TAD size of 4 mb. This software calls 
TADs using a hierarchical algorithm. Level 1 TADs are the biggest and within each TAD there 
can be smaller subTADs which are identified as level 2, 3 etc. For this analysis we only used 
the first 3 levels. Files for visualisation were created using the hicpro2juicebox.sh utility and 
visualised in Juicebox (Durand et al., 2016). Maps were normalized with the balancing 
algorithm whenever that converged or the coverage (sqrt) method otherwise. Figures for this 
paper were generated using a modified version of CoolBox 
(https://github.com/GangCaoLab/CoolBox). 

For primary Naïve T cells, we used a different protocol to generate the Hi-C maps. PBMCs 
were isolated from a buffy coat obtained from the National Blood Transfusion Service using a 
ficoll gradient. T-cells were isolated using an EasySep T-cell isolation kit according to the 
manufacturer's instructions. 3 million cells were fixed with 2% formaldehyde for 10 minutes 
and then snap frozen. Hi-C libraries for 3 technical replicates were generated using the Arima 
Hi-C kit following manufacturer's instructions. Data was then merged, processed and analysed 
in the same way as the other libraries. 



For GM12878 cells we obtained 1.2B raw reads from Arima Genomics. This library was chosen 
because it was more directly comparable with our primary Naïve T cells library and, as it was 
generated using the Arima Hi-C protocol. Data was then processed and analysed in the same 
way as the other libraries. 

Region Capture Hi-C and overlap with HiChIP results 
Region capture Hi-C libraries were generated as previously described from the Hi-C libraries 
as part of a previous study (Ray-Jones et al., 2020). Approximately 4500 baits were used that 
captured fragments containing GWAS SNPs for Ps, juvenile idiopathic arthritis, asthma, PsA, 
rheumatoid arthritis and SSc. 

First, amplified Hi-C libraries were generated as above. Then, Hi-C DNA up to 750 ng was 
concentrated using a vacuum concentrator and bound to the capture baits in a single 
hybridisation reaction using SureSelectXT reagents and protocol (Agilent Technologies). The 
biotinylated baits were captured using Dynabeads MyOne Streptavidin T1 beads (Life 
Technologies). Following washes, the libraries were amplified on the beads using Phusion HF 
and barcoded TruPE primers then the amplified DNA cleaned twice using 1.8X volume of SPRI 
beads. The quality and quantity of the capture Hi-C libraries was tested by Bioanalyzer and 
KAPA qPCR (Kapa Biosystems). Capture Hi-C libraries were analysed by 75 bp paired-end Next 
Generation Sequencing on an Illumina NextSeq500 (My-La) or HiSeq 4000 (HaCaT).  

Capture Hi-C sequence data was quality filtered with fastp v 0.19.4 (Chen et al., 2018) and 
then processed through the Hi-C User Pipeline (HiCUP) v0.7.2 (Wingett et al., 2015) and 
mapped to the GRCh38 genome. For each cell type, the two biological replicates were 
simultaneously run through Capture Hi-C Analysis of Genomic Organisation (CHiCAGO) 
v1.10.1 (Cairns et al., 2016) in R v3.5.1 and significant interactions were called with a score 
threshold of 5. This yielded about 35,000 significant interactions across all disease studied, 
with a median interaction distance of 280 kb (figure 1C and S4B). Similar to HiChIP data, the 
majority of the interactions reside within TADs (figure 1D). 

Enrichment for H3K27ac was calculated using the integrated tool in the CHiCAGO package 
with default settings and the H3K27ac peaks generated from the HiChIP data using HiChIP-
Peaks.  

To identify active enhancer-promoter interactions we kept the CHiCAGO interactions that 
originated from HiChIP H3K27ac peaks in the matching cell type. We then identified the 
expressed promoters (TPM>1) that were within 5 kb of the other end of the interactions. 

To compare the results from Capture Hi-C with our new HiChIP libraries we determined the 
interactions that originated from within 5 kb of those 4500 capture fragments. Genes were 
then identified as described in the “Linking GWAS results to putative gene targets” section. 

Even though Capture Hi-C interactions are enriched for H3K27ac (figure S5B), they are not 
specifically selected for active genes or enhancers. The majority of significant interactions 
(80% for unstimulated HaCaT) do not overlap H3K27ac peaks. Moreover, Capture Hi-C 
interactions do not seem specific for active genes: 36% of the genes interacting with baits in 
unstimulated HaCaT are not expressed. In contrast, HiChIP interactions overlap a H3K27ac 
peak 99.8% of the times at one end and 92.5% at both ends. Moreover, 82% of the interacting 
genes from the same regions were found to be expressed. 



RNA-seq 
3’ mRNA sequencing libraries were generated for cell lines using the Lexogen QuantSeq 3’ 
mRNA-Seq Library Prep Kit FWD for Illumina. Libraries were sequenced using single-end 
Illumina SBS technology. Reads were quality trimmed using Trimmomatic v0.38 (Bolger et al., 
2014) using a sliding window of 5 with a mean minimum quality of 20. Adapters and poly 
A/poly G tails were removed using Cutadapt v1.18 (Martin, 2011) and then UMIs were 
extracted from the 5’ of the reads using UMI-tools v0.5.5 (Smith et al., 2017). Reads were 
then mapped using STAR v2.5.3a (Dobin et al., 2013) on the GRCh38 genome with GENCODE 
annotation v29 (Harrow et al., 2012). Reads were de-duplicated using UMIs with UMI-tools 
and then counted using HTSeq v0.11.2 (Anders et al., 2015). Count matrixes were analysed in 
R 3.5.1 and normalisation and differential expression analysis was conducted using DESeq2 
v1.22.2 (Love et al., 2014). Differentially expressed genes were called with an adjusted P value 
of 0.10 (FDR 10%). For detection of expressed genes in the cell lines, we considered RNA-seq 
counts greater than 1 count per million. 

Public RNA-seq data 
Public RNA-seq for the CD4 naïve t cell type was downloaded from (Bonnal et al., 2015). 
Accession ID: ERP004883. Raw sequencing reads were filtered and adapters and polyAs 
trimmed with fastp v 0.19.4 (Chen et al., 2018). Reads were then mapped with salmon v0.14.1 
(Patro et al., 2017) to the GRCh38 genome with GENCODE annotation v29 (Harrow et al., 2012). 

TPM values were used later in the analysis for gene filtering. 

GWAS data 
Genome wide significant (p-value < 5x10^-8) GWAS loci were downloaded for the following 
diseases: PsA (Bowes et al., 2015; Stuart et al., 2015), Ps (Tsoi et al., 2017), melanoma (Duffy 
et al., 2018), SSc (López-Isac et al., 2019), atopic dermatitis (Paternoster et al., 2015) and 
rheumatoid arthritis (Okada et al., 2014). GWAS loci for Skin Pigmentation (Hernandez-
Pacheco et al., 2017), Celiac Disease (Trynka et al., 2011), Grave's Disease (Cooper et al., 
2012), Primary Biliary Cholangitis (Cordell et al., 2015), Type 2 Diabetes (Mahajan et al., 2018), 
Chrohn Disease (Liu et al., 2015), Keratinocyte carcinoma (Liyanage et al., 2019) and Primary 
Sclerosing Cholangitis (Ji et al., 2017) (used in supplementary figures only) were downloaded 
from the GWAS catalog (Buniello et al., 2019). 

SNPs in high linkage disequilibrium (R^2 > 0.8) with the lead SNPs were identified using plink 
v1.90b3.39 on the 1000 genomes data v3 with population set to EUR. 

SNP enrichment 
We obtained the H3K27ac signal tracks for each cell type from the HiChIP data using HiChIP-
Peaks. This track corresponds to the signal for this marker of activity along the genome. We 
then calculated the median intensity of the signal over every SNP outside of the MHC and 
compared it with the median for a set of 1 million randomly generated positions to get an 
estimate of a genomic background for the signal to calculate an enrichment. We also 
calculated the number of individual SNPs that are located within a H3K27ac peak for each cell 
type. 

Linking stimulation responsive genes to enhancers and motifs 
We first identified the genes that were differentially expressed during the IFN-γ stimulation 
as described previously. We then used the promoter regions of these genes to identify the 



regions that interacted with these genes in the two conditions in HaCaT cells assuming these 
regions would be enhancers that regulated these genes.  

To test the levels of H3K27 acetylation present in these peaks before and after the IFN-γ 
stimulation we intersected these regions with the H3K27ac peaks identified from HiChIP-
Peaks and recorded their normalized H3K27ac signal. 

To identify the enriched motifs that were linked to differentially expressed genes we obtained 
the H3K27ac peak regions that were linked in both conditions to these genes and ran Motif 
enrichment analysis using HOMER v 4.8.3 (Heinz et al., 2010) with the findMotifsGenome.pl 
command and “–size given” parameter. The background model was set to all the peaks 
identified in the two conditions. 

To identify the enriched motifs in peaks linked to UP regulated genes specifically in IFN-γ 
stimulated condition we first identified the regions (other ends) that were linked to these 
genes in the two conditions. We then used bedtools v2.28.0 (Quinlan & Hall, 2010) to identify 
the other ends that were linked in IFN-γ stimulated condition but not in unstimulated 
condition with a slop of 5kb. We then intersected those regions with the H3K27ac peaks as 
done previously and ran findMotifsGenome.pl command with the “–size given” parameter. 
The background model was set to all the peaks that were linked to these same genes in both 
conditions. 

The motifs database used was always the default HOMER Known motifs database and all 
other settings for HOMER were kept to default. 

Overlap with eQTL 
We downloaded the full cis-eQTL datasets from the sun-exposed skin GTEx v7 dataset (GTEx 
Consortium, 2013), the eQTLgen (version 2018/10/17) dataset (Võsa et al., 2018), the Kasela 
dataset (Kasela et al., 2017) and the DICE eQTL dataset (Schmiedel et al., 2018). To identify 
the eQTLs that were originating from the GWAS loci we queried every SNP that was in LD (R^2 
> 0.8) with the lead SNP and recorded all the genes that were significantly linked to those 
variants. Genes were filtered by expression TPM > 1 in our cell types. We then identified all 
the genes that are linked for a specific disease (in this example psoriasis) and compared this 
list with the list of genes that were identified from the same SNPs using the HiChIP 
interactions. 

Pathway analysis 
The most enriched pathways for each disease were identified using the EnrichR (E. Y. Chen et 
al., 2013) web API with the gene set library set to GO_Biological_Process_2018 with all protein 
coding genes as background (default settings). We used the genes that were called in both 
replicates for each condition for this analysis. The pathways were then sorted by p-value and 
the top 10 enriched pathways were plotted. 

Loci style 
To classify loci into general groups of interactions we first identified the closest genes to the 
loci. A locus can have multiple closest genes as the LD block might span a large region and 
multiple genes could be considered the “closest” to some SNP.  

To identify the number of loci in which we link all or some of the closest genes we first decided 
to remove the loci which had an LD block larger than 100kb. We then tested if our interactions 
(from merged datasets) recovered these genes. To identify the loci which did not have any 



close gene we did not filter by loci size although none of the loci tested was above 100kb in 
size. 

Drug discovery 
Drug discovery was executed by querying the drugbank v5.1.4 database (Wishart et al., 2008). 
New drugs available for repurposing were identified by the approved tag in at least one 
disease and the target being one of the genes studied. 
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